llvm.org GIT mirror llvm / 5813ee1 lib / IR / ConstantFold.cpp
5813ee1

Tree @5813ee1 (Download .tar.gz)

ConstantFold.cpp @5813ee1raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements folding of constants for LLVM.  This implements the
// (internal) ConstantFold.h interface, which is used by the
// ConstantExpr::get* methods to automatically fold constants when possible.
//
// The current constant folding implementation is implemented in two pieces: the
// pieces that don't need DataLayout, and the pieces that do. This is to avoid
// a dependence in IR on Target.
//
//===----------------------------------------------------------------------===//

#include "ConstantFold.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
using namespace llvm::PatternMatch;

//===----------------------------------------------------------------------===//
//                ConstantFold*Instruction Implementations
//===----------------------------------------------------------------------===//

/// Convert the specified vector Constant node to the specified vector type.
/// At this point, we know that the elements of the input vector constant are
/// all simple integer or FP values.
static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {

  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
  if (CV->isNullValue()) return Constant::getNullValue(DstTy);

  // If this cast changes element count then we can't handle it here:
  // doing so requires endianness information.  This should be handled by
  // Analysis/ConstantFolding.cpp
  unsigned NumElts = DstTy->getNumElements();
  if (NumElts != CV->getType()->getVectorNumElements())
    return nullptr;

  Type *DstEltTy = DstTy->getElementType();

  SmallVector<Constant*, 16> Result;
  Type *Ty = IntegerType::get(CV->getContext(), 32);
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *C =
      ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
    C = ConstantExpr::getBitCast(C, DstEltTy);
    Result.push_back(C);
  }

  return ConstantVector::get(Result);
}

/// This function determines which opcode to use to fold two constant cast
/// expressions together. It uses CastInst::isEliminableCastPair to determine
/// the opcode. Consequently its just a wrapper around that function.
/// @brief Determine if it is valid to fold a cast of a cast
static unsigned
foldConstantCastPair(
  unsigned opc,          ///< opcode of the second cast constant expression
  ConstantExpr *Op,      ///< the first cast constant expression
  Type *DstTy            ///< destination type of the first cast
) {
  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
  assert(CastInst::isCast(opc) && "Invalid cast opcode");

  // The types and opcodes for the two Cast constant expressions
  Type *SrcTy = Op->getOperand(0)->getType();
  Type *MidTy = Op->getType();
  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
  Instruction::CastOps secondOp = Instruction::CastOps(opc);

  // Assume that pointers are never more than 64 bits wide, and only use this
  // for the middle type. Otherwise we could end up folding away illegal
  // bitcasts between address spaces with different sizes.
  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());

  // Let CastInst::isEliminableCastPair do the heavy lifting.
  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
                                        nullptr, FakeIntPtrTy, nullptr);
}

static Constant *FoldBitCast(Constant *V, Type *DestTy) {
  Type *SrcTy = V->getType();
  if (SrcTy == DestTy)
    return V; // no-op cast

  // Check to see if we are casting a pointer to an aggregate to a pointer to
  // the first element.  If so, return the appropriate GEP instruction.
  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
      if (PTy->getAddressSpace() == DPTy->getAddressSpace()
          && PTy->getElementType()->isSized()) {
        SmallVector<Value*, 8> IdxList;
        Value *Zero =
          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
        IdxList.push_back(Zero);
        Type *ElTy = PTy->getElementType();
        while (ElTy != DPTy->getElementType()) {
          if (StructType *STy = dyn_cast<StructType>(ElTy)) {
            if (STy->getNumElements() == 0) break;
            ElTy = STy->getElementType(0);
            IdxList.push_back(Zero);
          } else if (SequentialType *STy =
                     dyn_cast<SequentialType>(ElTy)) {
            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
            ElTy = STy->getElementType();
            IdxList.push_back(Zero);
          } else {
            break;
          }
        }

        if (ElTy == DPTy->getElementType())
          // This GEP is inbounds because all indices are zero.
          return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
                                                        V, IdxList);
      }

  // Handle casts from one vector constant to another.  We know that the src
  // and dest type have the same size (otherwise its an illegal cast).
  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
             "Not cast between same sized vectors!");
      SrcTy = nullptr;
      // First, check for null.  Undef is already handled.
      if (isa<ConstantAggregateZero>(V))
        return Constant::getNullValue(DestTy);

      // Handle ConstantVector and ConstantAggregateVector.
      return BitCastConstantVector(V, DestPTy);
    }

    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
    // This allows for other simplifications (although some of them
    // can only be handled by Analysis/ConstantFolding.cpp).
    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
  }

  // Finally, implement bitcast folding now.   The code below doesn't handle
  // bitcast right.
  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
    return ConstantPointerNull::get(cast<PointerType>(DestTy));

  // Handle integral constant input.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    if (DestTy->isIntegerTy())
      // Integral -> Integral. This is a no-op because the bit widths must
      // be the same. Consequently, we just fold to V.
      return V;

    // See note below regarding the PPC_FP128 restriction.
    if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
      return ConstantFP::get(DestTy->getContext(),
                             APFloat(DestTy->getFltSemantics(),
                                     CI->getValue()));

    // Otherwise, can't fold this (vector?)
    return nullptr;
  }

  // Handle ConstantFP input: FP -> Integral.
  if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
    // PPC_FP128 is really the sum of two consecutive doubles, where the first
    // double is always stored first in memory, regardless of the target
    // endianness. The memory layout of i128, however, depends on the target
    // endianness, and so we can't fold this without target endianness
    // information. This should instead be handled by
    // Analysis/ConstantFolding.cpp
    if (FP->getType()->isPPC_FP128Ty())
      return nullptr;

    // Make sure dest type is compatible with the folded integer constant.
    if (!DestTy->isIntegerTy())
      return nullptr;

    return ConstantInt::get(FP->getContext(),
                            FP->getValueAPF().bitcastToAPInt());
  }

  return nullptr;
}


/// V is an integer constant which only has a subset of its bytes used.
/// The bytes used are indicated by ByteStart (which is the first byte used,
/// counting from the least significant byte) and ByteSize, which is the number
/// of bytes used.
///
/// This function analyzes the specified constant to see if the specified byte
/// range can be returned as a simplified constant.  If so, the constant is
/// returned, otherwise null is returned.
static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
                                      unsigned ByteSize) {
  assert(C->getType()->isIntegerTy() &&
         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
         "Non-byte sized integer input");
  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
  assert(ByteSize && "Must be accessing some piece");
  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
  assert(ByteSize != CSize && "Should not extract everything");

  // Constant Integers are simple.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    APInt V = CI->getValue();
    if (ByteStart)
      V = V.lshr(ByteStart*8);
    V = V.trunc(ByteSize*8);
    return ConstantInt::get(CI->getContext(), V);
  }

  // In the input is a constant expr, we might be able to recursively simplify.
  // If not, we definitely can't do anything.
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
  if (!CE) return nullptr;

  switch (CE->getOpcode()) {
  default: return nullptr;
  case Instruction::Or: {
    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    if (!RHS)
      return nullptr;

    // X | -1 -> -1.
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
      if (RHSC->isAllOnesValue())
        return RHSC;

    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    if (!LHS)
      return nullptr;
    return ConstantExpr::getOr(LHS, RHS);
  }
  case Instruction::And: {
    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    if (!RHS)
      return nullptr;

    // X & 0 -> 0.
    if (RHS->isNullValue())
      return RHS;

    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    if (!LHS)
      return nullptr;
    return ConstantExpr::getAnd(LHS, RHS);
  }
  case Instruction::LShr: {
    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    if (!Amt)
      return nullptr;
    unsigned ShAmt = Amt->getZExtValue();
    // Cannot analyze non-byte shifts.
    if ((ShAmt & 7) != 0)
      return nullptr;
    ShAmt >>= 3;

    // If the extract is known to be all zeros, return zero.
    if (ByteStart >= CSize-ShAmt)
      return Constant::getNullValue(IntegerType::get(CE->getContext(),
                                                     ByteSize*8));
    // If the extract is known to be fully in the input, extract it.
    if (ByteStart+ByteSize+ShAmt <= CSize)
      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);

    // TODO: Handle the 'partially zero' case.
    return nullptr;
  }

  case Instruction::Shl: {
    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    if (!Amt)
      return nullptr;
    unsigned ShAmt = Amt->getZExtValue();
    // Cannot analyze non-byte shifts.
    if ((ShAmt & 7) != 0)
      return nullptr;
    ShAmt >>= 3;

    // If the extract is known to be all zeros, return zero.
    if (ByteStart+ByteSize <= ShAmt)
      return Constant::getNullValue(IntegerType::get(CE->getContext(),
                                                     ByteSize*8));
    // If the extract is known to be fully in the input, extract it.
    if (ByteStart >= ShAmt)
      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);

    // TODO: Handle the 'partially zero' case.
    return nullptr;
  }

  case Instruction::ZExt: {
    unsigned SrcBitSize =
      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();

    // If extracting something that is completely zero, return 0.
    if (ByteStart*8 >= SrcBitSize)
      return Constant::getNullValue(IntegerType::get(CE->getContext(),
                                                     ByteSize*8));

    // If exactly extracting the input, return it.
    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
      return CE->getOperand(0);

    // If extracting something completely in the input, if if the input is a
    // multiple of 8 bits, recurse.
    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);

    // Otherwise, if extracting a subset of the input, which is not multiple of
    // 8 bits, do a shift and trunc to get the bits.
    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
      Constant *Res = CE->getOperand(0);
      if (ByteStart)
        Res = ConstantExpr::getLShr(Res,
                                 ConstantInt::get(Res->getType(), ByteStart*8));
      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
                                                          ByteSize*8));
    }

    // TODO: Handle the 'partially zero' case.
    return nullptr;
  }
  }
}

/// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
/// factors factored out. If Folded is false, return null if no factoring was
/// possible, to avoid endlessly bouncing an unfoldable expression back into the
/// top-level folder.
static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
                                 bool Folded) {
  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    return ConstantExpr::getNUWMul(E, N);
  }

  if (StructType *STy = dyn_cast<StructType>(Ty))
    if (!STy->isPacked()) {
      unsigned NumElems = STy->getNumElements();
      // An empty struct has size zero.
      if (NumElems == 0)
        return ConstantExpr::getNullValue(DestTy);
      // Check for a struct with all members having the same size.
      Constant *MemberSize =
        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
      bool AllSame = true;
      for (unsigned i = 1; i != NumElems; ++i)
        if (MemberSize !=
            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
          AllSame = false;
          break;
        }
      if (AllSame) {
        Constant *N = ConstantInt::get(DestTy, NumElems);
        return ConstantExpr::getNUWMul(MemberSize, N);
      }
    }

  // Pointer size doesn't depend on the pointee type, so canonicalize them
  // to an arbitrary pointee.
  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    if (!PTy->getElementType()->isIntegerTy(1))
      return
        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
                                         PTy->getAddressSpace()),
                        DestTy, true);

  // If there's no interesting folding happening, bail so that we don't create
  // a constant that looks like it needs folding but really doesn't.
  if (!Folded)
    return nullptr;

  // Base case: Get a regular sizeof expression.
  Constant *C = ConstantExpr::getSizeOf(Ty);
  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
                                                    DestTy, false),
                            C, DestTy);
  return C;
}

/// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
/// factors factored out. If Folded is false, return null if no factoring was
/// possible, to avoid endlessly bouncing an unfoldable expression back into the
/// top-level folder.
static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
                                  bool Folded) {
  // The alignment of an array is equal to the alignment of the
  // array element. Note that this is not always true for vectors.
  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
                                                      DestTy,
                                                      false),
                              C, DestTy);
    return C;
  }

  if (StructType *STy = dyn_cast<StructType>(Ty)) {
    // Packed structs always have an alignment of 1.
    if (STy->isPacked())
      return ConstantInt::get(DestTy, 1);

    // Otherwise, struct alignment is the maximum alignment of any member.
    // Without target data, we can't compare much, but we can check to see
    // if all the members have the same alignment.
    unsigned NumElems = STy->getNumElements();
    // An empty struct has minimal alignment.
    if (NumElems == 0)
      return ConstantInt::get(DestTy, 1);
    // Check for a struct with all members having the same alignment.
    Constant *MemberAlign =
      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
    bool AllSame = true;
    for (unsigned i = 1; i != NumElems; ++i)
      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
        AllSame = false;
        break;
      }
    if (AllSame)
      return MemberAlign;
  }

  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
  // to an arbitrary pointee.
  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    if (!PTy->getElementType()->isIntegerTy(1))
      return
        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
                                                           1),
                                          PTy->getAddressSpace()),
                         DestTy, true);

  // If there's no interesting folding happening, bail so that we don't create
  // a constant that looks like it needs folding but really doesn't.
  if (!Folded)
    return nullptr;

  // Base case: Get a regular alignof expression.
  Constant *C = ConstantExpr::getAlignOf(Ty);
  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
                                                    DestTy, false),
                            C, DestTy);
  return C;
}

/// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
/// any known factors factored out. If Folded is false, return null if no
/// factoring was possible, to avoid endlessly bouncing an unfoldable expression
/// back into the top-level folder.
static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
                                   Type *DestTy,
                                   bool Folded) {
  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
                                                                DestTy, false),
                                        FieldNo, DestTy);
    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    return ConstantExpr::getNUWMul(E, N);
  }

  if (StructType *STy = dyn_cast<StructType>(Ty))
    if (!STy->isPacked()) {
      unsigned NumElems = STy->getNumElements();
      // An empty struct has no members.
      if (NumElems == 0)
        return nullptr;
      // Check for a struct with all members having the same size.
      Constant *MemberSize =
        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
      bool AllSame = true;
      for (unsigned i = 1; i != NumElems; ++i)
        if (MemberSize !=
            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
          AllSame = false;
          break;
        }
      if (AllSame) {
        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
                                                                    false,
                                                                    DestTy,
                                                                    false),
                                            FieldNo, DestTy);
        return ConstantExpr::getNUWMul(MemberSize, N);
      }
    }

  // If there's no interesting folding happening, bail so that we don't create
  // a constant that looks like it needs folding but really doesn't.
  if (!Folded)
    return nullptr;

  // Base case: Get a regular offsetof expression.
  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
                                                    DestTy, false),
                            C, DestTy);
  return C;
}

Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
                                            Type *DestTy) {
  if (isa<UndefValue>(V)) {
    // zext(undef) = 0, because the top bits will be zero.
    // sext(undef) = 0, because the top bits will all be the same.
    // [us]itofp(undef) = 0, because the result value is bounded.
    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
      return Constant::getNullValue(DestTy);
    return UndefValue::get(DestTy);
  }

  if (V->isNullValue() && !DestTy->isX86_MMXTy())
    return Constant::getNullValue(DestTy);

  // If the cast operand is a constant expression, there's a few things we can
  // do to try to simplify it.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->isCast()) {
      // Try hard to fold cast of cast because they are often eliminable.
      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
    } else if (CE->getOpcode() == Instruction::GetElementPtr &&
               // Do not fold addrspacecast (gep 0, .., 0). It might make the
               // addrspacecast uncanonicalized.
               opc != Instruction::AddrSpaceCast) {
      // If all of the indexes in the GEP are null values, there is no pointer
      // adjustment going on.  We might as well cast the source pointer.
      bool isAllNull = true;
      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
        if (!CE->getOperand(i)->isNullValue()) {
          isAllNull = false;
          break;
        }
      if (isAllNull)
        // This is casting one pointer type to another, always BitCast
        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
    }
  }

  // If the cast operand is a constant vector, perform the cast by
  // operating on each element. In the cast of bitcasts, the element
  // count may be mismatched; don't attempt to handle that here.
  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
      DestTy->isVectorTy() &&
      DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
    SmallVector<Constant*, 16> res;
    VectorType *DestVecTy = cast<VectorType>(DestTy);
    Type *DstEltTy = DestVecTy->getElementType();
    Type *Ty = IntegerType::get(V->getContext(), 32);
    for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
      Constant *C =
        ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
      res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
    }
    return ConstantVector::get(res);
  }

  // We actually have to do a cast now. Perform the cast according to the
  // opcode specified.
  switch (opc) {
  default:
    llvm_unreachable("Failed to cast constant expression");
  case Instruction::FPTrunc:
  case Instruction::FPExt:
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
      bool ignored;
      APFloat Val = FPC->getValueAPF();
      Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
                  DestTy->isFloatTy() ? APFloat::IEEEsingle :
                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
                  DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
                  APFloat::Bogus,
                  APFloat::rmNearestTiesToEven, &ignored);
      return ConstantFP::get(V->getContext(), Val);
    }
    return nullptr; // Can't fold.
  case Instruction::FPToUI:
  case Instruction::FPToSI:
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
      const APFloat &V = FPC->getValueAPF();
      bool ignored;
      uint64_t x[2];
      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
      if (APFloat::opInvalidOp ==
          V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
                             APFloat::rmTowardZero, &ignored)) {
        // Undefined behavior invoked - the destination type can't represent
        // the input constant.
        return UndefValue::get(DestTy);
      }
      APInt Val(DestBitWidth, x);
      return ConstantInt::get(FPC->getContext(), Val);
    }
    return nullptr; // Can't fold.
  case Instruction::IntToPtr:   //always treated as unsigned
    if (V->isNullValue())       // Is it an integral null value?
      return ConstantPointerNull::get(cast<PointerType>(DestTy));
    return nullptr;                   // Other pointer types cannot be casted
  case Instruction::PtrToInt:   // always treated as unsigned
    // Is it a null pointer value?
    if (V->isNullValue())
      return ConstantInt::get(DestTy, 0);
    // If this is a sizeof-like expression, pull out multiplications by
    // known factors to expose them to subsequent folding. If it's an
    // alignof-like expression, factor out known factors.
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
      if (CE->getOpcode() == Instruction::GetElementPtr &&
          CE->getOperand(0)->isNullValue()) {
        GEPOperator *GEPO = cast<GEPOperator>(CE);
        Type *Ty = GEPO->getSourceElementType();
        if (CE->getNumOperands() == 2) {
          // Handle a sizeof-like expression.
          Constant *Idx = CE->getOperand(1);
          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
                                                                DestTy, false),
                                        Idx, DestTy);
            return ConstantExpr::getMul(C, Idx);
          }
        } else if (CE->getNumOperands() == 3 &&
                   CE->getOperand(1)->isNullValue()) {
          // Handle an alignof-like expression.
          if (StructType *STy = dyn_cast<StructType>(Ty))
            if (!STy->isPacked()) {
              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
              if (CI->isOne() &&
                  STy->getNumElements() == 2 &&
                  STy->getElementType(0)->isIntegerTy(1)) {
                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
              }
            }
          // Handle an offsetof-like expression.
          if (Ty->isStructTy() || Ty->isArrayTy()) {
            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
                                                DestTy, false))
              return C;
          }
        }
      }
    // Other pointer types cannot be casted
    return nullptr;
  case Instruction::UIToFP:
  case Instruction::SIToFP:
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      const APInt &api = CI->getValue();
      APFloat apf(DestTy->getFltSemantics(),
                  APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
      if (APFloat::opOverflow &
          apf.convertFromAPInt(api, opc==Instruction::SIToFP,
                              APFloat::rmNearestTiesToEven)) {
        // Undefined behavior invoked - the destination type can't represent
        // the input constant.
        return UndefValue::get(DestTy);
      }
      return ConstantFP::get(V->getContext(), apf);
    }
    return nullptr;
  case Instruction::ZExt:
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
      return ConstantInt::get(V->getContext(),
                              CI->getValue().zext(BitWidth));
    }
    return nullptr;
  case Instruction::SExt:
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
      return ConstantInt::get(V->getContext(),
                              CI->getValue().sext(BitWidth));
    }
    return nullptr;
  case Instruction::Trunc: {
    if (V->getType()->isVectorTy())
      return nullptr;

    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      return ConstantInt::get(V->getContext(),
                              CI->getValue().trunc(DestBitWidth));
    }

    // The input must be a constantexpr.  See if we can simplify this based on
    // the bytes we are demanding.  Only do this if the source and dest are an
    // even multiple of a byte.
    if ((DestBitWidth & 7) == 0 &&
        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
        return Res;

    return nullptr;
  }
  case Instruction::BitCast:
    return FoldBitCast(V, DestTy);
  case Instruction::AddrSpaceCast:
    return nullptr;
  }
}

Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
                                              Constant *V1, Constant *V2) {
  // Check for i1 and vector true/false conditions.
  if (Cond->isNullValue()) return V2;
  if (Cond->isAllOnesValue()) return V1;

  // If the condition is a vector constant, fold the result elementwise.
  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
    SmallVector<Constant*, 16> Result;
    Type *Ty = IntegerType::get(CondV->getContext(), 32);
    for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
      Constant *V;
      Constant *V1Element = ConstantExpr::getExtractElement(V1,
                                                    ConstantInt::get(Ty, i));
      Constant *V2Element = ConstantExpr::getExtractElement(V2,
                                                    ConstantInt::get(Ty, i));
      Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
      if (V1Element == V2Element) {
        V = V1Element;
      } else if (isa<UndefValue>(Cond)) {
        V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
      } else {
        if (!isa<ConstantInt>(Cond)) break;
        V = Cond->isNullValue() ? V2Element : V1Element;
      }
      Result.push_back(V);
    }

    // If we were able to build the vector, return it.
    if (Result.size() == V1->getType()->getVectorNumElements())
      return ConstantVector::get(Result);
  }

  if (isa<UndefValue>(Cond)) {
    if (isa<UndefValue>(V1)) return V1;
    return V2;
  }
  if (isa<UndefValue>(V1)) return V2;
  if (isa<UndefValue>(V2)) return V1;
  if (V1 == V2) return V1;

  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
    if (TrueVal->getOpcode() == Instruction::Select)
      if (TrueVal->getOperand(0) == Cond)
        return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
  }
  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
    if (FalseVal->getOpcode() == Instruction::Select)
      if (FalseVal->getOperand(0) == Cond)
        return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
  }

  return nullptr;
}

Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
                                                      Constant *Idx) {
  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
    return UndefValue::get(Val->getType()->getVectorElementType());
  if (Val->isNullValue())  // ee(zero, x) -> zero
    return Constant::getNullValue(Val->getType()->getVectorElementType());
  // ee({w,x,y,z}, undef) -> undef
  if (isa<UndefValue>(Idx))
    return UndefValue::get(Val->getType()->getVectorElementType());

  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
    // ee({w,x,y,z}, wrong_value) -> undef
    if (CIdx->uge(Val->getType()->getVectorNumElements()))
      return UndefValue::get(Val->getType()->getVectorElementType());
    return Val->getAggregateElement(CIdx->getZExtValue());
  }
  return nullptr;
}

Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
                                                     Constant *Elt,
                                                     Constant *Idx) {
  if (isa<UndefValue>(Idx))
    return UndefValue::get(Val->getType());

  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
  if (!CIdx) return nullptr;

  unsigned NumElts = Val->getType()->getVectorNumElements();
  if (CIdx->uge(NumElts))
    return UndefValue::get(Val->getType());

  SmallVector<Constant*, 16> Result;
  Result.reserve(NumElts);
  auto *Ty = Type::getInt32Ty(Val->getContext());
  uint64_t IdxVal = CIdx->getZExtValue();
  for (unsigned i = 0; i != NumElts; ++i) {
    if (i == IdxVal) {
      Result.push_back(Elt);
      continue;
    }

    Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
    Result.push_back(C);
  }

  return ConstantVector::get(Result);
}

Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
                                                     Constant *V2,
                                                     Constant *Mask) {
  unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
  Type *EltTy = V1->getType()->getVectorElementType();

  // Undefined shuffle mask -> undefined value.
  if (isa<UndefValue>(Mask))
    return UndefValue::get(VectorType::get(EltTy, MaskNumElts));

  // Don't break the bitcode reader hack.
  if (isa<ConstantExpr>(Mask)) return nullptr;

  unsigned SrcNumElts = V1->getType()->getVectorNumElements();

  // Loop over the shuffle mask, evaluating each element.
  SmallVector<Constant*, 32> Result;
  for (unsigned i = 0; i != MaskNumElts; ++i) {
    int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
    if (Elt == -1) {
      Result.push_back(UndefValue::get(EltTy));
      continue;
    }
    Constant *InElt;
    if (unsigned(Elt) >= SrcNumElts*2)
      InElt = UndefValue::get(EltTy);
    else if (unsigned(Elt) >= SrcNumElts) {
      Type *Ty = IntegerType::get(V2->getContext(), 32);
      InElt =
        ConstantExpr::getExtractElement(V2,
                                        ConstantInt::get(Ty, Elt - SrcNumElts));
    } else {
      Type *Ty = IntegerType::get(V1->getContext(), 32);
      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
    }
    Result.push_back(InElt);
  }

  return ConstantVector::get(Result);
}

Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
                                                    ArrayRef<unsigned> Idxs) {
  // Base case: no indices, so return the entire value.
  if (Idxs.empty())
    return Agg;

  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));

  return nullptr;
}

Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
                                                   Constant *Val,
                                                   ArrayRef<unsigned> Idxs) {
  // Base case: no indices, so replace the entire value.
  if (Idxs.empty())
    return Val;

  unsigned NumElts;
  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    NumElts = ST->getNumElements();
  else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    NumElts = AT->getNumElements();
  else
    NumElts = Agg->getType()->getVectorNumElements();

  SmallVector<Constant*, 32> Result;
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *C = Agg->getAggregateElement(i);
    if (!C) return nullptr;

    if (Idxs[0] == i)
      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));

    Result.push_back(C);
  }

  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    return ConstantStruct::get(ST, Result);
  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    return ConstantArray::get(AT, Result);
  return ConstantVector::get(Result);
}


Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
                                              Constant *C1, Constant *C2) {
  assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");

  // Handle UndefValue up front.
  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
    switch (static_cast<Instruction::BinaryOps>(Opcode)) {
    case Instruction::Xor:
      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
        // Handle undef ^ undef -> 0 special case. This is a common
        // idiom (misuse).
        return Constant::getNullValue(C1->getType());
      // Fallthrough
    case Instruction::Add:
    case Instruction::Sub:
      return UndefValue::get(C1->getType());
    case Instruction::And:
      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
        return C1;
      return Constant::getNullValue(C1->getType());   // undef & X -> 0
    case Instruction::Mul: {
      // undef * undef -> undef
      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
        return C1;
      const APInt *CV;
      // X * undef -> undef   if X is odd
      if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
        if ((*CV)[0])
          return UndefValue::get(C1->getType());

      // X * undef -> 0       otherwise
      return Constant::getNullValue(C1->getType());
    }
    case Instruction::SDiv:
    case Instruction::UDiv:
      // X / undef -> undef
      if (isa<UndefValue>(C2))
        return C2;
      // undef / 0 -> undef
      // undef / 1 -> undef
      if (match(C2, m_Zero()) || match(C2, m_One()))
        return C1;
      // undef / X -> 0       otherwise
      return Constant::getNullValue(C1->getType());
    case Instruction::URem:
    case Instruction::SRem:
      // X % undef -> undef
      if (match(C2, m_Undef()))
        return C2;
      // undef % 0 -> undef
      if (match(C2, m_Zero()))
        return C1;
      // undef % X -> 0       otherwise
      return Constant::getNullValue(C1->getType());
    case Instruction::Or:                          // X | undef -> -1
      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
        return C1;
      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
    case Instruction::LShr:
      // X >>l undef -> undef
      if (isa<UndefValue>(C2))
        return C2;
      // undef >>l 0 -> undef
      if (match(C2, m_Zero()))
        return C1;
      // undef >>l X -> 0
      return Constant::getNullValue(C1->getType());
    case Instruction::AShr:
      // X >>a undef -> undef
      if (isa<UndefValue>(C2))
        return C2;
      // undef >>a 0 -> undef
      if (match(C2, m_Zero()))
        return C1;
      // TODO: undef >>a X -> undef if the shift is exact
      // undef >>a X -> 0
      return Constant::getNullValue(C1->getType());
    case Instruction::Shl:
      // X << undef -> undef
      if (isa<UndefValue>(C2))
        return C2;
      // undef << 0 -> undef
      if (match(C2, m_Zero()))
        return C1;
      // undef << X -> 0
      return Constant::getNullValue(C1->getType());
    case Instruction::FAdd:
    case Instruction::FSub:
    case Instruction::FMul:
    case Instruction::FDiv:
    case Instruction::FRem:
      // TODO: UNDEF handling for binary float instructions.
      return nullptr;
    case Instruction::BinaryOpsEnd:
      llvm_unreachable("Invalid BinaryOp");
    }
  }

  // At this point neither constant should be an UndefValue.
  assert(!isa<UndefValue>(C1) && !isa<UndefValue>(C2) &&
         "Unexpected UndefValue");

  // Handle simplifications when the RHS is a constant int.
  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
    switch (Opcode) {
    case Instruction::Add:
      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
      break;
    case Instruction::Sub:
      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
      break;
    case Instruction::Mul:
      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
      if (CI2->equalsInt(1))
        return C1;                                              // X * 1 == X
      break;
    case Instruction::UDiv:
    case Instruction::SDiv:
      if (CI2->equalsInt(1))
        return C1;                                            // X / 1 == X
      if (CI2->equalsInt(0))
        return UndefValue::get(CI2->getType());               // X / 0 == undef
      break;
    case Instruction::URem:
    case Instruction::SRem:
      if (CI2->equalsInt(1))
        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
      if (CI2->equalsInt(0))
        return UndefValue::get(CI2->getType());               // X % 0 == undef
      break;
    case Instruction::And:
      if (CI2->isZero()) return C2;                           // X & 0 == 0
      if (CI2->isAllOnesValue())
        return C1;                                            // X & -1 == X

      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
        if (CE1->getOpcode() == Instruction::ZExt) {
          unsigned DstWidth = CI2->getType()->getBitWidth();
          unsigned SrcWidth =
            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
            return C1;
        }

        // If and'ing the address of a global with a constant, fold it.
        if (CE1->getOpcode() == Instruction::PtrToInt &&
            isa<GlobalValue>(CE1->getOperand(0))) {
          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));

          // Functions are at least 4-byte aligned.
          unsigned GVAlign = GV->getAlignment();
          if (isa<Function>(GV))
            GVAlign = std::max(GVAlign, 4U);

          if (GVAlign > 1) {
            unsigned DstWidth = CI2->getType()->getBitWidth();
            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));

            // If checking bits we know are clear, return zero.
            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
              return Constant::getNullValue(CI2->getType());
          }
        }
      }
      break;
    case Instruction::Or:
      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
      if (CI2->isAllOnesValue())
        return C2;                         // X | -1 == -1
      break;
    case Instruction::Xor:
      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X

      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
        switch (CE1->getOpcode()) {
        default: break;
        case Instruction::ICmp:
        case Instruction::FCmp:
          // cmp pred ^ true -> cmp !pred
          assert(CI2->equalsInt(1));
          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
          pred = CmpInst::getInversePredicate(pred);
          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
                                          CE1->getOperand(1));
        }
      }
      break;
    case Instruction::AShr:
      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
          return ConstantExpr::getLShr(C1, C2);
      break;
    }
  } else if (isa<ConstantInt>(C1)) {
    // If C1 is a ConstantInt and C2 is not, swap the operands.
    if (Instruction::isCommutative(Opcode))
      return ConstantExpr::get(Opcode, C2, C1);
  }

  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
      const APInt &C1V = CI1->getValue();
      const APInt &C2V = CI2->getValue();
      switch (Opcode) {
      default:
        break;
      case Instruction::Add:
        return ConstantInt::get(CI1->getContext(), C1V + C2V);
      case Instruction::Sub:
        return ConstantInt::get(CI1->getContext(), C1V - C2V);
      case Instruction::Mul:
        return ConstantInt::get(CI1->getContext(), C1V * C2V);
      case Instruction::UDiv:
        assert(!CI2->isNullValue() && "Div by zero handled above");
        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
      case Instruction::SDiv:
        assert(!CI2->isNullValue() && "Div by zero handled above");
        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
      case Instruction::URem:
        assert(!CI2->isNullValue() && "Div by zero handled above");
        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
      case Instruction::SRem:
        assert(!CI2->isNullValue() && "Div by zero handled above");
        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
      case Instruction::And:
        return ConstantInt::get(CI1->getContext(), C1V & C2V);
      case Instruction::Or:
        return ConstantInt::get(CI1->getContext(), C1V | C2V);
      case Instruction::Xor:
        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
      case Instruction::Shl:
        if (C2V.ult(C1V.getBitWidth()))
          return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
        return UndefValue::get(C1->getType()); // too big shift is undef
      case Instruction::LShr:
        if (C2V.ult(C1V.getBitWidth()))
          return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
        return UndefValue::get(C1->getType()); // too big shift is undef
      case Instruction::AShr:
        if (C2V.ult(C1V.getBitWidth()))
          return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
        return UndefValue::get(C1->getType()); // too big shift is undef
      }
    }

    switch (Opcode) {
    case Instruction::SDiv:
    case Instruction::UDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::Shl:
      if (CI1->equalsInt(0)) return C1;
      break;
    default:
      break;
    }
  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
      const APFloat &C1V = CFP1->getValueAPF();
      const APFloat &C2V = CFP2->getValueAPF();
      APFloat C3V = C1V;  // copy for modification
      switch (Opcode) {
      default:
        break;
      case Instruction::FAdd:
        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(C1->getContext(), C3V);
      case Instruction::FSub:
        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(C1->getContext(), C3V);
      case Instruction::FMul:
        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(C1->getContext(), C3V);
      case Instruction::FDiv:
        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
        return ConstantFP::get(C1->getContext(), C3V);
      case Instruction::FRem:
        (void)C3V.mod(C2V);
        return ConstantFP::get(C1->getContext(), C3V);
      }
    }
  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
    // Perform elementwise folding.
    SmallVector<Constant*, 16> Result;
    Type *Ty = IntegerType::get(VTy->getContext(), 32);
    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
      Constant *LHS =
        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
      Constant *RHS =
        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));

      Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
    }

    return ConstantVector::get(Result);
  }

  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
    // There are many possible foldings we could do here.  We should probably
    // at least fold add of a pointer with an integer into the appropriate
    // getelementptr.  This will improve alias analysis a bit.

    // Given ((a + b) + c), if (b + c) folds to something interesting, return
    // (a + (b + c)).
    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
    }
  } else if (isa<ConstantExpr>(C2)) {
    // If C2 is a constant expr and C1 isn't, flop them around and fold the
    // other way if possible.
    if (Instruction::isCommutative(Opcode))
      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
  }

  // i1 can be simplified in many cases.
  if (C1->getType()->isIntegerTy(1)) {
    switch (Opcode) {
    case Instruction::Add:
    case Instruction::Sub:
      return ConstantExpr::getXor(C1, C2);
    case Instruction::Mul:
      return ConstantExpr::getAnd(C1, C2);
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
      // We can assume that C2 == 0.  If it were one the result would be
      // undefined because the shift value is as large as the bitwidth.
      return C1;
    case Instruction::SDiv:
    case Instruction::UDiv:
      // We can assume that C2 == 1.  If it were zero the result would be
      // undefined through division by zero.
      return C1;
    case Instruction::URem:
    case Instruction::SRem:
      // We can assume that C2 == 1.  If it were zero the result would be
      // undefined through division by zero.
      return ConstantInt::getFalse(C1->getContext());
    default:
      break;
    }
  }

  // We don't know how to fold this.
  return nullptr;
}

/// This type is zero-sized if it's an array or structure of zero-sized types.
/// The only leaf zero-sized type is an empty structure.
static bool isMaybeZeroSizedType(Type *Ty) {
  if (StructType *STy = dyn_cast<StructType>(Ty)) {
    if (STy->isOpaque()) return true;  // Can't say.

    // If all of elements have zero size, this does too.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
    return true;

  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    return isMaybeZeroSizedType(ATy->getElementType());
  }
  return false;
}

/// Compare the two constants as though they were getelementptr indices.
/// This allows coercion of the types to be the same thing.
///
/// If the two constants are the "same" (after coercion), return 0.  If the
/// first is less than the second, return -1, if the second is less than the
/// first, return 1.  If the constants are not integral, return -2.
///
static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
  if (C1 == C2) return 0;

  // Ok, we found a different index.  If they are not ConstantInt, we can't do
  // anything with them.
  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
    return -2; // don't know!

  // We cannot compare the indices if they don't fit in an int64_t.
  if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
      cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
    return -2; // don't know!

  // Ok, we have two differing integer indices.  Sign extend them to be the same
  // type.
  int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
  int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();

  if (C1Val == C2Val) return 0;  // They are equal

  // If the type being indexed over is really just a zero sized type, there is
  // no pointer difference being made here.
  if (isMaybeZeroSizedType(ElTy))
    return -2; // dunno.

  // If they are really different, now that they are the same type, then we
  // found a difference!
  if (C1Val < C2Val)
    return -1;
  else
    return 1;
}

/// This function determines if there is anything we can decide about the two
/// constants provided. This doesn't need to handle simple things like
/// ConstantFP comparisons, but should instead handle ConstantExprs.
/// If we can determine that the two constants have a particular relation to
/// each other, we should return the corresponding FCmpInst predicate,
/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
/// ConstantFoldCompareInstruction.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two.  We consider ConstantFP
/// to be the simplest, and ConstantExprs to be the most complex.
static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
  assert(V1->getType() == V2->getType() &&
         "Cannot compare values of different types!");

  // Handle degenerate case quickly
  if (V1 == V2) return FCmpInst::FCMP_OEQ;

  if (!isa<ConstantExpr>(V1)) {
    if (!isa<ConstantExpr>(V2)) {
      // Simple case, use the standard constant folder.
      ConstantInt *R = nullptr;
      R = dyn_cast<ConstantInt>(
                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
      if (R && !R->isZero())
        return FCmpInst::FCMP_OEQ;
      R = dyn_cast<ConstantInt>(
                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
      if (R && !R->isZero())
        return FCmpInst::FCMP_OLT;
      R = dyn_cast<ConstantInt>(
                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
      if (R && !R->isZero())
        return FCmpInst::FCMP_OGT;

      // Nothing more we can do
      return FCmpInst::BAD_FCMP_PREDICATE;
    }

    // If the first operand is simple and second is ConstantExpr, swap operands.
    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
      return FCmpInst::getSwappedPredicate(SwappedRelation);
  } else {
    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
    // constantexpr or a simple constant.
    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
    switch (CE1->getOpcode()) {
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
      // We might be able to do something with these but we don't right now.
      break;
    default:
      break;
    }
  }
  // There are MANY other foldings that we could perform here.  They will
  // probably be added on demand, as they seem needed.
  return FCmpInst::BAD_FCMP_PREDICATE;
}

static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
                                                      const GlobalValue *GV2) {
  auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
    if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
      return true;
    if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
      Type *Ty = GVar->getValueType();
      // A global with opaque type might end up being zero sized.
      if (!Ty->isSized())
        return true;
      // A global with an empty type might lie at the address of any other
      // global.
      if (Ty->isEmptyTy())
        return true;
    }
    return false;
  };
  // Don't try to decide equality of aliases.
  if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
    if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
      return ICmpInst::ICMP_NE;
  return ICmpInst::BAD_ICMP_PREDICATE;
}

/// This function determines if there is anything we can decide about the two
/// constants provided. This doesn't need to handle simple things like integer
/// comparisons, but should instead handle ConstantExprs and GlobalValues.
/// If we can determine that the two constants have a particular relation to
/// each other, we should return the corresponding ICmp predicate, otherwise
/// return ICmpInst::BAD_ICMP_PREDICATE.
///
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two.  We consider simple
/// constants (like ConstantInt) to be the simplest, followed by
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
                                                bool isSigned) {
  assert(V1->getType() == V2->getType() &&
         "Cannot compare different types of values!");
  if (V1 == V2) return ICmpInst::ICMP_EQ;

  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
      !isa<BlockAddress>(V1)) {
    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
        !isa<BlockAddress>(V2)) {
      // We distilled this down to a simple case, use the standard constant
      // folder.
      ConstantInt *R = nullptr;
      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
      if (R && !R->isZero())
        return pred;
      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
      if (R && !R->isZero())
        return pred;
      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
      if (R && !R->isZero())
        return pred;

      // If we couldn't figure it out, bail.
      return ICmpInst::BAD_ICMP_PREDICATE;
    }

    // If the first operand is simple, swap operands.
    ICmpInst::Predicate SwappedRelation =
      evaluateICmpRelation(V2, V1, isSigned);
    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
      return ICmpInst::getSwappedPredicate(SwappedRelation);

  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
      ICmpInst::Predicate SwappedRelation =
        evaluateICmpRelation(V2, V1, isSigned);
      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
        return ICmpInst::getSwappedPredicate(SwappedRelation);
      return ICmpInst::BAD_ICMP_PREDICATE;
    }

    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
    // constant (which, since the types must match, means that it's a
    // ConstantPointerNull).
    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
      return areGlobalsPotentiallyEqual(GV, GV2);
    } else if (isa<BlockAddress>(V2)) {
      return ICmpInst::ICMP_NE; // Globals never equal labels.
    } else {
      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
      // GlobalVals can never be null unless they have external weak linkage.
      // We don't try to evaluate aliases here.
      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
        return ICmpInst::ICMP_NE;
    }
  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
      ICmpInst::Predicate SwappedRelation =
        evaluateICmpRelation(V2, V1, isSigned);
      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
        return ICmpInst::getSwappedPredicate(SwappedRelation);
      return ICmpInst::BAD_ICMP_PREDICATE;
    }

    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
    // constant (which, since the types must match, means that it is a
    // ConstantPointerNull).
    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
      // Block address in another function can't equal this one, but block
      // addresses in the current function might be the same if blocks are
      // empty.
      if (BA2->getFunction() != BA->getFunction())
        return ICmpInst::ICMP_NE;
    } else {
      // Block addresses aren't null, don't equal the address of globals.
      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
             "Canonicalization guarantee!");
      return ICmpInst::ICMP_NE;
    }
  } else {
    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
    // constantexpr, a global, block address, or a simple constant.
    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
    Constant *CE1Op0 = CE1->getOperand(0);

    switch (CE1->getOpcode()) {
    case Instruction::Trunc:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
      break; // We can't evaluate floating point casts or truncations.

    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::BitCast:
    case Instruction::ZExt:
    case Instruction::SExt:
      // We can't evaluate floating point casts or truncations.
      if (CE1Op0->getType()->isFloatingPointTy())
        break;

      // If the cast is not actually changing bits, and the second operand is a
      // null pointer, do the comparison with the pre-casted value.
      if (V2->isNullValue() &&
          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
        return evaluateICmpRelation(CE1Op0,
                                    Constant::getNullValue(CE1Op0->getType()),
                                    isSigned);
      }
      break;

    case Instruction::GetElementPtr: {
      GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
      // Ok, since this is a getelementptr, we know that the constant has a
      // pointer type.  Check the various cases.
      if (isa<ConstantPointerNull>(V2)) {
        // If we are comparing a GEP to a null pointer, check to see if the base
        // of the GEP equals the null pointer.
        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
          if (GV->hasExternalWeakLinkage())
            // Weak linkage GVals could be zero or not. We're comparing that
            // to null pointer so its greater-or-equal
            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
          else
            // If its not weak linkage, the GVal must have a non-zero address
            // so the result is greater-than
            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
        } else if (isa<ConstantPointerNull>(CE1Op0)) {
          // If we are indexing from a null pointer, check to see if we have any
          // non-zero indices.
          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
            if (!CE1->getOperand(i)->isNullValue())
              // Offsetting from null, must not be equal.
              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
          // Only zero indexes from null, must still be zero.
          return ICmpInst::ICMP_EQ;
        }
        // Otherwise, we can't really say if the first operand is null or not.
      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
        if (isa<ConstantPointerNull>(CE1Op0)) {
          if (GV2->hasExternalWeakLinkage())
            // Weak linkage GVals could be zero or not. We're comparing it to
            // a null pointer, so its less-or-equal
            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
          else
            // If its not weak linkage, the GVal must have a non-zero address
            // so the result is less-than
            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
          if (GV == GV2) {
            // If this is a getelementptr of the same global, then it must be
            // different.  Because the types must match, the getelementptr could
            // only have at most one index, and because we fold getelementptr's
            // with a single zero index, it must be nonzero.
            assert(CE1->getNumOperands() == 2 &&
                   !CE1->getOperand(1)->isNullValue() &&
                   "Surprising getelementptr!");
            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
          } else {
            if (CE1GEP->hasAllZeroIndices())
              return areGlobalsPotentiallyEqual(GV, GV2);
            return ICmpInst::BAD_ICMP_PREDICATE;
          }
        }
      } else {
        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
        Constant *CE2Op0 = CE2->getOperand(0);

        // There are MANY other foldings that we could perform here.  They will
        // probably be added on demand, as they seem needed.
        switch (CE2->getOpcode()) {
        default: break;
        case Instruction::GetElementPtr:
          // By far the most common case to handle is when the base pointers are
          // obviously to the same global.
          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
            // Don't know relative ordering, but check for inequality.
            if (CE1Op0 != CE2Op0) {
              GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
              if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
                return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
                                                  cast<GlobalValue>(CE2Op0));
              return ICmpInst::BAD_ICMP_PREDICATE;
            }
            // Ok, we know that both getelementptr instructions are based on the
            // same global.  From this, we can precisely determine the relative
            // ordering of the resultant pointers.
            unsigned i = 1;

            // The logic below assumes that the result of the comparison
            // can be determined by finding the first index that differs.
            // This doesn't work if there is over-indexing in any
            // subsequent indices, so check for that case first.
            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
                !CE2->isGEPWithNoNotionalOverIndexing())
               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.

            // Compare all of the operands the GEP's have in common.
            gep_type_iterator GTI = gep_type_begin(CE1);
            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
                 ++i, ++GTI)
              switch (IdxCompare(CE1->getOperand(i),
                                 CE2->getOperand(i), GTI.getIndexedType())) {
              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
              }

            // Ok, we ran out of things they have in common.  If any leftovers
            // are non-zero then we have a difference, otherwise we are equal.
            for (; i < CE1->getNumOperands(); ++i)
              if (!CE1->getOperand(i)->isNullValue()) {
                if (isa<ConstantInt>(CE1->getOperand(i)))
                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
                else
                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
              }

            for (; i < CE2->getNumOperands(); ++i)
              if (!CE2->getOperand(i)->isNullValue()) {
                if (isa<ConstantInt>(CE2->getOperand(i)))
                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
                else
                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
              }
            return ICmpInst::ICMP_EQ;
          }
        }
      }
    }
    default:
      break;
    }
  }

  return ICmpInst::BAD_ICMP_PREDICATE;
}

Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
                                               Constant *C1, Constant *C2) {
  Type *ResultTy;
  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
                               VT->getNumElements());
  else
    ResultTy = Type::getInt1Ty(C1->getContext());

  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
  if (pred == FCmpInst::FCMP_FALSE)
    return Constant::getNullValue(ResultTy);

  if (pred == FCmpInst::FCMP_TRUE)
    return Constant::getAllOnesValue(ResultTy);

  // Handle some degenerate cases first
  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
    CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
    bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
    // For EQ and NE, we can always pick a value for the undef to make the
    // predicate pass or fail, so we can return undef.
    // Also, if both operands are undef, we can return undef for int comparison.
    if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
      return UndefValue::get(ResultTy);

    // Otherwise, for integer compare, pick the same value as the non-undef
    // operand, and fold it to true or false.
    if (isIntegerPredicate)
      return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));

    // Choosing NaN for the undef will always make unordered comparison succeed
    // and ordered comparison fails.
    return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
  }

  // icmp eq/ne(null,GV) -> false/true
  if (C1->isNullValue()) {
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
      // Don't try to evaluate aliases.  External weak GV can be null.
      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
        if (pred == ICmpInst::ICMP_EQ)
          return ConstantInt::getFalse(C1->getContext());
        else if (pred == ICmpInst::ICMP_NE)
          return ConstantInt::getTrue(C1->getContext());
      }
  // icmp eq/ne(GV,null) -> false/true
  } else if (C2->isNullValue()) {
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
      // Don't try to evaluate aliases.  External weak GV can be null.
      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
        if (pred == ICmpInst::ICMP_EQ)
          return ConstantInt::getFalse(C1->getContext());
        else if (pred == ICmpInst::ICMP_NE)
          return ConstantInt::getTrue(C1->getContext());
      }
  }

  // If the comparison is a comparison between two i1's, simplify it.
  if (C1->getType()->isIntegerTy(1)) {
    switch(pred) {
    case ICmpInst::ICMP_EQ:
      if (isa<ConstantInt>(C2))
        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
    case ICmpInst::ICMP_NE:
      return ConstantExpr::getXor(C1, C2);
    default:
      break;
    }
  }

  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
    const APInt &V1 = cast<ConstantInt>(C1)->getValue();
    const APInt &V2 = cast<ConstantInt>(C2)->getValue();
    switch (pred) {
    default: llvm_unreachable("Invalid ICmp Predicate");
    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
    }
  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
    const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
    const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
    APFloat::cmpResult R = C1V.compare(C2V);
    switch (pred) {
    default: llvm_unreachable("Invalid FCmp Predicate");
    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
    case FCmpInst::FCMP_UNO:
      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
    case FCmpInst::FCMP_ORD:
      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
    case FCmpInst::FCMP_UEQ:
      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
                                        R==APFloat::cmpEqual);
    case FCmpInst::FCMP_OEQ:
      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
    case FCmpInst::FCMP_UNE:
      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
    case FCmpInst::FCMP_ONE:
      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
                                        R==APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_ULT:
      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
                                        R==APFloat::cmpLessThan);
    case FCmpInst::FCMP_OLT:
      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
    case FCmpInst::FCMP_UGT:
      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
                                        R==APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_OGT:
      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_ULE:
      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
    case FCmpInst::FCMP_OLE:
      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
                                        R==APFloat::cmpEqual);
    case FCmpInst::FCMP_UGE:
      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
    case FCmpInst::FCMP_OGE:
      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
                                        R==APFloat::cmpEqual);
    }
  } else if (C1->getType()->isVectorTy()) {
    // If we can constant fold the comparison of each element, constant fold
    // the whole vector comparison.
    SmallVector<Constant*, 4> ResElts;
    Type *Ty = IntegerType::get(C1->getContext(), 32);
    // Compare the elements, producing an i1 result or constant expr.
    for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
      Constant *C1E =
        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
      Constant *C2E =
        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));

      ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
    }

    return ConstantVector::get(ResElts);
  }

  if (C1->getType()->isFloatingPointTy() &&
      // Only call evaluateFCmpRelation if we have a constant expr to avoid
      // infinite recursive loop
      (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
    switch (evaluateFCmpRelation(C1, C2)) {
    default: llvm_unreachable("Unknown relation!");
    case FCmpInst::FCMP_UNO:
    case FCmpInst::FCMP_ORD:
    case FCmpInst::FCMP_UEQ:
    case FCmpInst::FCMP_UNE:
    case FCmpInst::FCMP_ULT:
    case FCmpInst::FCMP_UGT:
    case FCmpInst::FCMP_ULE:
    case FCmpInst::FCMP_UGE:
    case FCmpInst::FCMP_TRUE:
    case FCmpInst::FCMP_FALSE:
    case FCmpInst::BAD_FCMP_PREDICATE:
      break; // Couldn't determine anything about these constants.
    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
      break;
    case FCmpInst::FCMP_OLT: // We know that C1 < C2
      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
      break;
    case FCmpInst::FCMP_OGT: // We know that C1 > C2
      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
      break;
    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
      // We can only partially decide this relation.
      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
        Result = 0;
      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
        Result = 1;
      break;
    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
      // We can only partially decide this relation.
      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
        Result = 0;
      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
        Result = 1;
      break;
    case FCmpInst::FCMP_ONE: // We know that C1 != C2
      // We can only partially decide this relation.
      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
        Result = 0;
      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
        Result = 1;
      break;
    }

    // If we evaluated the result, return it now.
    if (Result != -1)
      return ConstantInt::get(ResultTy, Result);

  } else {
    // Evaluate the relation between the two constants, per the predicate.
    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
    switch (evaluateICmpRelation(C1, C2,
                                 CmpInst::isSigned((CmpInst::Predicate)pred))) {
    default: llvm_unreachable("Unknown relational!");
    case ICmpInst::BAD_ICMP_PREDICATE:
      break;  // Couldn't determine anything about these constants.
    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
      // If we know the constants are equal, we can decide the result of this
      // computation precisely.
      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
      break;
    case ICmpInst::ICMP_ULT:
      switch (pred) {
      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
        Result = 1; break;
      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
        Result = 0; break;
      }
      break;
    case ICmpInst::ICMP_SLT:
      switch (pred) {
      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
        Result = 1; break;
      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
        Result = 0; break;
      }
      break;
    case ICmpInst::ICMP_UGT:
      switch (pred) {
      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
        Result = 1; break;
      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
        Result = 0; break;
      }
      break;
    case ICmpInst::ICMP_SGT:
      switch (pred) {
      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
        Result = 1; break;
      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
        Result = 0; break;
      }
      break;
    case ICmpInst::ICMP_ULE:
      if (pred == ICmpInst::ICMP_UGT) Result = 0;
      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
      break;
    case ICmpInst::ICMP_SLE:
      if (pred == ICmpInst::ICMP_SGT) Result = 0;
      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
      break;
    case ICmpInst::ICMP_UGE:
      if (pred == ICmpInst::ICMP_ULT) Result = 0;
      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
      break;
    case ICmpInst::ICMP_SGE:
      if (pred == ICmpInst::ICMP_SLT) Result = 0;
      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
      break;
    case ICmpInst::ICMP_NE:
      if (pred == ICmpInst::ICMP_EQ) Result = 0;
      if (pred == ICmpInst::ICMP_NE) Result = 1;
      break;
    }

    // If we evaluated the result, return it now.
    if (Result != -1)
      return ConstantInt::get(ResultTy, Result);

    // If the right hand side is a bitcast, try using its inverse to simplify
    // it by moving it to the left hand side.  We can't do this if it would turn
    // a vector compare into a scalar compare or visa versa.
    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
      Constant *CE2Op0 = CE2->getOperand(0);
      if (CE2->getOpcode() == Instruction::BitCast &&
          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
      }
    }

    // If the left hand side is an extension, try eliminating it.
    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
      if ((CE1->getOpcode() == Instruction::SExt &&
           ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
          (CE1->getOpcode() == Instruction::ZExt &&
           !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
        Constant *CE1Op0 = CE1->getOperand(0);
        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
        if (CE1Inverse == CE1Op0) {
          // Check whether we can safely truncate the right hand side.
          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
          if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
                                    C2->getType()) == C2)
            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
        }
      }
    }

    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
        (C1->isNullValue() && !C2->isNullValue())) {
      // If C2 is a constant expr and C1 isn't, flip them around and fold the
      // other way if possible.
      // Also, if C1 is null and C2 isn't, flip them around.
      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
      return ConstantExpr::getICmp(pred, C2, C1);
    }
  }
  return nullptr;
}

/// Test whether the given sequence of *normalized* indices is "inbounds".
template<typename IndexTy>
static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
  // No indices means nothing that could be out of bounds.
  if (Idxs.empty()) return true;

  // If the first index is zero, it's in bounds.
  if (cast<Constant>(Idxs[0])->isNullValue()) return true;

  // If the first index is one and all the rest are zero, it's in bounds,
  // by the one-past-the-end rule.
  if (!cast<ConstantInt>(Idxs[0])->isOne())
    return false;
  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
    if (!cast<Constant>(Idxs[i])->isNullValue())
      return false;
  return true;
}

/// Test whether a given ConstantInt is in-range for a SequentialType.
static bool isIndexInRangeOfSequentialType(SequentialType *STy,
                                           const ConstantInt *CI) {
  // And indices are valid when indexing along a pointer
  if (isa<PointerType>(STy))
    return true;

  uint64_t NumElements = 0;
  // Determine the number of elements in our sequential type.
  if (auto *ATy = dyn_cast<ArrayType>(STy))
    NumElements = ATy->getNumElements();
  else if (auto *VTy = dyn_cast<VectorType>(STy))
    NumElements = VTy->getNumElements();

  assert((isa<ArrayType>(STy) || NumElements > 0) &&
         "didn't expect non-array type to have zero elements!");

  // We cannot bounds check the index if it doesn't fit in an int64_t.
  if (CI->getValue().getActiveBits() > 64)
    return false;

  // A negative index or an index past the end of our sequential type is
  // considered out-of-range.
  int64_t IndexVal = CI->getSExtValue();
  if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
    return false;

  // Otherwise, it is in-range.
  return true;
}

template<typename IndexTy>
static Constant *ConstantFoldGetElementPtrImpl(Type *PointeeTy, Constant *C,
                                               bool inBounds,
                                               ArrayRef<IndexTy> Idxs) {
  if (Idxs.empty()) return C;
  Constant *Idx0 = cast<Constant>(Idxs[0]);
  if ((Idxs.size() == 1 && Idx0->isNullValue()))
    return C;

  if (isa<UndefValue>(C)) {
    PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
    Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
    assert(Ty && "Invalid indices for GEP!");
    Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
    if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
      GEPTy = VectorType::get(GEPTy, VT->getNumElements());
    return UndefValue::get(GEPTy);
  }

  if (C->isNullValue()) {
    bool isNull = true;
    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
      if (!cast<Constant>(Idxs[i])->isNullValue()) {
        isNull = false;
        break;
      }
    if (isNull) {
      PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
      Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);

      assert(Ty && "Invalid indices for GEP!");
      Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
      if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
        GEPTy = VectorType::get(GEPTy, VT->getNumElements());
      return Constant::getNullValue(GEPTy);
    }
  }

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    // Combine Indices - If the source pointer to this getelementptr instruction
    // is a getelementptr instruction, combine the indices of the two
    // getelementptr instructions into a single instruction.
    //
    if (CE->getOpcode() == Instruction::GetElementPtr) {
      Type *LastTy = nullptr;
      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
           I != E; ++I)
        LastTy = *I;

      // We cannot combine indices if doing so would take us outside of an
      // array or vector.  Doing otherwise could trick us if we evaluated such a
      // GEP as part of a load.
      //
      // e.g. Consider if the original GEP was:
      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
      //                    i32 0, i32 0, i64 0)
      //
      // If we then tried to offset it by '8' to get to the third element,
      // an i8, we should *not* get:
      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
      //                    i32 0, i32 0, i64 8)
      //
      // This GEP tries to index array element '8  which runs out-of-bounds.
      // Subsequent evaluation would get confused and produce erroneous results.
      //
      // The following prohibits such a GEP from being formed by checking to see
      // if the index is in-range with respect to an array or vector.
      bool PerformFold = false;
      if (Idx0->isNullValue())
        PerformFold = true;
      else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
          PerformFold = isIndexInRangeOfSequentialType(STy, CI);

      if (PerformFold) {
        SmallVector<Value*, 16> NewIndices;
        NewIndices.reserve(Idxs.size() + CE->getNumOperands());
        NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);

        // Add the last index of the source with the first index of the new GEP.
        // Make sure to handle the case when they are actually different types.
        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
        // Otherwise it must be an array.
        if (!Idx0->isNullValue()) {
          Type *IdxTy = Combined->getType();
          if (IdxTy != Idx0->getType()) {
            unsigned CommonExtendedWidth =
                std::max(IdxTy->getIntegerBitWidth(),
                         Idx0->getType()->getIntegerBitWidth());
            CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);

            Type *CommonTy =
                Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
          } else {
            Combined =
              ConstantExpr::get(Instruction::Add, Idx0, Combined);
          }
        }

        NewIndices.push_back(Combined);
        NewIndices.append(Idxs.begin() + 1, Idxs.end());
        return ConstantExpr::getGetElementPtr(
            cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
            NewIndices, inBounds && cast<GEPOperator>(CE)->isInBounds());
      }
    }

    // Attempt to fold casts to the same type away.  For example, folding:
    //
    //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
    //                       i64 0, i64 0)
    // into:
    //
    //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
    //
    // Don't fold if the cast is changing address spaces.
    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
      PointerType *SrcPtrTy =
        dyn_cast<PointerType>(CE->getOperand(0)->getType());
      PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
      if (SrcPtrTy && DstPtrTy) {
        ArrayType *SrcArrayTy =
          dyn_cast<ArrayType>(SrcPtrTy->getElementType());
        ArrayType *DstArrayTy =
          dyn_cast<ArrayType>(DstPtrTy->getElementType());
        if (SrcArrayTy && DstArrayTy
            && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
            && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
          return ConstantExpr::getGetElementPtr(
              SrcArrayTy, (Constant *)CE->getOperand(0), Idxs, inBounds);
      }
    }
  }

  // Check to see if any array indices are not within the corresponding
  // notional array or vector bounds. If so, try to determine if they can be
  // factored out into preceding dimensions.
  SmallVector<Constant *, 8> NewIdxs;
  Type *Ty = PointeeTy;
  Type *Prev = C->getType();
  bool Unknown = !isa<ConstantInt>(Idxs[0]);
  for (unsigned i = 1, e = Idxs.size(); i != e;
       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
      if (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
        if (CI->getSExtValue() > 0 &&
            !isIndexInRangeOfSequentialType(cast<SequentialType>(Ty), CI)) {
          if (isa<SequentialType>(Prev)) {
            // It's out of range, but we can factor it into the prior
            // dimension.
            NewIdxs.resize(Idxs.size());
            uint64_t NumElements = 0;
            if (auto *ATy = dyn_cast<ArrayType>(Ty))
              NumElements = ATy->getNumElements();
            else
              NumElements = cast<VectorType>(Ty)->getNumElements();

            ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);

            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
            Constant *Div = ConstantExpr::getSDiv(CI, Factor);

            unsigned CommonExtendedWidth =
                std::max(PrevIdx->getType()->getIntegerBitWidth(),
                         Div->getType()->getIntegerBitWidth());
            CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);

            // Before adding, extend both operands to i64 to avoid
            // overflow trouble.
            if (!PrevIdx->getType()->isIntegerTy(CommonExtendedWidth))
              PrevIdx = ConstantExpr::getSExt(
                  PrevIdx,
                  Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
            if (!Div->getType()->isIntegerTy(CommonExtendedWidth))
              Div = ConstantExpr::getSExt(
                  Div, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));

            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
          } else {
            // It's out of range, but the prior dimension is a struct
            // so we can't do anything about it.
            Unknown = true;
          }
        }
    } else {
      // We don't know if it's in range or not.
      Unknown = true;
    }
  }

  // If we did any factoring, start over with the adjusted indices.
  if (!NewIdxs.empty()) {
    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
    return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, inBounds);
  }

  // If all indices are known integers and normalized, we can do a simple
  // check for the "inbounds" property.
  if (!Unknown && !inBounds)
    if (auto *GV = dyn_cast<GlobalVariable>(C))
      if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
        return ConstantExpr::getInBoundsGetElementPtr(PointeeTy, C, Idxs);

  return nullptr;
}

Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
                                          bool inBounds,
                                          ArrayRef<Constant *> Idxs) {
  return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
}

Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
                                          bool inBounds,
                                          ArrayRef<Value *> Idxs) {
  return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
}