llvm.org GIT mirror llvm / 51e4b46 include / llvm / ExecutionEngine / Orc / CompileOnDemandLayer.h
51e4b46

Tree @51e4b46 (Download .tar.gz)

CompileOnDemandLayer.h @51e4b46raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// JIT layer for breaking up modules and inserting callbacks to allow
// individual functions to be compiled on demand.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>
#include <list>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

namespace llvm {

class Value;

namespace orc {

/// @brief Compile-on-demand layer.
///
///   When a module is added to this layer a stub is created for each of its
/// function definitions. The stubs and other global values are immediately
/// added to the layer below. When a stub is called it triggers the extraction
/// of the function body from the original module. The extracted body is then
/// compiled and executed.
template <typename BaseLayerT,
          typename CompileCallbackMgrT = JITCompileCallbackManager,
          typename IndirectStubsMgrT = IndirectStubsManager>
class CompileOnDemandLayer {
private:
  template <typename MaterializerFtor>
  class LambdaMaterializer final : public ValueMaterializer {
  public:
    LambdaMaterializer(MaterializerFtor M) : M(std::move(M)) {}

    Value *materialize(Value *V) final { return M(V); }

  private:
    MaterializerFtor M;
  };

  template <typename MaterializerFtor>
  LambdaMaterializer<MaterializerFtor>
  createLambdaMaterializer(MaterializerFtor M) {
    return LambdaMaterializer<MaterializerFtor>(std::move(M));
  }

  using BaseLayerModuleSetHandleT = typename BaseLayerT::ModuleSetHandleT;

  // Provide type-erasure for the Modules and MemoryManagers.
  template <typename ResourceT>
  class ResourceOwner {
  public:
    ResourceOwner() = default;
    ResourceOwner(const ResourceOwner &) = delete;
    ResourceOwner &operator=(const ResourceOwner &) = delete;
    virtual ~ResourceOwner() = default;

    virtual ResourceT& getResource() const = 0;
  };

  template <typename ResourceT, typename ResourcePtrT>
  class ResourceOwnerImpl : public ResourceOwner<ResourceT> {
  public:
    ResourceOwnerImpl(ResourcePtrT ResourcePtr)
      : ResourcePtr(std::move(ResourcePtr)) {}

    ResourceT& getResource() const override { return *ResourcePtr; }

  private:
    ResourcePtrT ResourcePtr;
  };

  template <typename ResourceT, typename ResourcePtrT>
  std::unique_ptr<ResourceOwner<ResourceT>>
  wrapOwnership(ResourcePtrT ResourcePtr) {
    using RO = ResourceOwnerImpl<ResourceT, ResourcePtrT>;
    return llvm::make_unique<RO>(std::move(ResourcePtr));
  }

  class StaticGlobalRenamer {
  public:
    StaticGlobalRenamer() = default;
    StaticGlobalRenamer(StaticGlobalRenamer &&) = default;
    StaticGlobalRenamer &operator=(StaticGlobalRenamer &&) = default;

    void rename(Module &M) {
      for (auto &F : M)
        if (F.hasLocalLinkage())
          F.setName("$static." + Twine(NextId++));
      for (auto &G : M.globals())
        if (G.hasLocalLinkage())
          G.setName("$static." + Twine(NextId++));
    }

  private:
    unsigned NextId = 0;
  };

  struct LogicalDylib {
    using SymbolResolverFtor = std::function<JITSymbol(const std::string&)>;

    using ModuleAdderFtor = std::function<typename BaseLayerT::ModuleSetHandleT(
        BaseLayerT &, std::unique_ptr<Module>,
        std::unique_ptr<JITSymbolResolver>)>;

    struct SourceModuleEntry {
      std::unique_ptr<ResourceOwner<Module>> SourceMod;
      std::set<Function*> StubsToClone;
    };

    using SourceModulesList = std::vector<SourceModuleEntry>;
    using SourceModuleHandle = typename SourceModulesList::size_type;

    SourceModuleHandle
    addSourceModule(std::unique_ptr<ResourceOwner<Module>> M) {
      SourceModuleHandle H = SourceModules.size();
      SourceModules.push_back(SourceModuleEntry());
      SourceModules.back().SourceMod = std::move(M);
      return H;
    }

    Module& getSourceModule(SourceModuleHandle H) {
      return SourceModules[H].SourceMod->getResource();
    }

    std::set<Function*>& getStubsToClone(SourceModuleHandle H) {
      return SourceModules[H].StubsToClone;
    }

    JITSymbol findSymbol(BaseLayerT &BaseLayer, const std::string &Name,
                         bool ExportedSymbolsOnly) {
      if (auto Sym = StubsMgr->findStub(Name, ExportedSymbolsOnly))
        return Sym;
      for (auto BLH : BaseLayerHandles)
        if (auto Sym = BaseLayer.findSymbolIn(BLH, Name, ExportedSymbolsOnly))
          return Sym;
      return nullptr;
    }

    void removeModulesFromBaseLayer(BaseLayerT &BaseLayer) {
      for (auto &BLH : BaseLayerHandles)
        BaseLayer.removeModuleSet(BLH);
    }

    std::unique_ptr<JITSymbolResolver> ExternalSymbolResolver;
    std::unique_ptr<ResourceOwner<RuntimeDyld::MemoryManager>> MemMgr;
    std::unique_ptr<IndirectStubsMgrT> StubsMgr;
    StaticGlobalRenamer StaticRenamer;
    ModuleAdderFtor ModuleAdder;
    SourceModulesList SourceModules;
    std::vector<BaseLayerModuleSetHandleT> BaseLayerHandles;
  };

  using LogicalDylibList = std::list<LogicalDylib>;

public:
  /// @brief Handle to a set of loaded modules.
  using ModuleSetHandleT = typename LogicalDylibList::iterator;

  /// @brief Module partitioning functor.
  using PartitioningFtor = std::function<std::set<Function*>(Function&)>;

  /// @brief Builder for IndirectStubsManagers.
  using IndirectStubsManagerBuilderT =
      std::function<std::unique_ptr<IndirectStubsMgrT>()>;

  /// @brief Construct a compile-on-demand layer instance.
  CompileOnDemandLayer(BaseLayerT &BaseLayer, PartitioningFtor Partition,
                       CompileCallbackMgrT &CallbackMgr,
                       IndirectStubsManagerBuilderT CreateIndirectStubsManager,
                       bool CloneStubsIntoPartitions = true)
      : BaseLayer(BaseLayer), Partition(std::move(Partition)),
        CompileCallbackMgr(CallbackMgr),
        CreateIndirectStubsManager(std::move(CreateIndirectStubsManager)),
        CloneStubsIntoPartitions(CloneStubsIntoPartitions) {}

  ~CompileOnDemandLayer() {
    while (!LogicalDylibs.empty())
      removeModuleSet(LogicalDylibs.begin());
  }
  
  /// @brief Add a module to the compile-on-demand layer.
  template <typename ModuleSetT, typename MemoryManagerPtrT,
            typename SymbolResolverPtrT>
  ModuleSetHandleT addModuleSet(ModuleSetT Ms,
                                MemoryManagerPtrT MemMgr,
                                SymbolResolverPtrT Resolver) {
    LogicalDylibs.push_back(LogicalDylib());
    auto &LD = LogicalDylibs.back();
    LD.ExternalSymbolResolver = std::move(Resolver);
    LD.StubsMgr = CreateIndirectStubsManager();

    auto &MemMgrRef = *MemMgr;
    LD.MemMgr = wrapOwnership<RuntimeDyld::MemoryManager>(std::move(MemMgr));

    LD.ModuleAdder =
      [&MemMgrRef](BaseLayerT &B, std::unique_ptr<Module> M,
                   std::unique_ptr<JITSymbolResolver> R) {
        std::vector<std::unique_ptr<Module>> Ms;
        Ms.push_back(std::move(M));
        return B.addModuleSet(std::move(Ms), &MemMgrRef, std::move(R));
      };

    // Process each of the modules in this module set.
    for (auto &M : Ms)
      addLogicalModule(LogicalDylibs.back(), std::move(M));

    return std::prev(LogicalDylibs.end());
  }

  /// @brief Remove the module represented by the given handle.
  ///
  ///   This will remove all modules in the layers below that were derived from
  /// the module represented by H.
  void removeModuleSet(ModuleSetHandleT H) {
    H->removeModulesFromBaseLayer(BaseLayer);
    LogicalDylibs.erase(H);
  }

  /// @brief Search for the given named symbol.
  /// @param Name The name of the symbol to search for.
  /// @param ExportedSymbolsOnly If true, search only for exported symbols.
  /// @return A handle for the given named symbol, if it exists.
  JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) {
    for (auto LDI = LogicalDylibs.begin(), LDE = LogicalDylibs.end();
         LDI != LDE; ++LDI) {
      if (auto Sym = LDI->StubsMgr->findStub(Name, ExportedSymbolsOnly))
        return Sym;
      if (auto Sym = findSymbolIn(LDI, Name, ExportedSymbolsOnly))
        return Sym;
    }
    return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);
  }

  /// @brief Get the address of a symbol provided by this layer, or some layer
  ///        below this one.
  JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name,
                         bool ExportedSymbolsOnly) {
    return H->findSymbol(BaseLayer, Name, ExportedSymbolsOnly);
  }

  /// @brief Update the stub for the given function to point at FnBodyAddr.
  /// This can be used to support re-optimization.
  /// @return true if the function exists and the stub is updated, false
  ///         otherwise.
  //
  // FIXME: We should track and free associated resources (unused compile
  //        callbacks, uncompiled IR, and no-longer-needed/reachable function
  //        implementations).
  // FIXME: Return Error once the JIT APIs are Errorized.
  bool updatePointer(std::string FuncName, JITTargetAddress FnBodyAddr) {
    //Find out which logical dylib contains our symbol
    auto LDI = LogicalDylibs.begin();
    for (auto LDE = LogicalDylibs.end(); LDI != LDE; ++LDI) {
      if (auto LMResources = LDI->getLogicalModuleResourcesForSymbol(FuncName, false)) {
        Module &SrcM = LMResources->SourceModule->getResource();
        std::string CalledFnName = mangle(FuncName, SrcM.getDataLayout());
        if (auto EC = LMResources->StubsMgr->updatePointer(CalledFnName, FnBodyAddr))
          return false;
        else
          return true;
      }
    }
    return false;
  }

private:
  template <typename ModulePtrT>
  void addLogicalModule(LogicalDylib &LD, ModulePtrT SrcMPtr) {
    // Rename all static functions / globals to $static.X :
    // This will unique the names across all modules in the logical dylib,
    // simplifying symbol lookup.
    LD.StaticRenamer.rename(*SrcMPtr);

    // Bump the linkage and rename any anonymous/privote members in SrcM to
    // ensure that everything will resolve properly after we partition SrcM.
    makeAllSymbolsExternallyAccessible(*SrcMPtr);

    // Create a logical module handle for SrcM within the logical dylib.
    Module &SrcM = *SrcMPtr;
    auto LMId = LD.addSourceModule(wrapOwnership<Module>(std::move(SrcMPtr)));

    // Create stub functions.
    const DataLayout &DL = SrcM.getDataLayout();
    {
      typename IndirectStubsMgrT::StubInitsMap StubInits;
      for (auto &F : SrcM) {
        // Skip declarations.
        if (F.isDeclaration())
          continue;

        // Skip weak functions for which we already have definitions.
        auto MangledName = mangle(F.getName(), DL);
        if (F.hasWeakLinkage() || F.hasLinkOnceLinkage())
          if (auto Sym = LD.findSymbol(BaseLayer, MangledName, false))
            continue;

        // Record all functions defined by this module.
        if (CloneStubsIntoPartitions)
          LD.getStubsToClone(LMId).insert(&F);

        // Create a callback, associate it with the stub for the function,
        // and set the compile action to compile the partition containing the
        // function.
        auto CCInfo = CompileCallbackMgr.getCompileCallback();
        StubInits[MangledName] =
          std::make_pair(CCInfo.getAddress(),
                         JITSymbolFlags::fromGlobalValue(F));
        CCInfo.setCompileAction([this, &LD, LMId, &F]() {
          return this->extractAndCompile(LD, LMId, F);
        });
      }

      auto EC = LD.StubsMgr->createStubs(StubInits);
      (void)EC;
      // FIXME: This should be propagated back to the user. Stub creation may
      //        fail for remote JITs.
      assert(!EC && "Error generating stubs");
    }

    // If this module doesn't contain any globals, aliases, or module flags then
    // we can bail out early and avoid the overhead of creating and managing an
    // empty globals module.
    if (SrcM.global_empty() && SrcM.alias_empty() &&
        !SrcM.getModuleFlagsMetadata())
      return;

    // Create the GlobalValues module.
    auto GVsM = llvm::make_unique<Module>((SrcM.getName() + ".globals").str(),
                                          SrcM.getContext());
    GVsM->setDataLayout(DL);

    ValueToValueMapTy VMap;

    // Clone global variable decls.
    for (auto &GV : SrcM.globals())
      if (!GV.isDeclaration() && !VMap.count(&GV))
        cloneGlobalVariableDecl(*GVsM, GV, &VMap);

    // And the aliases.
    for (auto &A : SrcM.aliases())
      if (!VMap.count(&A))
        cloneGlobalAliasDecl(*GVsM, A, VMap);

    // Clone the module flags.
    cloneModuleFlagsMetadata(*GVsM, SrcM, VMap);

    // Now we need to clone the GV and alias initializers.

    // Initializers may refer to functions declared (but not defined) in this
    // module. Build a materializer to clone decls on demand.
    auto Materializer = createLambdaMaterializer(
      [&LD, &GVsM](Value *V) -> Value* {
        if (auto *F = dyn_cast<Function>(V)) {
          // Decls in the original module just get cloned.
          if (F->isDeclaration())
            return cloneFunctionDecl(*GVsM, *F);

          // Definitions in the original module (which we have emitted stubs
          // for at this point) get turned into a constant alias to the stub
          // instead.
          const DataLayout &DL = GVsM->getDataLayout();
          std::string FName = mangle(F->getName(), DL);
          auto StubSym = LD.StubsMgr->findStub(FName, false);
          unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(F->getType());
          ConstantInt *StubAddr =
            ConstantInt::get(GVsM->getContext(),
                             APInt(PtrBitWidth, StubSym.getAddress()));
          Constant *Init = ConstantExpr::getCast(Instruction::IntToPtr,
                                                 StubAddr, F->getType());
          return GlobalAlias::create(F->getFunctionType(),
                                     F->getType()->getAddressSpace(),
                                     F->getLinkage(), F->getName(),
                                     Init, GVsM.get());
        }
        // else....
        return nullptr;
      });

    // Clone the global variable initializers.
    for (auto &GV : SrcM.globals())
      if (!GV.isDeclaration())
        moveGlobalVariableInitializer(GV, VMap, &Materializer);

    // Clone the global alias initializers.
    for (auto &A : SrcM.aliases()) {
      auto *NewA = cast<GlobalAlias>(VMap[&A]);
      assert(NewA && "Alias not cloned?");
      Value *Init = MapValue(A.getAliasee(), VMap, RF_None, nullptr,
                             &Materializer);
      NewA->setAliasee(cast<Constant>(Init));
    }

    // Build a resolver for the globals module and add it to the base layer.
    auto GVsResolver = createLambdaResolver(
        [this, &LD](const std::string &Name) {
          if (auto Sym = LD.StubsMgr->findStub(Name, false))
            return Sym;
          if (auto Sym = LD.findSymbol(BaseLayer, Name, false))
            return Sym;
          return LD.ExternalSymbolResolver->findSymbolInLogicalDylib(Name);
        },
        [&LD](const std::string &Name) {
          return LD.ExternalSymbolResolver->findSymbol(Name);
        });

    auto GVsH = LD.ModuleAdder(BaseLayer, std::move(GVsM),
                               std::move(GVsResolver));
    LD.BaseLayerHandles.push_back(GVsH);
  }

  static std::string mangle(StringRef Name, const DataLayout &DL) {
    std::string MangledName;
    {
      raw_string_ostream MangledNameStream(MangledName);
      Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
    }
    return MangledName;
  }

  JITTargetAddress
  extractAndCompile(LogicalDylib &LD,
                    typename LogicalDylib::SourceModuleHandle LMId,
                    Function &F) {
    Module &SrcM = LD.getSourceModule(LMId);

    // If F is a declaration we must already have compiled it.
    if (F.isDeclaration())
      return 0;

    // Grab the name of the function being called here.
    std::string CalledFnName = mangle(F.getName(), SrcM.getDataLayout());

    auto Part = Partition(F);
    auto PartH = emitPartition(LD, LMId, Part);

    JITTargetAddress CalledAddr = 0;
    for (auto *SubF : Part) {
      std::string FnName = mangle(SubF->getName(), SrcM.getDataLayout());
      auto FnBodySym = BaseLayer.findSymbolIn(PartH, FnName, false);
      assert(FnBodySym && "Couldn't find function body.");

      JITTargetAddress FnBodyAddr = FnBodySym.getAddress();

      // If this is the function we're calling record the address so we can
      // return it from this function.
      if (SubF == &F)
        CalledAddr = FnBodyAddr;

      // Update the function body pointer for the stub.
      if (auto EC = LD.StubsMgr->updatePointer(FnName, FnBodyAddr))
        return 0;
    }

    LD.BaseLayerHandles.push_back(PartH);

    return CalledAddr;
  }

  template <typename PartitionT>
  BaseLayerModuleSetHandleT
  emitPartition(LogicalDylib &LD,
                typename LogicalDylib::SourceModuleHandle LMId,
                const PartitionT &Part) {
    Module &SrcM = LD.getSourceModule(LMId);

    // Create the module.
    std::string NewName = SrcM.getName();
    for (auto *F : Part) {
      NewName += ".";
      NewName += F->getName();
    }

    auto M = llvm::make_unique<Module>(NewName, SrcM.getContext());
    M->setDataLayout(SrcM.getDataLayout());
    ValueToValueMapTy VMap;

    auto Materializer = createLambdaMaterializer([&LD, &LMId,
                                                  &M](Value *V) -> Value * {
      if (auto *GV = dyn_cast<GlobalVariable>(V))
        return cloneGlobalVariableDecl(*M, *GV);

      if (auto *F = dyn_cast<Function>(V)) {
        // Check whether we want to clone an available_externally definition.
        if (!LD.getStubsToClone(LMId).count(F))
          return cloneFunctionDecl(*M, *F);

        // Ok - we want an inlinable stub. For that to work we need a decl
        // for the stub pointer.
        auto *StubPtr = createImplPointer(*F->getType(), *M,
                                          F->getName() + "$stub_ptr", nullptr);
        auto *ClonedF = cloneFunctionDecl(*M, *F);
        makeStub(*ClonedF, *StubPtr);
        ClonedF->setLinkage(GlobalValue::AvailableExternallyLinkage);
        ClonedF->addFnAttr(Attribute::AlwaysInline);
        return ClonedF;
      }

      if (auto *A = dyn_cast<GlobalAlias>(V)) {
        auto *Ty = A->getValueType();
        if (Ty->isFunctionTy())
          return Function::Create(cast<FunctionType>(Ty),
                                  GlobalValue::ExternalLinkage, A->getName(),
                                  M.get());

        return new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage,
                                  nullptr, A->getName(), nullptr,
                                  GlobalValue::NotThreadLocal,
                                  A->getType()->getAddressSpace());
      }

      return nullptr;
    });

    // Create decls in the new module.
    for (auto *F : Part)
      cloneFunctionDecl(*M, *F, &VMap);

    // Move the function bodies.
    for (auto *F : Part)
      moveFunctionBody(*F, VMap, &Materializer);

    // Create memory manager and symbol resolver.
    auto Resolver = createLambdaResolver(
        [this, &LD](const std::string &Name) {
          if (auto Sym = LD.findSymbol(BaseLayer, Name, false))
            return Sym;
          return LD.ExternalSymbolResolver->findSymbolInLogicalDylib(Name);
        },
        [&LD](const std::string &Name) {
          return LD.ExternalSymbolResolver->findSymbol(Name);
        });

    return LD.ModuleAdder(BaseLayer, std::move(M), std::move(Resolver));
  }

  BaseLayerT &BaseLayer;
  PartitioningFtor Partition;
  CompileCallbackMgrT &CompileCallbackMgr;
  IndirectStubsManagerBuilderT CreateIndirectStubsManager;

  LogicalDylibList LogicalDylibs;
  bool CloneStubsIntoPartitions;
};

} // end namespace orc

} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H