llvm.org GIT mirror llvm / 667d4b8 lib / Target / X86 / X86Subtarget.cpp
667d4b8

Tree @667d4b8 (Download .tar.gz)

X86Subtarget.cpp @667d4b8raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
#include "X86GenSubtarget.inc"
#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

static cl::opt<X86Subtarget::AsmWriterFlavorTy>
AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset),
  cl::desc("Choose style of code to emit from X86 backend:"),
  cl::values(
    clEnumValN(X86Subtarget::ATT,   "att",   "Emit AT&T-style assembly"),
    clEnumValN(X86Subtarget::Intel, "intel", "Emit Intel-style assembly"),
    clEnumValEnd));


/// True if accessing the GV requires an extra load. For Windows, dllimported
/// symbols are indirect, loading the value at address GV rather then the
/// value of GV itself. This means that the GlobalAddress must be in the base
/// or index register of the address, not the GV offset field.
bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV,
                                       const TargetMachine& TM,
                                       bool isDirectCall) const
{
  // FIXME: PIC
  if (TM.getRelocationModel() != Reloc::Static &&
      TM.getCodeModel() != CodeModel::Large) {
    if (isTargetDarwin()) {
      if (isDirectCall)
        return false;
      bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
      if (GV->hasHiddenVisibility() &&
          (Is64Bit || (!isDecl && !GV->hasCommonLinkage())))
        // If symbol visibility is hidden, the extra load is not needed if
        // target is x86-64 or the symbol is definitely defined in the current
        // translation unit.
        return false;
      return !isDirectCall && (isDecl || GV->isWeakForLinker());
    } else if (isTargetELF()) {
      // Extra load is needed for all externally visible.
      if (isDirectCall)
        return false;
      if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
        return false;
      return true;
    } else if (isTargetCygMing() || isTargetWindows()) {
      return (GV->hasDLLImportLinkage());
    }
  }
  return false;
}

/// True if accessing the GV requires a register.  This is a superset of the
/// cases where GVRequiresExtraLoad is true.  Some variations of PIC require
/// a register, but not an extra load.
bool X86Subtarget::GVRequiresRegister(const GlobalValue *GV,
                                       const TargetMachine& TM,
                                       bool isDirectCall) const
{
  if (GVRequiresExtraLoad(GV, TM, isDirectCall))
    return true;
  // Code below here need only consider cases where GVRequiresExtraLoad
  // returns false.
  if (TM.getRelocationModel() == Reloc::PIC_)
    return !isDirectCall && 
      (GV->hasLocalLinkage() || GV->hasExternalLinkage());
  return false;
}

/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
  // Darwin 10 has a __bzero entry point for this purpose.
  if (getDarwinVers() >= 10)
    return "__bzero";

  return 0;
}

/// getSpecialAddressLatency - For targets where it is beneficial to
/// backschedule instructions that compute addresses, return a value
/// indicating the number of scheduling cycles of backscheduling that
/// should be attempted.
unsigned X86Subtarget::getSpecialAddressLatency() const {
  // For x86 out-of-order targets, back-schedule address computations so
  // that loads and stores aren't blocked.
  // This value was chosen arbitrarily.
  return 200;
}

/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments.  If we can't run cpuid on the host, return true.
bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
                          unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__)
  // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
  asm ("movq\t%%rbx, %%rsi\n\t"
       "cpuid\n\t"
       "xchgq\t%%rbx, %%rsi\n\t"
       : "=a" (*rEAX),
         "=S" (*rEBX),
         "=c" (*rECX),
         "=d" (*rEDX)
       :  "a" (value));
  return false;
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
  asm ("movl\t%%ebx, %%esi\n\t"
       "cpuid\n\t"
       "xchgl\t%%ebx, %%esi\n\t"
       : "=a" (*rEAX),
         "=S" (*rEBX),
         "=c" (*rECX),
         "=d" (*rEDX)
       :  "a" (value));
  return false;
#elif defined(_MSC_VER)
  __asm {
    mov   eax,value
    cpuid
    mov   esi,rEAX
    mov   dword ptr [esi],eax
    mov   esi,rEBX
    mov   dword ptr [esi],ebx
    mov   esi,rECX
    mov   dword ptr [esi],ecx
    mov   esi,rEDX
    mov   dword ptr [esi],edx
  }
  return false;
#endif
#endif
  return true;
}

static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
  if (Family == 6 || Family == 0xf) {
    if (Family == 0xf)
      // Examine extended family ID if family ID is F.
      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
    // Examine extended model ID if family ID is 6 or F.
    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
  }
}

void X86Subtarget::AutoDetectSubtargetFeatures() {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  union {
    unsigned u[3];
    char     c[12];
  } text;
  
  if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
    return;

  X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
  
  if ((EDX >> 23) & 0x1) X86SSELevel = MMX;
  if ((EDX >> 25) & 0x1) X86SSELevel = SSE1;
  if ((EDX >> 26) & 0x1) X86SSELevel = SSE2;
  if (ECX & 0x1)         X86SSELevel = SSE3;
  if ((ECX >> 9)  & 0x1) X86SSELevel = SSSE3;
  if ((ECX >> 19) & 0x1) X86SSELevel = SSE41;
  if ((ECX >> 20) & 0x1) X86SSELevel = SSE42;

  bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
  bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
  if (IsIntel || IsAMD) {
    // Determine if bit test memory instructions are slow.
    unsigned Family = 0;
    unsigned Model  = 0;
    DetectFamilyModel(EAX, Family, Model);
    IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);

    X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
    HasX86_64 = (EDX >> 29) & 0x1;
  }
}

static const char *GetCurrentX86CPU() {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
    return "generic";
  unsigned Family = 0;
  unsigned Model  = 0;
  DetectFamilyModel(EAX, Family, Model);

  X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
  bool Em64T = (EDX >> 29) & 0x1;

  union {
    unsigned u[3];
    char     c[12];
  } text;

  X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
  if (memcmp(text.c, "GenuineIntel", 12) == 0) {
    switch (Family) {
      case 3:
        return "i386";
      case 4:
        return "i486";
      case 5:
        switch (Model) {
        case 4:  return "pentium-mmx";
        default: return "pentium";
        }
      case 6:
        switch (Model) {
        case 1:  return "pentiumpro";
        case 3:
        case 5:
        case 6:  return "pentium2";
        case 7:
        case 8:
        case 10:
        case 11: return "pentium3";
        case 9:
        case 13: return "pentium-m";
        case 14: return "yonah";
        case 15:
        case 22: // Celeron M 540
          return "core2";
        case 23: // 45nm: Penryn , Wolfdale, Yorkfield (XE)
          return "penryn";
        default: return "i686";
        }
      case 15: {
        switch (Model) {
        case 3:  
        case 4:
        case 6: // same as 4, but 65nm
          return (Em64T) ? "nocona" : "prescott";
        case 26:
          return "corei7";
        case 28:
          return "atom";
        default:
          return (Em64T) ? "x86-64" : "pentium4";
        }
      }
        
    default:
      return "generic";
    }
  } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
    // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
    // appears to be no way to generate the wide variety of AMD-specific targets
    // from the information returned from CPUID.
    switch (Family) {
      case 4:
        return "i486";
      case 5:
        switch (Model) {
        case 6:
        case 7:  return "k6";
        case 8:  return "k6-2";
        case 9:
        case 13: return "k6-3";
        default: return "pentium";
        }
      case 6:
        switch (Model) {
        case 4:  return "athlon-tbird";
        case 6:
        case 7:
        case 8:  return "athlon-mp";
        case 10: return "athlon-xp";
        default: return "athlon";
        }
      case 15:
        switch (Model) {
        case 1:  return "opteron";
        case 5:  return "athlon-fx"; // also opteron
        default: return "athlon64";
        }
    default:
      return "generic";
    }
  } else {
    return "generic";
  }
}

X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
  : AsmFlavor(AsmWriterFlavor)
  , PICStyle(PICStyles::None)
  , X86SSELevel(NoMMXSSE)
  , X863DNowLevel(NoThreeDNow)
  , HasX86_64(false)
  , IsBTMemSlow(false)
  , DarwinVers(0)
  , IsLinux(false)
  , stackAlignment(8)
  // FIXME: this is a known good value for Yonah. How about others?
  , MaxInlineSizeThreshold(128)
  , Is64Bit(is64Bit)
  , TargetType(isELF) { // Default to ELF unless otherwise specified.
    
  // Determine default and user specified characteristics
  if (!FS.empty()) {
    // If feature string is not empty, parse features string.
    std::string CPU = GetCurrentX86CPU();
    ParseSubtargetFeatures(FS, CPU);
    // All X86-64 CPUs also have SSE2, however user might request no SSE via 
    // -mattr, so don't force SSELevel here.
  } else {
    // Otherwise, use CPUID to auto-detect feature set.
    AutoDetectSubtargetFeatures();
    // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
    if (Is64Bit && X86SSELevel < SSE2)
      X86SSELevel = SSE2;
  }

  // If requesting codegen for X86-64, make sure that 64-bit features
  // are enabled.
  if (Is64Bit)
    HasX86_64 = true;

  DOUT << "Subtarget features: SSELevel " << X86SSELevel
       << ", 3DNowLevel " << X863DNowLevel
       << ", 64bit " << HasX86_64 << "\n";
  assert((!Is64Bit || HasX86_64) &&
         "64-bit code requested on a subtarget that doesn't support it!");

  // Set the boolean corresponding to the current target triple, or the default
  // if one cannot be determined, to true.
  const std::string& TT = M.getTargetTriple();
  if (TT.length() > 5) {
    size_t Pos;
    if ((Pos = TT.find("-darwin")) != std::string::npos) {
      TargetType = isDarwin;
      
      // Compute the darwin version number.
      if (isdigit(TT[Pos+7]))
        DarwinVers = atoi(&TT[Pos+7]);
      else
        DarwinVers = 8;  // Minimum supported darwin is Tiger.
    } else if (TT.find("linux") != std::string::npos) {
      // Linux doesn't imply ELF, but we don't currently support anything else.
      TargetType = isELF;
      IsLinux = true;
    } else if (TT.find("cygwin") != std::string::npos) {
      TargetType = isCygwin;
    } else if (TT.find("mingw") != std::string::npos) {
      TargetType = isMingw;
    } else if (TT.find("win32") != std::string::npos) {
      TargetType = isWindows;
    } else if (TT.find("windows") != std::string::npos) {
      TargetType = isWindows;
    }
    else if (TT.find("-cl") != std::string::npos) {
      TargetType = isDarwin;
      DarwinVers = 9;
    }
  } else if (TT.empty()) {
#if defined(__CYGWIN__)
    TargetType = isCygwin;
#elif defined(__MINGW32__) || defined(__MINGW64__)
    TargetType = isMingw;
#elif defined(__APPLE__)
    TargetType = isDarwin;
#if __APPLE_CC__ > 5400
    DarwinVers = 9;  // GCC 5400+ is Leopard.
#else
    DarwinVers = 8;  // Minimum supported darwin is Tiger.
#endif
    
#elif defined(_WIN32) || defined(_WIN64)
    TargetType = isWindows;
#elif defined(__linux__)
    // Linux doesn't imply ELF, but we don't currently support anything else.
    TargetType = isELF;
    IsLinux = true;
#endif
  }

  // If the asm syntax hasn't been overridden on the command line, use whatever
  // the target wants.
  if (AsmFlavor == X86Subtarget::Unset) {
    AsmFlavor = (TargetType == isWindows)
      ? X86Subtarget::Intel : X86Subtarget::ATT;
  }

  // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
  // bit targets.
  if (TargetType == isDarwin || Is64Bit)
    stackAlignment = 16;

  if (StackAlignment)
    stackAlignment = StackAlignment;
}