llvm.org GIT mirror llvm / 66c5fd6 lib / CodeGen / VirtRegMap.cpp
66c5fd6

Tree @66c5fd6 (Download .tar.gz)

VirtRegMap.cpp @66c5fd6raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "spiller"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;

namespace {
  Statistic<> NumSpills("spiller", "Number of register spills");
  Statistic<> NumStores("spiller", "Number of stores added");
  Statistic<> NumLoads ("spiller", "Number of loads added");
  Statistic<> NumReused("spiller", "Number of values reused");
  Statistic<> NumDSE   ("spiller", "Number of dead stores elided");

  enum SpillerName { simple, local };

  cl::opt<SpillerName>
  SpillerOpt("spiller",
             cl::desc("Spiller to use: (default: local)"),
             cl::Prefix,
             cl::values(clEnumVal(simple, "  simple spiller"),
                        clEnumVal(local,  "  local spiller"),
                        clEnumValEnd),
             cl::init(local));
}

//===----------------------------------------------------------------------===//
//  VirtRegMap implementation
//===----------------------------------------------------------------------===//

void VirtRegMap::grow() {
  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
}

int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
                                                        RC->getAlignment());
  Virt2StackSlotMap[virtReg] = frameIndex;
  ++NumSpills;
  return frameIndex;
}

void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
  assert(MRegisterInfo::isVirtualRegister(virtReg));
  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
         "attempt to assign stack slot to already spilled register");
  Virt2StackSlotMap[virtReg] = frameIndex;
}

void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
                            unsigned OpNo, MachineInstr *NewMI) {
  // Move previous memory references folded to new instruction.
  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
    MI2VirtMap.erase(I++);
  }

  ModRef MRInfo;
  if (!OldMI->getOperand(OpNo).isDef()) {
    assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
    MRInfo = isRef;
  } else {
    MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
  }

  // add new memory reference
  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
}

void VirtRegMap::print(std::ostream &OS) const {
  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();

  OS << "********** REGISTER MAP **********\n";
  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";

  }

  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
  OS << '\n';
}

void VirtRegMap::dump() const { print(std::cerr); }


//===----------------------------------------------------------------------===//
// Simple Spiller Implementation
//===----------------------------------------------------------------------===//

Spiller::~Spiller() {}

namespace {
  struct SimpleSpiller : public Spiller {
    bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
  };
}

bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF,
                                         const VirtRegMap &VRM) {
  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
  DEBUG(std::cerr << "********** Function: "
                  << MF.getFunction()->getName() << '\n');
  const TargetMachine &TM = MF.getTarget();
  const MRegisterInfo &MRI = *TM.getRegisterInfo();
  bool *PhysRegsUsed = MF.getUsedPhysregs();

  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
  // each vreg once (in the case where a spilled vreg is used by multiple
  // operands).  This is always smaller than the number of operands to the
  // current machine instr, so it should be small.
  std::vector<unsigned> LoadedRegs;

  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
       MBBI != E; ++MBBI) {
    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
    MachineBasicBlock &MBB = *MBBI;
    for (MachineBasicBlock::iterator MII = MBB.begin(),
           E = MBB.end(); MII != E; ++MII) {
      MachineInstr &MI = *MII;
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (MO.isRegister() && MO.getReg())
          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
            unsigned VirtReg = MO.getReg();
            unsigned PhysReg = VRM.getPhys(VirtReg);
            if (VRM.hasStackSlot(VirtReg)) {
              int StackSlot = VRM.getStackSlot(VirtReg);
              const TargetRegisterClass* RC =
                MF.getSSARegMap()->getRegClass(VirtReg);

              if (MO.isUse() &&
                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
                  == LoadedRegs.end()) {
                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
                LoadedRegs.push_back(VirtReg);
                ++NumLoads;
                DEBUG(std::cerr << '\t' << *prior(MII));
              }

              if (MO.isDef()) {
                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
                ++NumStores;
              }
            }
            PhysRegsUsed[PhysReg] = true;
            MI.SetMachineOperandReg(i, PhysReg);
          } else {
            PhysRegsUsed[MO.getReg()] = true;
          }
      }

      DEBUG(std::cerr << '\t' << MI);
      LoadedRegs.clear();
    }
  }
  return true;
}

//===----------------------------------------------------------------------===//
//  Local Spiller Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// LocalSpiller - This spiller does a simple pass over the machine basic
  /// block to attempt to keep spills in registers as much as possible for
  /// blocks that have low register pressure (the vreg may be spilled due to
  /// register pressure in other blocks).
  class LocalSpiller : public Spiller {
    const MRegisterInfo *MRI;
    const TargetInstrInfo *TII;
  public:
    bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
      MRI = MF.getTarget().getRegisterInfo();
      TII = MF.getTarget().getInstrInfo();
      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
                      << MF.getFunction()->getName() << "':\n");

      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
           MBB != E; ++MBB)
        RewriteMBB(*MBB, VRM);
      return true;
    }
  private:
    void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
                        std::map<unsigned, int> &PhysRegs);
    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
                            std::map<unsigned, int> &PhysRegs);
  };
}

void LocalSpiller::ClobberPhysRegOnly(unsigned PhysReg,
                                      std::map<int, unsigned> &SpillSlots,
                                      std::map<unsigned, int> &PhysRegs) {
  std::map<unsigned, int>::iterator I = PhysRegs.find(PhysReg);
  if (I != PhysRegs.end()) {
    int Slot = I->second;
    PhysRegs.erase(I);
    assert(SpillSlots[Slot] == PhysReg && "Bidirectional map mismatch!");
    SpillSlots.erase(Slot);
    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
          << " clobbered, invalidating SS#" << Slot << "\n");

  }
}

void LocalSpiller::ClobberPhysReg(unsigned PhysReg,
                                  std::map<int, unsigned> &SpillSlots,
                                  std::map<unsigned, int> &PhysRegs) {
  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
    ClobberPhysRegOnly(*AS, SpillSlots, PhysRegs);
  ClobberPhysRegOnly(PhysReg, SpillSlots, PhysRegs);
}


// ReusedOp - For each reused operand, we keep track of a bit of information, in
// case we need to rollback upon processing a new operand.  See comments below.
namespace {
  struct ReusedOp {
    // The MachineInstr operand that reused an available value.
    unsigned Operand;

    // StackSlot - The spill slot of the value being reused.
    unsigned StackSlot;

    // PhysRegReused - The physical register the value was available in.
    unsigned PhysRegReused;

    // AssignedPhysReg - The physreg that was assigned for use by the reload.
    unsigned AssignedPhysReg;
    
    // VirtReg - The virtual register itself.
    unsigned VirtReg;

    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
             unsigned vreg)
      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
      VirtReg(vreg) {}
  };
}


/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them.  If possible, avoid reloading vregs.
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {

  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
  // register values that are still available, due to being loaded to stored to,
  // but not invalidated yet.
  std::map<int, unsigned> SpillSlotsAvailable;

  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
  // which physregs are in use holding a stack slot value.
  std::map<unsigned, int> PhysRegsAvailable;

  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");

  std::vector<ReusedOp> ReusedOperands;

  // DefAndUseVReg - When we see a def&use operand that is spilled, keep track
  // of it.  ".first" is the machine operand index (should always be 0 for now),
  // and ".second" is the virtual register that is spilled.
  std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;

  // MaybeDeadStores - When we need to write a value back into a stack slot,
  // keep track of the inserted store.  If the stack slot value is never read
  // (because the value was used from some available register, for example), and
  // subsequently stored to, the original store is dead.  This map keeps track
  // of inserted stores that are not used.  If we see a subsequent store to the
  // same stack slot, the original store is deleted.
  std::map<int, MachineInstr*> MaybeDeadStores;

  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();

  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
       MII != E; ) {
    MachineInstr &MI = *MII;
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;

    ReusedOperands.clear();
    DefAndUseVReg.clear();

    // Process all of the spilled uses and all non spilled reg references.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!MO.isRegister() || MO.getReg() == 0)
        continue;   // Ignore non-register operands.
      
      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
        // Ignore physregs for spilling, but remember that it is used by this
        // function.
        PhysRegsUsed[MO.getReg()] = true;
        continue;
      }
      
      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
             "Not a virtual or a physical register?");
      
      unsigned VirtReg = MO.getReg();
      if (!VRM.hasStackSlot(VirtReg)) {
        // This virtual register was assigned a physreg!
        unsigned Phys = VRM.getPhys(VirtReg);
        PhysRegsUsed[Phys] = true;
        MI.SetMachineOperandReg(i, Phys);
        continue;
      }
      
      // This virtual register is now known to be a spilled value.
      if (!MO.isUse())
        continue;  // Handle defs in the loop below (handle use&def here though)

      // If this is both a def and a use, we need to emit a store to the
      // stack slot after the instruction.  Keep track of D&U operands
      // because we are about to change it to a physreg here.
      if (MO.isDef()) {
        // Remember that this was a def-and-use operand, and that the
        // stack slot is live after this instruction executes.
        DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
      }
      
      int StackSlot = VRM.getStackSlot(VirtReg);
      unsigned PhysReg;

      // Check to see if this stack slot is available.
      std::map<int, unsigned>::iterator SSI =
        SpillSlotsAvailable.find(StackSlot);
      if (SSI != SpillSlotsAvailable.end()) {
        DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
                        << MRI->getName(SSI->second) << " for vreg"
                        << VirtReg <<" instead of reloading into physreg "
                        << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
        // If this stack slot value is already available, reuse it!
        PhysReg = SSI->second;
        MI.SetMachineOperandReg(i, PhysReg);

        // The only technical detail we have is that we don't know that
        // PhysReg won't be clobbered by a reloaded stack slot that occurs
        // later in the instruction.  In particular, consider 'op V1, V2'.
        // If V1 is available in physreg R0, we would choose to reuse it
        // here, instead of reloading it into the register the allocator
        // indicated (say R1).  However, V2 might have to be reloaded
        // later, and it might indicate that it needs to live in R0.  When
        // this occurs, we need to have information available that
        // indicates it is safe to use R1 for the reload instead of R0.
        //
        // To further complicate matters, we might conflict with an alias,
        // or R0 and R1 might not be compatible with each other.  In this
        // case, we actually insert a reload for V1 in R1, ensuring that
        // we can get at R0 or its alias.
        ReusedOperands.push_back(ReusedOp(i, StackSlot, PhysReg,
                                          VRM.getPhys(VirtReg), VirtReg));
        ++NumReused;
        continue;
      }
      
      // Otherwise, reload it and remember that we have it.
      PhysReg = VRM.getPhys(VirtReg);
      const TargetRegisterClass* RC =
        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);

    RecheckRegister:
      // Note that, if we reused a register for a previous operand, the
      // register we want to reload into might not actually be
      // available.  If this occurs, use the register indicated by the
      // reuser.
      if (!ReusedOperands.empty())   // This is most often empty.
        for (unsigned ro = 0, e = ReusedOperands.size(); ro != e; ++ro)
          if (ReusedOperands[ro].PhysRegReused == PhysReg) {
            // Yup, use the reload register that we didn't use before.
            PhysReg = ReusedOperands[ro].AssignedPhysReg;
            goto RecheckRegister;
          } else {
            ReusedOp &Op = ReusedOperands[ro];
            unsigned PRRU = Op.PhysRegReused;
            if (MRI->areAliases(PRRU, PhysReg)) {
              // Okay, we found out that an alias of a reused register
              // was used.  This isn't good because it means we have
              // to undo a previous reuse.
              const TargetRegisterClass *AliasRC =
                MBB.getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
              MRI->loadRegFromStackSlot(MBB, &MI, Op.AssignedPhysReg,
                                        Op.StackSlot, AliasRC);
              ClobberPhysReg(Op.AssignedPhysReg, SpillSlotsAvailable,
                             PhysRegsAvailable);

              // Any stores to this stack slot are not dead anymore.
              MaybeDeadStores.erase(Op.StackSlot);

              MI.SetMachineOperandReg(Op.Operand, Op.AssignedPhysReg);
              PhysRegsAvailable[Op.AssignedPhysReg] = Op.StackSlot;
              SpillSlotsAvailable[Op.StackSlot] = Op.AssignedPhysReg;
              PhysRegsAvailable.erase(Op.PhysRegReused);
              DEBUG(std::cerr << "Remembering SS#" << Op.StackSlot
                    << " in physreg "
                    << MRI->getName(Op.AssignedPhysReg) << "\n");
              ++NumLoads;
              DEBUG(std::cerr << '\t' << *prior(MII));

              DEBUG(std::cerr << "Reuse undone!\n");
              ReusedOperands.erase(ReusedOperands.begin()+ro);
              --NumReused;
              goto ContinueReload;
            }
          }
    ContinueReload:
      PhysRegsUsed[PhysReg] = true;
      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
      // This invalidates PhysReg.
      ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);

      // Any stores to this stack slot are not dead anymore.
      MaybeDeadStores.erase(StackSlot);

      MI.SetMachineOperandReg(i, PhysReg);
      PhysRegsAvailable[PhysReg] = StackSlot;
      SpillSlotsAvailable[StackSlot] = PhysReg;
      DEBUG(std::cerr << "Remembering SS#" << StackSlot <<" in physreg "
                      << MRI->getName(PhysReg) << "\n");
      ++NumLoads;
      DEBUG(std::cerr << '\t' << *prior(MII));
    }

    // Loop over all of the implicit defs, clearing them from our available
    // sets.
    for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
         *ImpDef; ++ImpDef) {
      PhysRegsUsed[*ImpDef] = true;
      ClobberPhysReg(*ImpDef, SpillSlotsAvailable, PhysRegsAvailable);
    }

    DEBUG(std::cerr << '\t' << MI);

    // If we have folded references to memory operands, make sure we clear all
    // physical registers that may contain the value of the spilled virtual
    // register
    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
                      << I->second.second);
      unsigned VirtReg = I->second.first;
      VirtRegMap::ModRef MR = I->second.second;
      if (!VRM.hasStackSlot(VirtReg)) {
        DEBUG(std::cerr << ": No stack slot!\n");
        continue;
      }
      int SS = VRM.getStackSlot(VirtReg);
      DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
      
      // If this folded instruction is just a use, check to see if it's a
      // straight load from the virt reg slot.
      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
        int FrameIdx;
        if (unsigned DestReg = MRI->isLoadFromStackSlot(&MI, FrameIdx)) {
          // If this spill slot is available, insert a copy for it!
          std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
          if (FrameIdx == SS && It != SpillSlotsAvailable.end()) {
            DEBUG(std::cerr << "Promoted Load To Copy: " << MI);
            MachineFunction &MF = *MBB.getParent();
            if (DestReg != It->second) {
              MRI->copyRegToReg(MBB, &MI, DestReg, It->second,
                                MF.getSSARegMap()->getRegClass(VirtReg));
              // Revisit the copy so we make sure to notice the effects of the
              // operation on the destreg (either needing to RA it if it's 
              // virtual or needing to clobber any values if it's physical).
              NextMII = &MI;
              --NextMII;  // backtrack to the copy.
            }
            MBB.erase(&MI);
            goto ProcessNextInst;
          }
        }
      }

      // If this reference is not a use, any previous store is now dead.
      // Otherwise, the store to this stack slot is not dead anymore.
      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
      if (MDSI != MaybeDeadStores.end()) {
        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
          MaybeDeadStores.erase(MDSI);
        else {
          // If we get here, the store is dead, nuke it now.
          assert(MR == VirtRegMap::isMod && "Can't be modref!");
          MBB.erase(MDSI->second);
          MaybeDeadStores.erase(MDSI);
          ++NumDSE;
        }
      }

      // If the spill slot value is available, and this is a new definition of
      // the value, the value is not available anymore.
      if (MR & VirtRegMap::isMod) {
        std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
        if (It != SpillSlotsAvailable.end()) {
          PhysRegsAvailable.erase(It->second);
          SpillSlotsAvailable.erase(It);
        }
      }
    }

    // Process all of the spilled defs.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
        unsigned VirtReg = MO.getReg();

        bool TakenCareOf = false;
        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
          // Check to see if this is a def-and-use vreg operand that we do need
          // to insert a store for.
          bool OpTakenCareOf = false;
          if (MO.isUse() && !DefAndUseVReg.empty()) {
            for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
              if (DefAndUseVReg[dau].first == i) {
                VirtReg = DefAndUseVReg[dau].second;
                OpTakenCareOf = true;
                break;
              }
          }

          if (!OpTakenCareOf) {
            ClobberPhysReg(VirtReg, SpillSlotsAvailable, PhysRegsAvailable);
            TakenCareOf = true;
          }
        }

        if (!TakenCareOf) {
          // The only vregs left are stack slot definitions.
          int StackSlot    = VRM.getStackSlot(VirtReg);
          const TargetRegisterClass *RC =
            MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
          unsigned PhysReg;

          // If this is a def&use operand, and we used a different physreg for
          // it than the one assigned, make sure to execute the store from the
          // correct physical register.
          if (MO.getReg() == VirtReg)
            PhysReg = VRM.getPhys(VirtReg);
          else
            PhysReg = MO.getReg();

          PhysRegsUsed[PhysReg] = true;
          MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
          DEBUG(std::cerr << "Store:\t" << *next(MII));
          MI.SetMachineOperandReg(i, PhysReg);

          // If there is a dead store to this stack slot, nuke it now.
          MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
          if (LastStore) {
            DEBUG(std::cerr << " Killed store:\t" << *LastStore);
            ++NumDSE;
            MBB.erase(LastStore);
          }
          LastStore = next(MII);

          // If the stack slot value was previously available in some other
          // register, change it now.  Otherwise, make the register available,
          // in PhysReg.
          std::map<int, unsigned>::iterator SSA =
            SpillSlotsAvailable.find(StackSlot);
          if (SSA != SpillSlotsAvailable.end()) {
            // Remove the record for physreg.
            PhysRegsAvailable.erase(SSA->second);
            SpillSlotsAvailable.erase(SSA);
          }
          ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);

          PhysRegsAvailable[PhysReg] = StackSlot;
          SpillSlotsAvailable[StackSlot] = PhysReg;
          DEBUG(std::cerr << "Updating SS#" << StackSlot <<" in physreg "
                          << MRI->getName(PhysReg) << " for virtreg #"
                          << VirtReg << "\n");

          ++NumStores;
          VirtReg = PhysReg;
        }
      }
    }
  ProcessNextInst:
    MII = NextMII;
  }
}



llvm::Spiller* llvm::createSpiller() {
  switch (SpillerOpt) {
  default: assert(0 && "Unreachable!");
  case local:
    return new LocalSpiller();
  case simple:
    return new SimpleSpiller();
  }
}