llvm.org GIT mirror llvm / 60a3c55 lib / CodeGen / RegAlloc / PhyRegAlloc.cpp
60a3c55

Tree @60a3c55 (Download .tar.gz)

PhyRegAlloc.cpp @60a3c55raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
//===-- PhyRegAlloc.cpp ---------------------------------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// 
// Traditional graph-coloring global register allocator currently used
// by the SPARC back-end.
//
// NOTE: This register allocator has some special support
// for the Reoptimizer, such as not saving some registers on calls to
// the first-level instrumentation function.
//
// NOTE 2: This register allocator can save its state in a global
// variable in the module it's working on. This feature is not
// thread-safe; if you have doubts, leave it turned off.
// 
//===----------------------------------------------------------------------===//

#include "PhyRegAlloc.h"
#include "RegAllocCommon.h"
#include "RegClass.h"
#include "IGNode.h"
#include "llvm/CodeGen/FunctionLiveVarInfo.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Type.h"
#include "llvm/iOther.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Support/InstIterator.h"
#include "Support/STLExtras.h"
#include "Support/SetOperations.h"
#include "Support/CommandLine.h"
#include <cmath>

RegAllocDebugLevel_t DEBUG_RA;

static cl::opt<RegAllocDebugLevel_t, true>
DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA),
        cl::desc("enable register allocation debugging information"),
        cl::values(
  clEnumValN(RA_DEBUG_None   ,     "n", "disable debug output"),
  clEnumValN(RA_DEBUG_Results,     "y", "debug output for allocation results"),
  clEnumValN(RA_DEBUG_Coloring,    "c", "debug output for graph coloring step"),
  clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"),
  clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"),
  clEnumValN(RA_DEBUG_Verbose,     "v", "extra debug output"),
                   0));

static cl::opt<bool>
SaveRegAllocState("save-ra-state", cl::Hidden,
                  cl::desc("write reg. allocator state into module"));

FunctionPass *getRegisterAllocator(TargetMachine &T) {
  return new PhyRegAlloc (T);
}

void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfo> ();
  AU.addRequired<FunctionLiveVarInfo> ();
}


/// Initialize interference graphs (one in each reg class) and IGNodeLists
/// (one in each IG). The actual nodes will be pushed later.
///
void PhyRegAlloc::createIGNodeListsAndIGs() {
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";

  LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();   
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   

  for (; HMI != HMIEnd ; ++HMI ) {
    if (HMI->first) { 
      LiveRange *L = HMI->second;   // get the LiveRange
      if (!L) { 
        if (DEBUG_RA)
          std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: "
               << RAV(HMI->first) << "****\n";
        continue;
      }

      // if the Value * is not null, and LR is not yet written to the IGNodeList
      if (!(L->getUserIGNode())  ) {  
        RegClass *const RC =           // RegClass of first value in the LR
          RegClassList[ L->getRegClassID() ];
        RC->addLRToIG(L);              // add this LR to an IG
      }
    }
  }
    
  // init RegClassList
  for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
    RegClassList[rc]->createInterferenceGraph();

  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n";
}


/// Add all interferences for a given instruction.  Interference occurs only
/// if the LR of Def (Inst or Arg) is of the same reg class as that of live
/// var. The live var passed to this function is the LVset AFTER the
/// instruction.
///
void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet,
				  bool isCallInst) {
  ValueSet::const_iterator LIt = LVSet->begin();

  // get the live range of instruction
  const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def );   

  IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
  assert( IGNodeOfDef );

  RegClass *const RCOfDef = LROfDef->getRegClass(); 

  // for each live var in live variable set
  for ( ; LIt != LVSet->end(); ++LIt) {

    if (DEBUG_RA >= RA_DEBUG_Verbose)
      std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";

    //  get the live range corresponding to live var
    LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt);

    // LROfVar can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LROfVar)
      if (LROfDef != LROfVar)                  // do not set interf for same LR
        if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same
          RCOfDef->setInterference( LROfDef, LROfVar);  
  }
}


/// For a call instruction, this method sets the CallInterference flag in 
/// the LR of each variable live in the Live Variable Set live after the
/// call instruction (except the return value of the call instruction - since
/// the return value does not interfere with that call itself).
///
void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, 
				       const ValueSet *LVSetAft) {
  if (DEBUG_RA >= RA_DEBUG_Interference)
    std::cerr << "\n For call inst: " << *MInst;

  // for each live var in live variable set after machine inst
  for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end();
       LIt != LEnd; ++LIt) {

    //  get the live range corresponding to live var
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt ); 

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LR ) {  
      if (DEBUG_RA >= RA_DEBUG_Interference) {
        std::cerr << "\n\tLR after Call: ";
        printSet(*LR);
      }
      LR->setCallInterference();
      if (DEBUG_RA >= RA_DEBUG_Interference) {
	std::cerr << "\n  ++After adding call interference for LR: " ;
	printSet(*LR);
      }
    }

  }

  // Now find the LR of the return value of the call
  // We do this because, we look at the LV set *after* the instruction
  // to determine, which LRs must be saved across calls. The return value
  // of the call is live in this set - but it does not interfere with call
  // (i.e., we can allocate a volatile register to the return value)
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
  
  if (const Value *RetVal = argDesc->getReturnValue()) {
    LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal );
    assert( RetValLR && "No LR for RetValue of call");
    RetValLR->clearCallInterference();
  }

  // If the CALL is an indirect call, find the LR of the function pointer.
  // That has a call interference because it conflicts with outgoing args.
  if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
    LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal );
    assert( AddrValLR && "No LR for indirect addr val of call");
    AddrValLR->setCallInterference();
  }
}


/// Create interferences in the IG of each RegClass, and calculate the spill
/// cost of each Live Range (it is done in this method to save another pass
/// over the code).
///
void PhyRegAlloc::buildInterferenceGraphs() {
  if (DEBUG_RA >= RA_DEBUG_Interference)
    std::cerr << "Creating interference graphs ...\n";

  unsigned BBLoopDepthCost;
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
       BBI != BBE; ++BBI) {
    const MachineBasicBlock &MBB = *BBI;
    const BasicBlock *BB = MBB.getBasicBlock();

    // find the 10^(loop_depth) of this BB 
    BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB));

    // get the iterator for machine instructions
    MachineBasicBlock::const_iterator MII = MBB.begin();

    // iterate over all the machine instructions in BB
    for ( ; MII != MBB.end(); ++MII) {
      const MachineInstr *MInst = *MII;

      // get the LV set after the instruction
      const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB);
      bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode());

      if (isCallInst) {
	// set the isCallInterference flag of each live range which extends
	// across this call instruction. This information is used by graph
	// coloring algorithm to avoid allocating volatile colors to live ranges
	// that span across calls (since they have to be saved/restored)
	setCallInterferences(MInst, &LVSetAI);
      }

      // iterate over all MI operands to find defs
      for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
             OpE = MInst->end(); OpI != OpE; ++OpI) {
       	if (OpI.isDefOnly() || OpI.isDefAndUse()) // create a new LR since def
	  addInterference(*OpI, &LVSetAI, isCallInst);

	// Calculate the spill cost of each live range
	LiveRange *LR = LRI->getLiveRangeForValue(*OpI);
	if (LR) LR->addSpillCost(BBLoopDepthCost);
      } 

      // Mark all operands of pseudo-instructions as interfering with one
      // another.  This must be done because pseudo-instructions may be
      // expanded to multiple instructions by the assembler, so all the
      // operands must get distinct registers.
      if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode()))
      	addInterf4PseudoInstr(MInst);

      // Also add interference for any implicit definitions in a machine
      // instr (currently, only calls have this).
      unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
      for (unsigned z=0; z < NumOfImpRefs; z++) 
        if (MInst->getImplicitOp(z).opIsDefOnly() ||
	    MInst->getImplicitOp(z).opIsDefAndUse())
	  addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );

    } // for all machine instructions in BB
  } // for all BBs in function

  // add interferences for function arguments. Since there are no explicit 
  // defs in the function for args, we have to add them manually
  addInterferencesForArgs();          

  if (DEBUG_RA >= RA_DEBUG_Interference)
    std::cerr << "Interference graphs calculated!\n";
}


/// Mark all operands of the given MachineInstr as interfering with one
/// another.
///
void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
  bool setInterf = false;

  // iterate over MI operands to find defs
  for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
         ItE = MInst->end(); It1 != ItE; ++It1) {
    const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1); 
    assert((LROfOp1 || !It1.isUseOnly())&&"No LR for Def in PSEUDO insruction");

    MachineInstr::const_val_op_iterator It2 = It1;
    for (++It2; It2 != ItE; ++It2) {
      const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2); 

      if (LROfOp2) {
	RegClass *RCOfOp1 = LROfOp1->getRegClass(); 
	RegClass *RCOfOp2 = LROfOp2->getRegClass(); 
 
	if (RCOfOp1 == RCOfOp2 ){ 
	  RCOfOp1->setInterference( LROfOp1, LROfOp2 );  
	  setInterf = true;
	}
      } // if Op2 has a LR
    } // for all other defs in machine instr
  } // for all operands in an instruction

  if (!setInterf && MInst->getNumOperands() > 2) {
    std::cerr << "\nInterf not set for any operand in pseudo instr:\n";
    std::cerr << *MInst;
    assert(0 && "Interf not set for pseudo instr with > 2 operands" );
  }
} 


/// Add interferences for incoming arguments to a function.
///
void PhyRegAlloc::addInterferencesForArgs() {
  // get the InSet of root BB
  const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());  

  for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) {
    // add interferences between args and LVars at start 
    addInterference(AI, &InSet, false);
    
    if (DEBUG_RA >= RA_DEBUG_Interference)
      std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n";
  }
}


/// The following are utility functions used solely by updateMachineCode and
/// the functions that it calls. They should probably be folded back into
/// updateMachineCode at some point.
///

// used by: updateMachineCode (1 time), PrependInstructions (1 time)
inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB,
                         MachineBasicBlock::iterator& MII) {
  MII = MBB.insert(MII, newMI);
  ++MII;
}

// used by: AppendInstructions (1 time)
inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB,
                        MachineBasicBlock::iterator& MII) {
  ++MII;    // insert before the next instruction
  MII = MBB.insert(MII, newMI);
}

// used by: updateMachineCode (1 time)
inline void DeleteInstruction(MachineBasicBlock& MBB,
                              MachineBasicBlock::iterator& MII) {
  MII = MBB.erase(MII);
}

// used by: updateMachineCode (1 time)
inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB,
                              MachineBasicBlock::iterator MII) {
  *MII = newMI;
}

// used by: updateMachineCode (2 times)
inline void PrependInstructions(std::vector<MachineInstr *> &IBef,
                                MachineBasicBlock& MBB,
                                MachineBasicBlock::iterator& MII,
                                const std::string& msg) {
  if (!IBef.empty()) {
      MachineInstr* OrigMI = *MII;
      std::vector<MachineInstr *>::iterator AdIt; 
      for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) {
          if (DEBUG_RA) {
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
            std::cerr << msg << "PREPENDed instr:\n  " << **AdIt << "\n";
          }
          InsertBefore(*AdIt, MBB, MII);
        }
    }
}

// used by: updateMachineCode (1 time)
inline void AppendInstructions(std::vector<MachineInstr *> &IAft,
                               MachineBasicBlock& MBB,
                               MachineBasicBlock::iterator& MII,
                               const std::string& msg) {
  if (!IAft.empty()) {
      MachineInstr* OrigMI = *MII;
      std::vector<MachineInstr *>::iterator AdIt; 
      for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
          if (DEBUG_RA) {
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
            std::cerr << msg << "APPENDed instr:\n  "  << **AdIt << "\n";
          }
          InsertAfter(*AdIt, MBB, MII);
        }
    }
}

/// Set the registers for operands in the given MachineInstr, if a register was
/// successfully allocated.  Return true if any of its operands has been marked
/// for spill.
///
bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
{
  bool instrNeedsSpills = false;

  // First, set the registers for operands in the machine instruction
  // if a register was successfully allocated.  Do this first because we
  // will need to know which registers are already used by this instr'n.
  for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
      MachineOperand& Op = MInst->getOperand(OpNum);
      if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
          Op.getType() ==  MachineOperand::MO_CCRegister) {
          const Value *const Val =  Op.getVRegValue();
          if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
            // Remember if any operand needs spilling
            instrNeedsSpills |= LR->isMarkedForSpill();

            // An operand may have a color whether or not it needs spilling
            if (LR->hasColor())
              MInst->SetRegForOperand(OpNum,
                          MRI.getUnifiedRegNum(LR->getRegClassID(),
                                               LR->getColor()));
          }
        }
    } // for each operand

  return instrNeedsSpills;
}

/// Mark allocated registers (using markAllocatedRegs()) on the instruction
/// that MII points to. Then, if it's a call instruction, insert caller-saving
/// code before and after it. Finally, insert spill code before and after it,
/// using insertCode4SpilledLR().
///
void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
                                    MachineBasicBlock &MBB) {
  MachineInstr* MInst = *MII;
  unsigned Opcode = MInst->getOpCode();

  // Reset tmp stack positions so they can be reused for each machine instr.
  MF->getInfo()->popAllTempValues();  

  // Mark the operands for which regs have been allocated.
  bool instrNeedsSpills = markAllocatedRegs(*MII);

#ifndef NDEBUG
  // Mark that the operands have been updated.  Later,
  // setRelRegsUsedByThisInst() is called to find registers used by each
  // MachineInst, and it should not be used for an instruction until
  // this is done.  This flag just serves as a sanity check.
  OperandsColoredMap[MInst] = true;
#endif

  // Now insert caller-saving code before/after the call.
  // Do this before inserting spill code since some registers must be
  // used by save/restore and spill code should not use those registers.
  if (TM.getInstrInfo().isCall(Opcode)) {
    AddedInstrns &AI = AddedInstrMap[MInst];
    insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst,
                           MBB.getBasicBlock());
  }

  // Now insert spill code for remaining operands not allocated to
  // registers.  This must be done even for call return instructions
  // since those are not handled by the special code above.
  if (instrNeedsSpills)
    for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
        MachineOperand& Op = MInst->getOperand(OpNum);
        if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
            Op.getType() ==  MachineOperand::MO_CCRegister) {
            const Value* Val = Op.getVRegValue();
            if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
              if (LR->isMarkedForSpill())
                insertCode4SpilledLR(LR, MII, MBB, OpNum);
          }
      } // for each operand
}

/// Iterate over all the MachineBasicBlocks in the current function and set
/// the allocated registers for each instruction (using updateInstruction()),
/// after register allocation is complete. Then move code out of delay slots.
///
void PhyRegAlloc::updateMachineCode()
{
  // Insert any instructions needed at method entry
  MachineBasicBlock::iterator MII = MF->front().begin();
  PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII,
                      "At function entry: \n");
  assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
         "InstrsAfter should be unnecessary since we are just inserting at "
         "the function entry point here.");
  
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
       BBI != BBE; ++BBI) {
    MachineBasicBlock &MBB = *BBI;

    // Iterate over all machine instructions in BB and mark operands with
    // their assigned registers or insert spill code, as appropriate. 
    // Also, fix operands of call/return instructions.
    for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
      if (! TM.getInstrInfo().isDummyPhiInstr((*MII)->getOpCode()))
        updateInstruction(MII, MBB);

    // Now, move code out of delay slots of branches and returns if needed.
    // (Also, move "after" code from calls to the last delay slot instruction.)
    // Moving code out of delay slots is needed in 2 situations:
    // (1) If this is a branch and it needs instructions inserted after it,
    //     move any existing instructions out of the delay slot so that the
    //     instructions can go into the delay slot.  This only supports the
    //     case that #instrsAfter <= #delay slots.
    // 
    // (2) If any instruction in the delay slot needs
    //     instructions inserted, move it out of the delay slot and before the
    //     branch because putting code before or after it would be VERY BAD!
    // 
    // If the annul bit of the branch is set, neither of these is legal!
    // If so, we need to handle spill differently but annulling is not yet used.
    for (MachineBasicBlock::iterator MII = MBB.begin();
         MII != MBB.end(); ++MII)
      if (unsigned delaySlots =
          TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode())) { 
          MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1);
          
          // Check the 2 conditions above:
          // (1) Does a branch need instructions added after it?
          // (2) O/w does delay slot instr. need instrns before or after?
          bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) ||
                           TM.getInstrInfo().isReturn(MInst->getOpCode()));
          bool cond1 = (isBranch &&
                        AddedInstrMap.count(MInst) &&
                        AddedInstrMap[MInst].InstrnsAfter.size() > 0);
          bool cond2 = (AddedInstrMap.count(DelaySlotMI) &&
                        (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
                         AddedInstrMap[DelaySlotMI].InstrnsAfter.size()  > 0));

          if (cond1 || cond2) {
              assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 &&
                     "FIXME: Moving an annulled delay slot instruction!"); 
              assert(delaySlots==1 &&
                     "InsertBefore does not yet handle >1 delay slots!");
              InsertBefore(DelaySlotMI, MBB, MII); // MII pts back to branch

              // In case (1), delete it and don't replace with anything!
              // Otherwise (i.e., case (2) only) replace it with a NOP.
              if (cond1) {
                DeleteInstruction(MBB, ++MII); // MII now points to next inst.
                --MII;                         // reset MII for ++MII of loop
              }
              else
                SubstituteInPlace(BuildMI(TM.getInstrInfo().getNOPOpCode(),1),
                                  MBB, MII+1);        // replace with NOP

              if (DEBUG_RA) {
                std::cerr << "\nRegAlloc: Moved instr. with added code: "
                     << *DelaySlotMI
                     << "           out of delay slots of instr: " << *MInst;
              }
            }
          else
            // For non-branch instr with delay slots (probably a call), move
            // InstrAfter to the instr. in the last delay slot.
            move2DelayedInstr(*MII, *(MII+delaySlots));
        }

    // Finally iterate over all instructions in BB and insert before/after
    for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) {
      MachineInstr *MInst = *MII; 

      // do not process Phis
      if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpCode()))
	continue;

      // if there are any added instructions...
      if (AddedInstrMap.count(MInst)) {
        AddedInstrns &CallAI = AddedInstrMap[MInst];

#ifndef NDEBUG
        bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) ||
                         TM.getInstrInfo().isReturn(MInst->getOpCode()));
        assert((!isBranch ||
                AddedInstrMap[MInst].InstrnsAfter.size() <=
                TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) &&
               "Cannot put more than #delaySlots instrns after "
               "branch or return! Need to handle temps differently.");
#endif

#ifndef NDEBUG
        // Temporary sanity checking code to detect whether the same machine
        // instruction is ever inserted twice before/after a call.
        // I suspect this is happening but am not sure. --Vikram, 7/1/03.
        std::set<const MachineInstr*> instrsSeen;
        for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) {
          assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 &&
                 "Duplicate machine instruction in InstrnsBefore!");
          instrsSeen.insert(CallAI.InstrnsBefore[i]);
        } 
        for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) {
          assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 &&
                 "Duplicate machine instruction in InstrnsBefore/After!");
          instrsSeen.insert(CallAI.InstrnsAfter[i]);
        } 
#endif

        // Now add the instructions before/after this MI.
        // We do this here to ensure that spill for an instruction is inserted
        // as close as possible to an instruction (see above insertCode4Spill)
        if (! CallAI.InstrnsBefore.empty())
          PrependInstructions(CallAI.InstrnsBefore, MBB, MII,"");
        
        if (! CallAI.InstrnsAfter.empty())
          AppendInstructions(CallAI.InstrnsAfter, MBB, MII,"");

      } // if there are any added instructions
    } // for each machine instruction
  }
}


/// Insert spill code for AN operand whose LR was spilled.  May be called
/// repeatedly for a single MachineInstr if it has many spilled operands. On
/// each call, it finds a register which is not live at that instruction and
/// also which is not used by other spilled operands of the same
/// instruction. Then it uses this register temporarily to accommodate the
/// spilled value.
///
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, 
                                       MachineBasicBlock::iterator& MII,
                                       MachineBasicBlock &MBB,
				       const unsigned OpNum) {
  MachineInstr *MInst = *MII;
  const BasicBlock *BB = MBB.getBasicBlock();

  assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) &&
         "Outgoing arg of a call must be handled elsewhere (func arg ok)");
  assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) &&
	 "Return value of a ret must be handled elsewhere");

  MachineOperand& Op = MInst->getOperand(OpNum);
  bool isDef =  Op.opIsDefOnly();
  bool isDefAndUse = Op.opIsDefAndUse();
  unsigned RegType = MRI.getRegTypeForLR(LR);
  int SpillOff = LR->getSpillOffFromFP();
  RegClass *RC = LR->getRegClass();

  // Get the live-variable set to find registers free before this instr.
  const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);

#ifndef NDEBUG
  // If this instr. is in the delay slot of a branch or return, we need to
  // include all live variables before that branch or return -- we don't want to
  // trample those!  Verify that the set is included in the LV set before MInst.
  if (MII != MBB.begin()) {
    MachineInstr *PredMI = *(MII-1);
    if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpCode()))
      assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef)
             .empty() && "Live-var set before branch should be included in "
             "live-var set of each delay slot instruction!");
  }
#endif

  MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
  
  std::vector<MachineInstr*> MIBef, MIAft;
  std::vector<MachineInstr*> AdIMid;
  
  // Choose a register to hold the spilled value, if one was not preallocated.
  // This may insert code before and after MInst to free up the value.  If so,
  // this code should be first/last in the spill sequence before/after MInst.
  int TmpRegU=(LR->hasColor()
               ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor())
               : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft));
  
  // Set the operand first so that it this register does not get used
  // as a scratch register for later calls to getUsableUniRegAtMI below
  MInst->SetRegForOperand(OpNum, TmpRegU);
  
  // get the added instructions for this instruction
  AddedInstrns &AI = AddedInstrMap[MInst];

  // We may need a scratch register to copy the spilled value to/from memory.
  // This may itself have to insert code to free up a scratch register.  
  // Any such code should go before (after) the spill code for a load (store).
  // The scratch reg is not marked as used because it is only used
  // for the copy and not used across MInst.
  int scratchRegType = -1;
  int scratchReg = -1;
  if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
      scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
                                       MInst, MIBef, MIAft);
      assert(scratchReg != MRI.getInvalidRegNum());
    }
  
  if (!isDef || isDefAndUse) {
    // for a USE, we have to load the value of LR from stack to a TmpReg
    // and use the TmpReg as one operand of instruction
    
    // actual loading instruction(s)
    MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU,
                    RegType, scratchReg);
    
    // the actual load should be after the instructions to free up TmpRegU
    MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
    AdIMid.clear();
  }
  
  if (isDef || isDefAndUse) {   // if this is a Def
    // for a DEF, we have to store the value produced by this instruction
    // on the stack position allocated for this LR
    
    // actual storing instruction(s)
    MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff,
                    RegType, scratchReg);
    
    MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
  }  // if !DEF
  
  // Finally, insert the entire spill code sequences before/after MInst
  AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
  AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
  
  if (DEBUG_RA) {
    std::cerr << "\nFor Inst:\n  " << *MInst;
    std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex();
    std::cerr << "; added Instructions:";
    for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
    for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
  }
}


/// Insert caller saving/restoring instructions before/after a call machine
/// instruction (before or after any other instructions that were inserted for
/// the call).
///
void
PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
                                    std::vector<MachineInstr*> &instrnsAfter,
                                    MachineInstr *CallMI, 
                                    const BasicBlock *BB) {
  assert(TM.getInstrInfo().isCall(CallMI->getOpCode()));
  
  // hash set to record which registers were saved/restored
  hash_set<unsigned> PushedRegSet;

  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
  
  // if the call is to a instrumentation function, do not insert save and
  // restore instructions the instrumentation function takes care of save
  // restore for volatile regs.
  //
  // FIXME: this should be made general, not specific to the reoptimizer!
  const Function *Callee = argDesc->getCallInst()->getCalledFunction();
  bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger";

  // Now check if the call has a return value (using argDesc) and if so,
  // find the LR of the TmpInstruction representing the return value register.
  // (using the last or second-last *implicit operand* of the call MI).
  // Insert it to to the PushedRegSet since we must not save that register
  // and restore it after the call.
  // We do this because, we look at the LV set *after* the instruction
  // to determine, which LRs must be saved across calls. The return value
  // of the call is live in this set - but we must not save/restore it.
  if (const Value *origRetVal = argDesc->getReturnValue()) {
    unsigned retValRefNum = (CallMI->getNumImplicitRefs() -
                             (argDesc->getIndirectFuncPtr()? 1 : 2));
    const TmpInstruction* tmpRetVal =
      cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum));
    assert(tmpRetVal->getOperand(0) == origRetVal &&
           tmpRetVal->getType() == origRetVal->getType() &&
           "Wrong implicit ref?");
    LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal);
    assert(RetValLR && "No LR for RetValue of call");

    if (! RetValLR->isMarkedForSpill())
      PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(),
                                               RetValLR->getColor()));
  }

  const ValueSet &LVSetAft =  LVI->getLiveVarSetAfterMInst(CallMI, BB);
  ValueSet::const_iterator LIt = LVSetAft.begin();

  // for each live var in live variable set after machine inst
  for( ; LIt != LVSetAft.end(); ++LIt) {
    // get the live range corresponding to live var
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt);

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LR) {  
      if (! LR->isMarkedForSpill()) {
        assert(LR->hasColor() && "LR is neither spilled nor colored?");
	unsigned RCID = LR->getRegClassID();
	unsigned Color = LR->getColor();

	if (MRI.isRegVolatile(RCID, Color) ) {
	  // if this is a call to the first-level reoptimizer
	  // instrumentation entry point, and the register is not
	  // modified by call, don't save and restore it.
	  if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color))
	    continue;

	  // if the value is in both LV sets (i.e., live before and after 
	  // the call machine instruction)
	  unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
	  
	  // if we haven't already pushed this register...
	  if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
	    unsigned RegType = MRI.getRegTypeForLR(LR);

	    // Now get two instructions - to push on stack and pop from stack
	    // and add them to InstrnsBefore and InstrnsAfter of the
	    // call instruction
	    int StackOff =
              MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
            
	    //---- Insert code for pushing the reg on stack ----------
            
	    std::vector<MachineInstr*> AdIBef, AdIAft;
            
            // We may need a scratch register to copy the saved value
            // to/from memory.  This may itself have to insert code to
            // free up a scratch register.  Any such code should go before
            // the save code.  The scratch register, if any, is by default
            // temporary and not "used" by the instruction unless the
            // copy code itself decides to keep the value in the scratch reg.
            int scratchRegType = -1;
            int scratchReg = -1;
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
              { // Find a register not live in the LVSet before CallMI
                const ValueSet &LVSetBef =
                  LVI->getLiveVarSetBeforeMInst(CallMI, BB);
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
                                                 CallMI, AdIBef, AdIAft);
                assert(scratchReg != MRI.getInvalidRegNum());
              }
            
            if (AdIBef.size() > 0)
              instrnsBefore.insert(instrnsBefore.end(),
                                   AdIBef.begin(), AdIBef.end());
            
            MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(),
                            StackOff, RegType, scratchReg);
            
            if (AdIAft.size() > 0)
              instrnsBefore.insert(instrnsBefore.end(),
                                   AdIAft.begin(), AdIAft.end());
            
	    //---- Insert code for popping the reg from the stack ----------
	    AdIBef.clear();
            AdIAft.clear();
            
            // We may need a scratch register to copy the saved value
            // from memory.  This may itself have to insert code to
            // free up a scratch register.  Any such code should go
            // after the save code.  As above, scratch is not marked "used".
            scratchRegType = -1;
            scratchReg = -1;
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
              { // Find a register not live in the LVSet after CallMI
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft,
                                                 CallMI, AdIBef, AdIAft);
                assert(scratchReg != MRI.getInvalidRegNum());
              }
            
            if (AdIBef.size() > 0)
              instrnsAfter.insert(instrnsAfter.end(),
                                  AdIBef.begin(), AdIBef.end());
            
	    MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff,
                            Reg, RegType, scratchReg);
            
            if (AdIAft.size() > 0)
              instrnsAfter.insert(instrnsAfter.end(),
                                  AdIAft.begin(), AdIAft.end());
	    
	    PushedRegSet.insert(Reg);
            
	    if(DEBUG_RA) {
	      std::cerr << "\nFor call inst:" << *CallMI;
	      std::cerr << " -inserted caller saving instrs: Before:\n\t ";
              for_each(instrnsBefore.begin(), instrnsBefore.end(),
                       std::mem_fun(&MachineInstr::dump));
	      std::cerr << " -and After:\n\t ";
              for_each(instrnsAfter.begin(), instrnsAfter.end(),
                       std::mem_fun(&MachineInstr::dump));
	    }	    
	  } // if not already pushed
	} // if LR has a volatile color
      } // if LR has color
    } // if there is a LR for Var
  } // for each value in the LV set after instruction
}


/// Returns the unified register number of a temporary register to be used
/// BEFORE MInst. If no register is available, it will pick one and modify
/// MIBef and MIAft to contain instructions used to free up this returned
/// register.
///
int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
                                     const ValueSet *LVSetBef,
                                     MachineInstr *MInst, 
                                     std::vector<MachineInstr*>& MIBef,
                                     std::vector<MachineInstr*>& MIAft) {
  RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
  
  int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
  
  if (RegU == -1) {
    // we couldn't find an unused register. Generate code to free up a reg by
    // saving it on stack and restoring after the instruction
    
    int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
    
    RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst);
    
    // Check if we need a scratch register to copy this register to memory.
    int scratchRegType = -1;
    if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
        int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
                                             MInst, MIBef, MIAft);
        assert(scratchReg != MRI.getInvalidRegNum());
        
        // We may as well hold the value in the scratch register instead
        // of copying it to memory and back.  But we have to mark the
        // register as used by this instruction, so it does not get used
        // as a scratch reg. by another operand or anyone else.
        ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
        MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
        MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
    } else { // the register can be copied directly to/from memory so do it.
        MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
        MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
    }
  }
  
  return RegU;
}


/// Returns the register-class register number of a new unused register that
/// can be used to accommodate a temporary value.  May be called repeatedly
/// for a single MachineInstr.  On each call, it finds a register which is not
/// live at that instruction and which is not used by any spilled operands of
/// that instruction.
///
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType,
                                     const MachineInstr *MInst,
                                     const ValueSet* LVSetBef) {
  RC->clearColorsUsed();     // Reset array

  if (LVSetBef == NULL) {
      LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst);
      assert(LVSetBef != NULL && "Unable to get live-var set before MInst?");
  }

  ValueSet::const_iterator LIt = LVSetBef->begin();

  // for each live var in live variable set after machine inst
  for ( ; LIt != LVSetBef->end(); ++LIt) {
    // Get the live range corresponding to live var, and its RegClass
    LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt );    

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor())
      RC->markColorsUsed(LRofLV->getColor(),
                         MRI.getRegTypeForLR(LRofLV), RegType);
  }

  // It is possible that one operand of this MInst was already spilled
  // and it received some register temporarily. If that's the case,
  // it is recorded in machine operand. We must skip such registers.
  setRelRegsUsedByThisInst(RC, RegType, MInst);

  int unusedReg = RC->getUnusedColor(RegType);   // find first unused color
  if (unusedReg >= 0)
    return MRI.getUnifiedRegNum(RC->getID(), unusedReg);

  return -1;
}


/// Return the unified register number of a register in class RC which is not
/// used by any operands of MInst.
///
int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, 
                                            const int RegType,
                                            const MachineInstr *MInst) {
  RC->clearColorsUsed();

  setRelRegsUsedByThisInst(RC, RegType, MInst);

  // find the first unused color
  int unusedReg = RC->getUnusedColor(RegType);
  assert(unusedReg >= 0 &&
         "FATAL: No free register could be found in reg class!!");

  return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
}


/// Modify the IsColorUsedArr of register class RC, by setting the bits
/// corresponding to register RegNo. This is a helper method of
/// setRelRegsUsedByThisInst().
///
static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
                             const TargetRegInfo &TRI) {
  unsigned classId = 0;
  int classRegNum = TRI.getClassRegNum(RegNo, classId);
  if (RC->getID() == classId)
    RC->markColorsUsed(classRegNum, RegType, RegType);
}

void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
                                           const MachineInstr *MI) {
  assert(OperandsColoredMap[MI] == true &&
         "Illegal to call setRelRegsUsedByThisInst() until colored operands "
         "are marked for an instruction.");

  // Add the registers already marked as used by the instruction. Both
  // explicit and implicit operands are set.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
    if (MI->getOperand(i).hasAllocatedReg())
      markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI);

  for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i)
    if (MI->getImplicitOp(i).hasAllocatedReg())
      markRegisterUsed(MI->getImplicitOp(i).getAllocatedRegNum(), RC,
                       RegType,MRI);

  // Add all of the scratch registers that are used to save values across the
  // instruction (e.g., for saving state register values).
  std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator>
    IR = ScratchRegsUsed.equal_range(MI);
  for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I)
    markRegisterUsed(I->second, RC, RegType, MRI);

  // If there are implicit references, mark their allocated regs as well
  for (unsigned z=0; z < MI->getNumImplicitRefs(); z++)
    if (const LiveRange*
        LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z)))    
      if (LRofImpRef->hasColor())
        // this implicit reference is in a LR that received a color
        RC->markColorsUsed(LRofImpRef->getColor(),
                           MRI.getRegTypeForLR(LRofImpRef), RegType);
}


/// If there are delay slots for an instruction, the instructions added after
/// it must really go after the delayed instruction(s).  So, we Move the
/// InstrAfter of that instruction to the corresponding delayed instruction
/// using the following method.
///
void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
                                    const MachineInstr *DelayedMI)
{
  // "added after" instructions of the original instr
  std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;

  if (DEBUG_RA && OrigAft.size() > 0) {
    std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI;
    std::cerr << "         to last delay slot instrn: " << *DelayedMI;
  }

  // "added after" instructions of the delayed instr
  std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter;

  // go thru all the "added after instructions" of the original instruction
  // and append them to the "added after instructions" of the delayed
  // instructions
  DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());

  // empty the "added after instructions" of the original instruction
  OrigAft.clear();
}


void PhyRegAlloc::colorIncomingArgs()
{
  MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore,
                      AddedInstrAtEntry.InstrnsAfter);
}


/// Determine whether the suggested color of each live range is really usable,
/// and then call its setSuggestedColorUsable() method to record the answer. A
/// suggested color is NOT usable when the suggested color is volatile AND
/// when there are call interferences.
///
void PhyRegAlloc::markUnusableSugColors()
{
  LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();   
  LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end();   

  for (; HMI != HMIEnd ; ++HMI ) {
    if (HMI->first) { 
      LiveRange *L = HMI->second;      // get the LiveRange
      if (L && L->hasSuggestedColor ())
        L->setSuggestedColorUsable
          (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ())
             && L->isCallInterference ()));
    }
  } // for all LR's in hash map
}


/// For each live range that is spilled, allocates a new spill position on the
/// stack, and set the stack offsets of the live range that will be spilled to
/// that position. This must be called just after coloring the LRs.
///
void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
  if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";

  LiveRangeMapType::const_iterator HMI    = LRI->getLiveRangeMap()->begin();   
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   

  for ( ; HMI != HMIEnd ; ++HMI) {
    if (HMI->first && HMI->second) {
      LiveRange *L = HMI->second;       // get the LiveRange
      if (L->isMarkedForSpill()) {      // NOTE: allocating size of long Type **
        int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy);
        L->setSpillOffFromFP(stackOffset);
        if (DEBUG_RA)
          std::cerr << "  LR# " << L->getUserIGNode()->getIndex()
               << ": stack-offset = " << stackOffset << "\n";
      }
    }
  } // for all LR's in hash map
}


namespace {
  /// AllocInfo - Structure representing one instruction's
  /// operand's-worth of register allocation state. We create tables
  /// made out of these data structures to generate mapping information
  /// for this register allocator. (FIXME: This might move to a header
  /// file at some point.)
  ///
  struct AllocInfo {
    unsigned Instruction;
    unsigned Operand;
    unsigned AllocState;
    int Placement;
    AllocInfo (unsigned Instruction_, unsigned Operand_,
               unsigned AllocState_, int Placement_) :
      Instruction (Instruction_), Operand (Operand_),
      AllocState (AllocState_), Placement (Placement_) { }
    /// getConstantType - Return a StructType representing an AllocInfo
    /// object.
    ///
    static StructType *getConstantType () {
      std::vector<const Type *> TV;
      TV.push_back (Type::UIntTy);
      TV.push_back (Type::UIntTy);
      TV.push_back (Type::UIntTy);
      TV.push_back (Type::IntTy);
      return StructType::get (TV);
    }
    /// toConstant - Convert this AllocInfo into an LLVM Constant of type
    /// getConstantType(), and return the Constant.
    ///
    Constant *toConstant () const {
      StructType *ST = getConstantType ();
      std::vector<Constant *> CV;
      CV.push_back (ConstantUInt::get (Type::UIntTy, Instruction));
      CV.push_back (ConstantUInt::get (Type::UIntTy, Operand));
      CV.push_back (ConstantUInt::get (Type::UIntTy, AllocState));
      CV.push_back (ConstantSInt::get (Type::IntTy, Placement));
      return ConstantStruct::get (ST, CV);
    }
  };
}

/// Save the global register allocation decisions made by the register
/// allocator so that they can be accessed later (sort of like "poor man's
/// debug info").
///
void PhyRegAlloc::saveState () {
  std::vector<Constant *> &state = FnAllocState[Fn];
  unsigned Insn = 0;
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end ();   
  for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II != IE; ++II)
    for (unsigned i = 0; i < (*II)->getNumOperands (); ++i) {
      const Value *V = (*II)->getOperand (i);
      // Don't worry about it unless it's something whose reg. we'll need.
      if (!isa<Argument> (V) && !isa<Instruction> (V))
        continue;
      LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V);
      static const unsigned NotAllocated = 0, Allocated = 1, Spilled = 2;
      unsigned AllocState = NotAllocated;
      int Placement = -1;
      if ((HMI != HMIEnd) && HMI->second) {
        LiveRange *L = HMI->second;
        assert ((L->hasColor () || L->isMarkedForSpill ())
                && "Live range exists but not colored or spilled");
        if (L->hasColor()) {
          AllocState = Allocated;
          Placement = MRI.getUnifiedRegNum (L->getRegClassID (),
                                            L->getColor ());
        } else if (L->isMarkedForSpill ()) {
          AllocState = Spilled;
          assert (L->hasSpillOffset ()
                  && "Live range marked for spill but has no spill offset");
          Placement = L->getSpillOffFromFP ();
        }
      }
      state.push_back (AllocInfo (Insn, i, AllocState,
                                  Placement).toConstant ());
    }
}

/// Check the saved state filled in by saveState(), and abort if it looks
/// wrong. Only used when debugging.
///
void PhyRegAlloc::verifySavedState () {
  /// not yet implemented
}

bool PhyRegAlloc::doFinalization (Module &M) { 
  if (!SaveRegAllocState)
    return false; // Nothing to do here, unless we're saving state.

  // Convert FnAllocState to a single Constant array and add it
  // to the Module.
  ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0);
  std::vector<const Type *> TV;
  TV.push_back (Type::UIntTy);
  TV.push_back (AT);
  PointerType *PT = PointerType::get (StructType::get (TV));

  std::vector<Constant *> allstate;
  for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) {
    Function *F = I;
    if (FnAllocState.find (F) == FnAllocState.end ()) {
      allstate.push_back (ConstantPointerNull::get (PT));
    } else {
      std::vector<Constant *> &state = FnAllocState[F];

      // Convert state into an LLVM ConstantArray, and put it in a
      // ConstantStruct (named S) along with its size.
      unsigned Size = state.size ();
      ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size);
      std::vector<const Type *> TV;
      TV.push_back (Type::UIntTy);
      TV.push_back (AT);
      StructType *ST = StructType::get (TV);
      std::vector<Constant *> CV;
      CV.push_back (ConstantUInt::get (Type::UIntTy, Size));
      CV.push_back (ConstantArray::get (AT, state));
      Constant *S = ConstantStruct::get (ST, CV);

      GlobalVariable *GV =
        new GlobalVariable (ST, true,
                            GlobalValue::InternalLinkage, S,
                            F->getName () + ".regAllocState", &M);

      // Have: { uint, [Size x { uint, uint, uint, int }] } *
      // Cast it to: { uint, [0 x { uint, uint, uint, int }] } *
      Constant *CE = ConstantExpr::getCast (ConstantPointerRef::get (GV), PT);
      allstate.push_back (CE);
    }
  }

  unsigned Size = allstate.size ();
  // Final structure type is:
  // { uint, [Size x { uint, [0 x { uint, uint, uint, int }] } *] }
  std::vector<const Type *> TV2;
  TV2.push_back (Type::UIntTy);
  ArrayType *AT2 = ArrayType::get (PT, Size);
  TV2.push_back (AT2);
  StructType *ST2 = StructType::get (TV2);
  std::vector<Constant *> CV2;
  CV2.push_back (ConstantUInt::get (Type::UIntTy, Size));
  CV2.push_back (ConstantArray::get (AT2, allstate));
  new GlobalVariable (ST2, true, GlobalValue::InternalLinkage,
                      ConstantStruct::get (ST2, CV2), "_llvm_regAllocState",
                      &M);
  return false; // No error.
}


/// Allocate registers for the machine code previously generated for F using
/// the graph-coloring algorithm.
///
bool PhyRegAlloc::runOnFunction (Function &F) { 
  if (DEBUG_RA) 
    std::cerr << "\n********* Function "<< F.getName () << " ***********\n"; 
 
  Fn = &F; 
  MF = &MachineFunction::get (Fn); 
  LVI = &getAnalysis<FunctionLiveVarInfo> (); 
  LRI = new LiveRangeInfo (Fn, TM, RegClassList); 
  LoopDepthCalc = &getAnalysis<LoopInfo> (); 
 
  // Create each RegClass for the target machine and add it to the 
  // RegClassList.  This must be done before calling constructLiveRanges().
  for (unsigned rc = 0; rc != NumOfRegClasses; ++rc)   
    RegClassList.push_back (new RegClass (Fn, &TM.getRegInfo (), 
					  MRI.getMachineRegClass (rc))); 
     
  LRI->constructLiveRanges();            // create LR info
  if (DEBUG_RA >= RA_DEBUG_LiveRanges)
    LRI->printLiveRanges();
  
  createIGNodeListsAndIGs();            // create IGNode list and IGs

  buildInterferenceGraphs();            // build IGs in all reg classes
  
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
    // print all LRs in all reg classes
    for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)  
      RegClassList[rc]->printIGNodeList(); 
    
    // print IGs in all register classes
    for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
      RegClassList[rc]->printIG();       
  }

  LRI->coalesceLRs();                    // coalesce all live ranges

  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
    // print all LRs in all reg classes
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
      RegClassList[rc]->printIGNodeList();
    
    // print IGs in all register classes
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
      RegClassList[rc]->printIG();
  }

  // mark un-usable suggested color before graph coloring algorithm.
  // When this is done, the graph coloring algo will not reserve
  // suggested color unnecessarily - they can be used by another LR
  markUnusableSugColors(); 

  // color all register classes using the graph coloring algo
  for (unsigned rc=0; rc < NumOfRegClasses ; rc++)  
    RegClassList[rc]->colorAllRegs();    

  // After graph coloring, if some LRs did not receive a color (i.e, spilled)
  // a position for such spilled LRs
  allocateStackSpace4SpilledLRs();

  // Reset the temp. area on the stack before use by the first instruction.
  // This will also happen after updating each instruction.
  MF->getInfo()->popAllTempValues();

  // color incoming args - if the correct color was not received
  // insert code to copy to the correct register
  colorIncomingArgs();

  // Save register allocation state for this function in a Constant.
  if (SaveRegAllocState)
    saveState();
  if (DEBUG_RA) { // Check our work.
    verifySavedState ();
  }

  // Now update the machine code with register names and add any additional
  // code inserted by the register allocator to the instruction stream.
  updateMachineCode(); 

  if (DEBUG_RA) {
    std::cerr << "\n**** Machine Code After Register Allocation:\n\n";
    MF->dump();
  }
 
  // Tear down temporary data structures 
  for (unsigned rc = 0; rc < NumOfRegClasses; ++rc) 
    delete RegClassList[rc]; 
  RegClassList.clear (); 
  AddedInstrMap.clear (); 
  OperandsColoredMap.clear (); 
  ScratchRegsUsed.clear (); 
  AddedInstrAtEntry.clear (); 
  delete LRI;

  if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n"; 
  return false;     // Function was not modified
}