llvm.org GIT mirror llvm / 5e721d7 include / llvm / InstrTypes.h
5e721d7

Tree @5e721d7 (Download .tar.gz)

InstrTypes.h @5e721d7raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_INSTRUCTION_TYPES_H
#define LLVM_INSTRUCTION_TYPES_H

#include "llvm/Instruction.h"
#include "llvm/OperandTraits.h"
#include "llvm/Operator.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ADT/Twine.h"

namespace llvm {

class LLVMContext;

//===----------------------------------------------------------------------===//
//                            TerminatorInst Class
//===----------------------------------------------------------------------===//

/// TerminatorInst - Subclasses of this class are all able to terminate a basic
/// block.  Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
  TerminatorInst(const Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps,
                 Instruction *InsertBefore = 0)
    : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}

  TerminatorInst(const Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
    : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}

  // Out of line virtual method, so the vtable, etc has a home.
  ~TerminatorInst();

  /// Virtual methods - Terminators should overload these and provide inline
  /// overrides of non-V methods.
  virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
  virtual unsigned getNumSuccessorsV() const = 0;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
  virtual TerminatorInst *clone_impl() const = 0;
public:

  /// getNumSuccessors - Return the number of successors that this terminator
  /// has.
  unsigned getNumSuccessors() const {
    return getNumSuccessorsV();
  }

  /// getSuccessor - Return the specified successor.
  ///
  BasicBlock *getSuccessor(unsigned idx) const {
    return getSuccessorV(idx);
  }

  /// setSuccessor - Update the specified successor to point at the provided
  /// block.
  void setSuccessor(unsigned idx, BasicBlock *B) {
    setSuccessorV(idx, B);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const TerminatorInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->isTerminator();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};


//===----------------------------------------------------------------------===//
//                          UnaryInstruction Class
//===----------------------------------------------------------------------===//

class UnaryInstruction : public Instruction {
  void *operator new(size_t, unsigned);      // Do not implement

protected:
  UnaryInstruction(const Type *Ty, unsigned iType, Value *V,
                   Instruction *IB = 0)
    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    Op<0>() = V;
  }
  UnaryInstruction(const Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    Op<0>() = V;
  }
public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  // Out of line virtual method, so the vtable, etc has a home.
  ~UnaryInstruction();

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const UnaryInstruction *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Load ||
           I->getOpcode() == Instruction::VAArg ||
           I->getOpcode() == Instruction::ExtractValue ||
           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<UnaryInstruction> : public FixedNumOperandTraits<1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)

//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
  void *operator new(size_t, unsigned); // Do not implement
protected:
  void init(BinaryOps iType);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
                 const Twine &Name, Instruction *InsertBefore);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty,
                 const Twine &Name, BasicBlock *InsertAtEnd);
  virtual BinaryOperator *clone_impl() const;
public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Create() - Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name = Twine(),
                                Instruction *InsertBefore = 0);

  /// Create() - Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name, BasicBlock *InsertAtEnd);

  /// Create* - These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name = "") {\
    return Create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, BasicBlock *BB) {\
    return Create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, Instruction *I) {\
    return Create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/Instruction.def"


  /// CreateNSWAdd - Create an Add operator with the NSW flag set.
  ///
  static BinaryOperator *CreateNSWAdd(Value *V1, Value *V2,
                                      const Twine &Name = "") {
    BinaryOperator *BO = CreateAdd(V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSWAdd(Value *V1, Value *V2,
                                      const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = CreateAdd(V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSWAdd(Value *V1, Value *V2,
                                      const Twine &Name, Instruction *I) {
    BinaryOperator *BO = CreateAdd(V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  /// CreateNUWAdd - Create an Add operator with the NUW flag set.
  ///
  static BinaryOperator *CreateNUWAdd(Value *V1, Value *V2,
                                      const Twine &Name = "") {
    BinaryOperator *BO = CreateAdd(V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUWAdd(Value *V1, Value *V2,
                                      const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = CreateAdd(V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUWAdd(Value *V1, Value *V2,
                                      const Twine &Name, Instruction *I) {
    BinaryOperator *BO = CreateAdd(V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  /// CreateNSWSub - Create an Sub operator with the NSW flag set.
  ///
  static BinaryOperator *CreateNSWSub(Value *V1, Value *V2,
                                      const Twine &Name = "") {
    BinaryOperator *BO = CreateSub(V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSWSub(Value *V1, Value *V2,
                                      const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = CreateSub(V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSWSub(Value *V1, Value *V2,
                                      const Twine &Name, Instruction *I) {
    BinaryOperator *BO = CreateSub(V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  /// CreateNUWSub - Create an Sub operator with the NUW flag set.
  ///
  static BinaryOperator *CreateNUWSub(Value *V1, Value *V2,
                                      const Twine &Name = "") {
    BinaryOperator *BO = CreateSub(V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUWSub(Value *V1, Value *V2,
                                      const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = CreateSub(V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUWSub(Value *V1, Value *V2,
                                      const Twine &Name, Instruction *I) {
    BinaryOperator *BO = CreateSub(V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  /// CreateNSWMul - Create a Mul operator with the NSW flag set.
  ///
  static BinaryOperator *CreateNSWMul(Value *V1, Value *V2,
                                      const Twine &Name = "") {
    BinaryOperator *BO = CreateMul(V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSWMul(Value *V1, Value *V2,
                                      const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = CreateMul(V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSWMul(Value *V1, Value *V2,
                                      const Twine &Name, Instruction *I) {
    BinaryOperator *BO = CreateMul(V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  /// CreateNUWMul - Create a Mul operator with the NUW flag set.
  ///
  static BinaryOperator *CreateNUWMul(Value *V1, Value *V2,
                                      const Twine &Name = "") {
    BinaryOperator *BO = CreateMul(V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUWMul(Value *V1, Value *V2,
                                      const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = CreateMul(V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUWMul(Value *V1, Value *V2,
                                      const Twine &Name, Instruction *I) {
    BinaryOperator *BO = CreateMul(V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  /// CreateExactSDiv - Create an SDiv operator with the exact flag set.
  ///
  static BinaryOperator *CreateExactSDiv(Value *V1, Value *V2,
                                         const Twine &Name = "") {
    BinaryOperator *BO = CreateSDiv(V1, V2, Name);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExactSDiv(Value *V1, Value *V2,
                                         const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = CreateSDiv(V1, V2, Name, BB);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExactSDiv(Value *V1, Value *V2,
                                         const Twine &Name, Instruction *I) {
    BinaryOperator *BO = CreateSDiv(V1, V2, Name, I);
    BO->setIsExact(true);
    return BO;
  }

  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  ///
  /// CreateNeg, CreateNot - Create the NEG and NOT
  ///     instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = 0);
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = 0);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = 0);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
                                    Instruction *InsertBefore = 0);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
                                    BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = 0);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);

  /// isNeg, isFNeg, isNot - Check if the given Value is a
  /// NEG, FNeg, or NOT instruction.
  ///
  static bool isNeg(const Value *V);
  static bool isFNeg(const Value *V);
  static bool isNot(const Value *V);

  /// getNegArgument, getNotArgument - Helper functions to extract the
  ///     unary argument of a NEG, FNEG or NOT operation implemented via
  ///     Sub, FSub, or Xor.
  ///
  static const Value *getNegArgument(const Value *BinOp);
  static       Value *getNegArgument(      Value *BinOp);
  static const Value *getFNegArgument(const Value *BinOp);
  static       Value *getFNegArgument(      Value *BinOp);
  static const Value *getNotArgument(const Value *BinOp);
  static       Value *getNotArgument(      Value *BinOp);

  BinaryOps getOpcode() const {
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  /// swapOperands - Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the instruction
  /// cannot be reversed (ie, it's a Div), then return true.
  ///
  bool swapOperands();

  /// setHasNoUnsignedWrap - Set or clear the nsw flag on this instruction,
  /// which must be an operator which supports this flag. See LangRef.html
  /// for the meaning of this flag.
  void setHasNoUnsignedWrap(bool b = true);

  /// setHasNoSignedWrap - Set or clear the nsw flag on this instruction,
  /// which must be an operator which supports this flag. See LangRef.html
  /// for the meaning of this flag.
  void setHasNoSignedWrap(bool b = true);

  /// setIsExact - Set or clear the exact flag on this instruction,
  /// which must be an operator which supports this flag. See LangRef.html
  /// for the meaning of this flag.
  void setIsExact(bool b = true);

  /// hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
  bool hasNoUnsignedWrap() const;

  /// hasNoSignedWrap - Determine whether the no signed wrap flag is set.
  bool hasNoSignedWrap() const;

  /// isExact - Determine whether the exact flag is set.
  bool isExact() const;

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const BinaryOperator *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->isBinaryOp();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<BinaryOperator> : public FixedNumOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)

//===----------------------------------------------------------------------===//
//                               CastInst Class
//===----------------------------------------------------------------------===//

/// CastInst - This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// @brief Base class of casting instructions.
class CastInst : public UnaryInstruction {
protected:
  /// @brief Constructor with insert-before-instruction semantics for subclasses
  CastInst(const Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr = "", Instruction *InsertBefore = 0)
    : UnaryInstruction(Ty, iType, S, InsertBefore) {
    setName(NameStr);
  }
  /// @brief Constructor with insert-at-end-of-block semantics for subclasses
  CastInst(const Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr, BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    setName(NameStr);
  }
public:
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category (Instruction::isCast(opcode) returns true). This
  /// constructor has insert-before-instruction semantics to automatically
  /// insert the new CastInst before InsertBefore (if it is non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode of the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category. This constructor has insert-at-end-of-block semantics
  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
  /// its non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode for the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast or a PtrToInt cast instruction
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast or a PtrToInt cast instruction
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The integer value to be casted (operand 0)
    const Type *Ty,          ///< The integer type to which operand is casted
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    const Type *Ty,          ///< The floating point type to cast to
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    const Type *Ty,          ///< The floating point type to cast to
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = 0 ///< Place to insert the instruction
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    const Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Check whether it is valid to call getCastOpcode for these types.
  static bool isCastable(
    const Type *SrcTy, ///< The Type from which the value should be cast.
    const Type *DestTy ///< The Type to which the value should be cast.
  );

  /// Returns the opcode necessary to cast Val into Ty using usual casting
  /// rules.
  /// @brief Infer the opcode for cast operand and type
  static Instruction::CastOps getCastOpcode(
    const Value *Val, ///< The value to cast
    bool SrcIsSigned, ///< Whether to treat the source as signed
    const Type *Ty,   ///< The Type to which the value should be casted
    bool DstIsSigned  ///< Whether to treate the dest. as signed
  );

  /// There are several places where we need to know if a cast instruction
  /// only deals with integer source and destination types. To simplify that
  /// logic, this method is provided.
  /// @returns true iff the cast has only integral typed operand and dest type.
  /// @brief Determine if this is an integer-only cast.
  bool isIntegerCast() const;

  /// A lossless cast is one that does not alter the basic value. It implies
  /// a no-op cast but is more stringent, preventing things like int->float,
  /// long->double, or int->ptr.
  /// @returns true iff the cast is lossless.
  /// @brief Determine if this is a lossless cast.
  bool isLosslessCast() const;

  /// A no-op cast is one that can be effected without changing any bits.
  /// It implies that the source and destination types are the same size. The
  /// IntPtrTy argument is used to make accurate determinations for casts
  /// involving Integer and Pointer types. They are no-op casts if the integer
  /// is the same size as the pointer. However, pointer size varies with
  /// platform. Generally, the result of TargetData::getIntPtrType() should be
  /// passed in. If that's not available, use Type::Int64Ty, which will make
  /// the isNoopCast call conservative.
  /// @brief Determine if the described cast is a no-op cast.
  static bool isNoopCast(
    Instruction::CastOps Opcode,  ///< Opcode of cast
    const Type *SrcTy,   ///< SrcTy of cast
    const Type *DstTy,   ///< DstTy of cast
    const Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null
  );

  /// @brief Determine if this cast is a no-op cast.
  bool isNoopCast(
    const Type *IntPtrTy ///< Integer type corresponding to pointer
  ) const;

  /// Determine how a pair of casts can be eliminated, if they can be at all.
  /// This is a helper function for both CastInst and ConstantExpr.
  /// @returns 0 if the CastInst pair can't be eliminated
  /// @returns Instruction::CastOps value for a cast that can replace
  /// the pair, casting SrcTy to DstTy.
  /// @brief Determine if a cast pair is eliminable
  static unsigned isEliminableCastPair(
    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    Instruction::CastOps secondOpcode, ///< Opcode of second cast
    const Type *SrcTy, ///< SrcTy of 1st cast
    const Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    const Type *DstTy, ///< DstTy of 2nd cast
    const Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null
  );

  /// @brief Return the opcode of this CastInst
  Instruction::CastOps getOpcode() const {
    return Instruction::CastOps(Instruction::getOpcode());
  }

  /// @brief Return the source type, as a convenience
  const Type* getSrcTy() const { return getOperand(0)->getType(); }
  /// @brief Return the destination type, as a convenience
  const Type* getDestTy() const { return getType(); }

  /// This method can be used to determine if a cast from S to DstTy using
  /// Opcode op is valid or not.
  /// @returns true iff the proposed cast is valid.
  /// @brief Determine if a cast is valid without creating one.
  static bool castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CastInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->isCast();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               CmpInst Class
//===----------------------------------------------------------------------===//

/// This class is the base class for the comparison instructions.
/// @brief Abstract base class of comparison instructions.
class CmpInst : public Instruction {
  void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
  CmpInst(); // do not implement
protected:
  CmpInst(const Type *ty, Instruction::OtherOps op, unsigned short pred,
          Value *LHS, Value *RHS, const Twine &Name = "",
          Instruction *InsertBefore = 0);

  CmpInst(const Type *ty, Instruction::OtherOps op, unsigned short pred,
          Value *LHS, Value *RHS, const Twine &Name,
          BasicBlock *InsertAtEnd);

  virtual void Anchor() const; // Out of line virtual method.
public:
  /// This enumeration lists the possible predicates for CmpInst subclasses.
  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  enum Predicate {
    // Opcode              U L G E    Intuitive operation
    FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
    FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
    FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
    FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
    FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
    FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
    FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
    FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
    FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
    FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
    FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    ICMP_EQ    = 32,  ///< equal
    ICMP_NE    = 33,  ///< not equal
    ICMP_UGT   = 34,  ///< unsigned greater than
    ICMP_UGE   = 35,  ///< unsigned greater or equal
    ICMP_ULT   = 36,  ///< unsigned less than
    ICMP_ULE   = 37,  ///< unsigned less or equal
    ICMP_SGT   = 38,  ///< signed greater than
    ICMP_SGE   = 39,  ///< signed greater or equal
    ICMP_SLT   = 40,  ///< signed less than
    ICMP_SLE   = 41,  ///< signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };

  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  /// Construct a compare instruction, given the opcode, the predicate and
  /// the two operands.  Optionally (if InstBefore is specified) insert the
  /// instruction into a BasicBlock right before the specified instruction.
  /// The specified Instruction is allowed to be a dereferenced end iterator.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op,
                         unsigned short predicate, Value *S1,
                         Value *S2, const Twine &Name = "",
                         Instruction *InsertBefore = 0);

  /// Construct a compare instruction, given the opcode, the predicate and the
  /// two operands.  Also automatically insert this instruction to the end of
  /// the BasicBlock specified.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
                         Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
  
  /// @brief Get the opcode casted to the right type
  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const {
    return Predicate(getSubclassDataFromInstruction());
  }

  /// @brief Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { setInstructionSubclassData(P); }

  static bool isFPPredicate(Predicate P) {
    return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
  }
  
  static bool isIntPredicate(Predicate P) {
    return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
  }
  
  bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
  bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
  
  
  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate.
  /// @brief Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred.
  /// @brief Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two
  /// operands of the CmpInst instruction without changing the result
  /// produced.
  /// @brief Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @brief Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// @brief Provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Swap the operands and adjust predicate accordingly to retain
  /// the same comparison.
  void swapOperands();

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this CmpInst is commutative.
  bool isCommutative();

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this is an equals/not equals predicate.
  bool isEquality();

  /// @returns true if the comparison is signed, false otherwise.
  /// @brief Determine if this instruction is using a signed comparison.
  bool isSigned() const {
    return isSigned(getPredicate());
  }

  /// @returns true if the comparison is unsigned, false otherwise.
  /// @brief Determine if this instruction is using an unsigned comparison.
  bool isUnsigned() const {
    return isUnsigned(getPredicate());
  }

  /// This is just a convenience.
  /// @brief Determine if this is true when both operands are the same.
  bool isTrueWhenEqual() const {
    return isTrueWhenEqual(getPredicate());
  }

  /// This is just a convenience.
  /// @brief Determine if this is false when both operands are the same.
  bool isFalseWhenEqual() const {
    return isFalseWhenEqual(getPredicate());
  }

  /// @returns true if the predicate is unsigned, false otherwise.
  /// @brief Determine if the predicate is an unsigned operation.
  static bool isUnsigned(unsigned short predicate);

  /// @returns true if the predicate is signed, false otherwise.
  /// @brief Determine if the predicate is an signed operation.
  static bool isSigned(unsigned short predicate);

  /// @brief Determine if the predicate is an ordered operation.
  static bool isOrdered(unsigned short predicate);

  /// @brief Determine if the predicate is an unordered operation.
  static bool isUnordered(unsigned short predicate);

  /// Determine if the predicate is true when comparing a value with itself.
  static bool isTrueWhenEqual(unsigned short predicate);

  /// Determine if the predicate is false when comparing a value with itself.
  static bool isFalseWhenEqual(unsigned short predicate);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const CmpInst *) { return true; }
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp ||
           I->getOpcode() == Instruction::FCmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
  
  /// @brief Create a result type for fcmp/icmp
  static const Type* makeCmpResultType(const Type* opnd_type) {
    if (const VectorType* vt = dyn_cast<const VectorType>(opnd_type)) {
      return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
                             vt->getNumElements());
    }
    return Type::getInt1Ty(opnd_type->getContext());
  }
private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};


// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)

} // End llvm namespace

#endif