llvm.org GIT mirror llvm / 58bfcdb lib / Analysis / PHITransAddr.cpp
58bfcdb

Tree @58bfcdb (Download .tar.gz)

PHITransAddr.cpp @58bfcdbraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
//===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PHITransAddr class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

static bool CanPHITrans(Instruction *Inst) {
  if (isa<PHINode>(Inst) ||
      isa<GetElementPtrInst>(Inst))
    return true;

  if (isa<CastInst>(Inst) &&
      Inst->isSafeToSpeculativelyExecute())
    return true;

  if (Inst->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(Inst->getOperand(1)))
    return true;

  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
  return false;
}

void PHITransAddr::dump() const {
  if (Addr == 0) {
    dbgs() << "PHITransAddr: null\n";
    return;
  }
  dbgs() << "PHITransAddr: " << *Addr << "\n";
  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
    dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
}


static bool VerifySubExpr(Value *Expr,
                          SmallVectorImpl<Instruction*> &InstInputs) {
  // If this is a non-instruction value, there is nothing to do.
  Instruction *I = dyn_cast<Instruction>(Expr);
  if (I == 0) return true;

  // If it's an instruction, it is either in Tmp or its operands recursively
  // are.
  SmallVectorImpl<Instruction*>::iterator Entry =
    std::find(InstInputs.begin(), InstInputs.end(), I);
  if (Entry != InstInputs.end()) {
    InstInputs.erase(Entry);
    return true;
  }

  // If it isn't in the InstInputs list it is a subexpr incorporated into the
  // address.  Sanity check that it is phi translatable.
  if (!CanPHITrans(I)) {
    errs() << "Non phi translatable instruction found in PHITransAddr:\n";
    errs() << *I << '\n';
    llvm_unreachable("Either something is missing from InstInputs or "
                     "CanPHITrans is wrong.");
    return false;
  }

  // Validate the operands of the instruction.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (!VerifySubExpr(I->getOperand(i), InstInputs))
      return false;

  return true;
}

/// Verify - Check internal consistency of this data structure.  If the
/// structure is valid, it returns true.  If invalid, it prints errors and
/// returns false.
bool PHITransAddr::Verify() const {
  if (Addr == 0) return true;

  SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());

  if (!VerifySubExpr(Addr, Tmp))
    return false;

  if (!Tmp.empty()) {
    errs() << "PHITransAddr contains extra instructions:\n";
    for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
      errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
    llvm_unreachable("This is unexpected.");
    return false;
  }

  // a-ok.
  return true;
}


/// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
/// if we have some hope of doing it.  This should be used as a filter to
/// avoid calling PHITranslateValue in hopeless situations.
bool PHITransAddr::IsPotentiallyPHITranslatable() const {
  // If the input value is not an instruction, or if it is not defined in CurBB,
  // then we don't need to phi translate it.
  Instruction *Inst = dyn_cast<Instruction>(Addr);
  return Inst == 0 || CanPHITrans(Inst);
}


static void RemoveInstInputs(Value *V,
                             SmallVectorImpl<Instruction*> &InstInputs) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) return;

  // If the instruction is in the InstInputs list, remove it.
  SmallVectorImpl<Instruction*>::iterator Entry =
    std::find(InstInputs.begin(), InstInputs.end(), I);
  if (Entry != InstInputs.end()) {
    InstInputs.erase(Entry);
    return;
  }

  assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");

  // Otherwise, it must have instruction inputs itself.  Zap them recursively.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
      RemoveInstInputs(Op, InstInputs);
  }
}

Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
                                         BasicBlock *PredBB,
                                         const DominatorTree *DT) {
  // If this is a non-instruction value, it can't require PHI translation.
  Instruction *Inst = dyn_cast<Instruction>(V);
  if (Inst == 0) return V;

  // Determine whether 'Inst' is an input to our PHI translatable expression.
  bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);

  // Handle inputs instructions if needed.
  if (isInput) {
    if (Inst->getParent() != CurBB) {
      // If it is an input defined in a different block, then it remains an
      // input.
      return Inst;
    }

    // If 'Inst' is defined in this block and is an input that needs to be phi
    // translated, we need to incorporate the value into the expression or fail.

    // In either case, the instruction itself isn't an input any longer.
    InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));

    // If this is a PHI, go ahead and translate it.
    if (PHINode *PN = dyn_cast<PHINode>(Inst))
      return AddAsInput(PN->getIncomingValueForBlock(PredBB));

    // If this is a non-phi value, and it is analyzable, we can incorporate it
    // into the expression by making all instruction operands be inputs.
    if (!CanPHITrans(Inst))
      return 0;

    // All instruction operands are now inputs (and of course, they may also be
    // defined in this block, so they may need to be phi translated themselves.
    for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
      if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
        InstInputs.push_back(Op);
  }

  // Ok, it must be an intermediate result (either because it started that way
  // or because we just incorporated it into the expression).  See if its
  // operands need to be phi translated, and if so, reconstruct it.

  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    if (!Cast->isSafeToSpeculativelyExecute()) return 0;
    Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
    if (PHIIn == 0) return 0;
    if (PHIIn == Cast->getOperand(0))
      return Cast;

    // Find an available version of this cast.

    // Constants are trivial to find.
    if (Constant *C = dyn_cast<Constant>(PHIIn))
      return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
                                              C, Cast->getType()));

    // Otherwise we have to see if a casted version of the incoming pointer
    // is available.  If so, we can use it, otherwise we have to fail.
    for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
         UI != E; ++UI) {
      if (CastInst *CastI = dyn_cast<CastInst>(*UI))
        if (CastI->getOpcode() == Cast->getOpcode() &&
            CastI->getType() == Cast->getType() &&
            (!DT || DT->dominates(CastI->getParent(), PredBB)))
          return CastI;
    }
    return 0;
  }

  // Handle getelementptr with at least one PHI translatable operand.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    SmallVector<Value*, 8> GEPOps;
    bool AnyChanged = false;
    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
      Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
      if (GEPOp == 0) return 0;

      AnyChanged |= GEPOp != GEP->getOperand(i);
      GEPOps.push_back(GEPOp);
    }

    if (!AnyChanged)
      return GEP;

    // Simplify the GEP to handle 'gep x, 0' -> x etc.
    if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD, DT)) {
      for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
        RemoveInstInputs(GEPOps[i], InstInputs);

      return AddAsInput(V);
    }

    // Scan to see if we have this GEP available.
    Value *APHIOp = GEPOps[0];
    for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
         UI != E; ++UI) {
      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
        if (GEPI->getType() == GEP->getType() &&
            GEPI->getNumOperands() == GEPOps.size() &&
            GEPI->getParent()->getParent() == CurBB->getParent() &&
            (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
          bool Mismatch = false;
          for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
            if (GEPI->getOperand(i) != GEPOps[i]) {
              Mismatch = true;
              break;
            }
          if (!Mismatch)
            return GEPI;
        }
    }
    return 0;
  }

  // Handle add with a constant RHS.
  if (Inst->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(Inst->getOperand(1))) {
    // PHI translate the LHS.
    Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
    bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
    bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();

    Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
    if (LHS == 0) return 0;

    // If the PHI translated LHS is an add of a constant, fold the immediates.
    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
      if (BOp->getOpcode() == Instruction::Add)
        if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
          LHS = BOp->getOperand(0);
          RHS = ConstantExpr::getAdd(RHS, CI);
          isNSW = isNUW = false;

          // If the old 'LHS' was an input, add the new 'LHS' as an input.
          if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) {
            RemoveInstInputs(BOp, InstInputs);
            AddAsInput(LHS);
          }
        }

    // See if the add simplifies away.
    if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, DT)) {
      // If we simplified the operands, the LHS is no longer an input, but Res
      // is.
      RemoveInstInputs(LHS, InstInputs);
      return AddAsInput(Res);
    }

    // If we didn't modify the add, just return it.
    if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
      return Inst;

    // Otherwise, see if we have this add available somewhere.
    for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
         UI != E; ++UI) {
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
        if (BO->getOpcode() == Instruction::Add &&
            BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
            BO->getParent()->getParent() == CurBB->getParent() &&
            (!DT || DT->dominates(BO->getParent(), PredBB)))
          return BO;
    }

    return 0;
  }

  // Otherwise, we failed.
  return 0;
}


/// PHITranslateValue - PHI translate the current address up the CFG from
/// CurBB to Pred, updating our state to reflect any needed changes.  If the
/// dominator tree DT is non-null, the translated value must dominate
/// PredBB.  This returns true on failure and sets Addr to null.
bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
                                     const DominatorTree *DT) {
  assert(Verify() && "Invalid PHITransAddr!");
  Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
  assert(Verify() && "Invalid PHITransAddr!");

  if (DT) {
    // Make sure the value is live in the predecessor.
    if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
      if (!DT->dominates(Inst->getParent(), PredBB))
        Addr = 0;
  }

  return Addr == 0;
}

/// PHITranslateWithInsertion - PHI translate this value into the specified
/// predecessor block, inserting a computation of the value if it is
/// unavailable.
///
/// All newly created instructions are added to the NewInsts list.  This
/// returns null on failure.
///
Value *PHITransAddr::
PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
                          const DominatorTree &DT,
                          SmallVectorImpl<Instruction*> &NewInsts) {
  unsigned NISize = NewInsts.size();

  // Attempt to PHI translate with insertion.
  Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);

  // If successful, return the new value.
  if (Addr) return Addr;

  // If not, destroy any intermediate instructions inserted.
  while (NewInsts.size() != NISize)
    NewInsts.pop_back_val()->eraseFromParent();
  return 0;
}


/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
/// block.  All newly created instructions are added to the NewInsts list.
/// This returns null on failure.
///
Value *PHITransAddr::
InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
                           BasicBlock *PredBB, const DominatorTree &DT,
                           SmallVectorImpl<Instruction*> &NewInsts) {
  // See if we have a version of this value already available and dominating
  // PredBB.  If so, there is no need to insert a new instance of it.
  PHITransAddr Tmp(InVal, TD);
  if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
    return Tmp.getAddr();

  // If we don't have an available version of this value, it must be an
  // instruction.
  Instruction *Inst = cast<Instruction>(InVal);

  // Handle cast of PHI translatable value.
  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    if (!Cast->isSafeToSpeculativelyExecute()) return 0;
    Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
                                              CurBB, PredBB, DT, NewInsts);
    if (OpVal == 0) return 0;

    // Otherwise insert a cast at the end of PredBB.
    CastInst *New = CastInst::Create(Cast->getOpcode(),
                                     OpVal, InVal->getType(),
                                     InVal->getName()+".phi.trans.insert",
                                     PredBB->getTerminator());
    NewInsts.push_back(New);
    return New;
  }

  // Handle getelementptr with at least one PHI operand.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    SmallVector<Value*, 8> GEPOps;
    BasicBlock *CurBB = GEP->getParent();
    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
      Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
                                                CurBB, PredBB, DT, NewInsts);
      if (OpVal == 0) return 0;
      GEPOps.push_back(OpVal);
    }

    GetElementPtrInst *Result =
    GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
                              InVal->getName()+".phi.trans.insert",
                              PredBB->getTerminator());
    Result->setIsInBounds(GEP->isInBounds());
    NewInsts.push_back(Result);
    return Result;
  }

#if 0
  // FIXME: This code works, but it is unclear that we actually want to insert
  // a big chain of computation in order to make a value available in a block.
  // This needs to be evaluated carefully to consider its cost trade offs.

  // Handle add with a constant RHS.
  if (Inst->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(Inst->getOperand(1))) {
    // PHI translate the LHS.
    Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
                                              CurBB, PredBB, DT, NewInsts);
    if (OpVal == 0) return 0;

    BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
                                           InVal->getName()+".phi.trans.insert",
                                                    PredBB->getTerminator());
    Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
    Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
    NewInsts.push_back(Res);
    return Res;
  }
#endif

  return 0;
}