llvm.org GIT mirror llvm / 505ad8b lib / Target / X86 / X86MCCodeEmitter.cpp
505ad8b

Tree @505ad8b (Download .tar.gz)

X86MCCodeEmitter.cpp @505ad8braw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86-emitter"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86FixupKinds.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
class X86MCCodeEmitter : public MCCodeEmitter {
  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
  const TargetMachine &TM;
  const TargetInstrInfo &TII;
  MCContext &Ctx;
  bool Is64BitMode;
public:
  X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit) 
    : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
    Is64BitMode = is64Bit;
  }

  ~X86MCCodeEmitter() {}

  unsigned getNumFixupKinds() const {
    return 3;
  }

  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
    const static MCFixupKindInfo Infos[] = {
      { "reloc_pcrel_4byte", 0, 4 * 8 },
      { "reloc_pcrel_1byte", 0, 1 * 8 },
      { "reloc_riprel_4byte", 0, 4 * 8 }
    };
    
    if (Kind < FirstTargetFixupKind)
      return MCCodeEmitter::getFixupKindInfo(Kind);

    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
           "Invalid kind!");
    return Infos[Kind - FirstTargetFixupKind];
  }
  
  static unsigned GetX86RegNum(const MCOperand &MO) {
    return X86RegisterInfo::getX86RegNum(MO.getReg());
  }
  
  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
    OS << (char)C;
    ++CurByte;
  }
  
  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
                    raw_ostream &OS) const {
    // Output the constant in little endian byte order.
    for (unsigned i = 0; i != Size; ++i) {
      EmitByte(Val & 255, CurByte, OS);
      Val >>= 8;
    }
  }

  void EmitImmediate(const MCOperand &Disp, 
                     unsigned ImmSize, MCFixupKind FixupKind,
                     unsigned &CurByte, raw_ostream &OS,
                     SmallVectorImpl<MCFixup> &Fixups,
                     int ImmOffset = 0) const;
  
  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
                                        unsigned RM) {
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    return RM | (RegOpcode << 3) | (Mod << 6);
  }
  
  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
                        unsigned &CurByte, raw_ostream &OS) const {
    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
  }
  
  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
                   unsigned &CurByte, raw_ostream &OS) const {
    // SIB byte is in the same format as the ModRMByte.
    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
  }
  
  
  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
                        unsigned RegOpcodeField, 
                        unsigned TSFlags, unsigned &CurByte, raw_ostream &OS,
                        SmallVectorImpl<MCFixup> &Fixups) const;
  
  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
                         SmallVectorImpl<MCFixup> &Fixups) const;
  
};

} // end anonymous namespace


MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
                                               TargetMachine &TM,
                                               MCContext &Ctx) {
  return new X86MCCodeEmitter(TM, Ctx, false);
}

MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
                                               TargetMachine &TM,
                                               MCContext &Ctx) {
  return new X86MCCodeEmitter(TM, Ctx, true);
}


/// isDisp8 - Return true if this signed displacement fits in a 8-bit 
/// sign-extended field. 
static bool isDisp8(int Value) {
  return Value == (signed char)Value;
}

/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
/// in an instruction with the specified TSFlags.
static MCFixupKind getImmFixupKind(unsigned TSFlags) {
  unsigned Size = X86II::getSizeOfImm(TSFlags);
  bool isPCRel = X86II::isImmPCRel(TSFlags);
  
  switch (Size) {
  default: assert(0 && "Unknown immediate size");
  case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
  case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
  case 2: assert(!isPCRel); return FK_Data_2;
  case 8: assert(!isPCRel); return FK_Data_8;
  }
}


void X86MCCodeEmitter::
EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
              unsigned &CurByte, raw_ostream &OS,
              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
  // If this is a simple integer displacement that doesn't require a relocation,
  // emit it now.
  if (DispOp.isImm()) {
    // FIXME: is this right for pc-rel encoding??  Probably need to emit this as
    // a fixup if so.
    EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
    return;
  }

  // If we have an immoffset, add it to the expression.
  const MCExpr *Expr = DispOp.getExpr();
  
  // If the fixup is pc-relative, we need to bias the value to be relative to
  // the start of the field, not the end of the field.
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte))
    ImmOffset -= 4;
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
    ImmOffset -= 1;
  
  if (ImmOffset)
    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
                                   Ctx);
  
  // Emit a symbolic constant as a fixup and 4 zeros.
  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
  EmitConstant(0, Size, CurByte, OS);
}


void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
                                        unsigned RegOpcodeField,
                                        unsigned TSFlags, unsigned &CurByte,
                                        raw_ostream &OS,
                                        SmallVectorImpl<MCFixup> &Fixups) const{
  const MCOperand &Disp     = MI.getOperand(Op+3);
  const MCOperand &Base     = MI.getOperand(Op);
  const MCOperand &Scale    = MI.getOperand(Op+1);
  const MCOperand &IndexReg = MI.getOperand(Op+2);
  unsigned BaseReg = Base.getReg();
  
  // Handle %rip relative addressing.
  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
    assert(IndexReg.getReg() == 0 && Is64BitMode &&
           "Invalid rip-relative address");
    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    
    // rip-relative addressing is actually relative to the *next* instruction.
    // Since an immediate can follow the mod/rm byte for an instruction, this
    // means that we need to bias the immediate field of the instruction with
    // the size of the immediate field.  If we have this case, add it into the
    // expression to emit.
    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
    
    EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_riprel_4byte),
                  CurByte, OS, Fixups, -ImmSize);
    return;
  }
  
  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
  
  // Determine whether a SIB byte is needed.
  // If no BaseReg, issue a RIP relative instruction only if the MCE can 
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
  // 2-7) and absolute references.

  if (// The SIB byte must be used if there is an index register.
      IndexReg.getReg() == 0 && 
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
      // encode to an R/M value of 4, which indicates that a SIB byte is
      // present.
      BaseRegNo != N86::ESP &&
      // If there is no base register and we're in 64-bit mode, we need a SIB
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
      (!Is64BitMode || BaseReg != 0)) {

    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
      EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
      return;
    }
    
    // If the base is not EBP/ESP and there is no displacement, use simple
    // indirect register encoding, this handles addresses like [EAX].  The
    // encoding for [EBP] with no displacement means [disp32] so we handle it
    // by emitting a displacement of 0 below.
    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
      return;
    }
    
    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    if (Disp.isImm() && isDisp8(Disp.getImm())) {
      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
      EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
      return;
    }
    
    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
    return;
  }
    
  // We need a SIB byte, so start by outputting the ModR/M byte first
  assert(IndexReg.getReg() != X86::ESP &&
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
  
  bool ForceDisp32 = false;
  bool ForceDisp8  = false;
  if (BaseReg == 0) {
    // If there is no base register, we emit the special case SIB byte with
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (!Disp.isImm()) {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
    // Emit no displacement ModR/M byte
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
  } else if (isDisp8(Disp.getImm())) {
    // Emit the disp8 encoding.
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
  } else {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
  }
  
  // Calculate what the SS field value should be...
  static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
  unsigned SS = SSTable[Scale.getImm()];
  
  if (BaseReg == 0) {
    // Handle the SIB byte for the case where there is no base, see Intel 
    // Manual 2A, table 2-7. The displacement has already been output.
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
      IndexRegNo = 4;
    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
  } else {
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
  }
  
  // Do we need to output a displacement?
  if (ForceDisp8)
    EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
  else if (ForceDisp32 || Disp.getImm() != 0)
    EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
}

/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
                                   const TargetInstrDesc &Desc) {
  // Pseudo instructions never have a rex byte.
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    return 0;
  
  unsigned REX = 0;
  if (TSFlags & X86II::REX_W)
    REX |= 1 << 3;
  
  if (MI.getNumOperands() == 0) return REX;
  
  unsigned NumOps = MI.getNumOperands();
  // FIXME: MCInst should explicitize the two-addrness.
  bool isTwoAddr = NumOps > 1 &&
                      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
  
  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
  unsigned i = isTwoAddr ? 1 : 0;
  for (; i != NumOps; ++i) {
    const MCOperand &MO = MI.getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
    // that returns non-zero.
    REX |= 0x40;
    break;
  }
  
  switch (TSFlags & X86II::FormMask) {
  case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
  case X86II::MRMSrcReg:
    if (MI.getOperand(0).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
      REX |= 1 << 2;
    i = isTwoAddr ? 2 : 1;
    for (; i != NumOps; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
        REX |= 1 << 0;
    }
    break;
  case X86II::MRMSrcMem: {
    if (MI.getOperand(0).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
      REX |= 1 << 2;
    unsigned Bit = 0;
    i = isTwoAddr ? 2 : 1;
    for (; i != NumOps; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg()) {
        if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
          REX |= 1 << Bit;
        Bit++;
      }
    }
    break;
  }
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m:
  case X86II::MRMDestMem: {
    unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
    i = isTwoAddr ? 1 : 0;
    if (NumOps > e && MI.getOperand(e).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
      REX |= 1 << 2;
    unsigned Bit = 0;
    for (; i != e; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg()) {
        if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
          REX |= 1 << Bit;
        Bit++;
      }
    }
    break;
  }
  default:
    if (MI.getOperand(0).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
      REX |= 1 << 0;
    i = isTwoAddr ? 2 : 1;
    for (unsigned e = NumOps; i != e; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
        REX |= 1 << 2;
    }
    break;
  }
  return REX;
}

void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
                  SmallVectorImpl<MCFixup> &Fixups) const {
  unsigned Opcode = MI.getOpcode();
  const TargetInstrDesc &Desc = TII.get(Opcode);
  unsigned TSFlags = Desc.TSFlags;

  // Keep track of the current byte being emitted.
  unsigned CurByte = 0;
  
  // FIXME: We should emit the prefixes in exactly the same order as GAS does,
  // in order to provide diffability.

  // Emit the lock opcode prefix as needed.
  if (TSFlags & X86II::LOCK)
    EmitByte(0xF0, CurByte, OS);
  
  // Emit segment override opcode prefix as needed.
  switch (TSFlags & X86II::SegOvrMask) {
  default: assert(0 && "Invalid segment!");
  case 0: break;  // No segment override!
  case X86II::FS:
    EmitByte(0x64, CurByte, OS);
    break;
  case X86II::GS:
    EmitByte(0x65, CurByte, OS);
    break;
  }
  
  // Emit the repeat opcode prefix as needed.
  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
    EmitByte(0xF3, CurByte, OS);
  
  // Emit the operand size opcode prefix as needed.
  if (TSFlags & X86II::OpSize)
    EmitByte(0x66, CurByte, OS);
  
  // Emit the address size opcode prefix as needed.
  if (TSFlags & X86II::AdSize)
    EmitByte(0x67, CurByte, OS);
  
  bool Need0FPrefix = false;
  switch (TSFlags & X86II::Op0Mask) {
  default: assert(0 && "Invalid prefix!");
  case 0: break;  // No prefix!
  case X86II::REP: break; // already handled.
  case X86II::TB:  // Two-byte opcode prefix
  case X86II::T8:  // 0F 38
  case X86II::TA:  // 0F 3A
    Need0FPrefix = true;
    break;
  case X86II::TF: // F2 0F 38
    EmitByte(0xF2, CurByte, OS);
    Need0FPrefix = true;
    break;
  case X86II::XS:   // F3 0F
    EmitByte(0xF3, CurByte, OS);
    Need0FPrefix = true;
    break;
  case X86II::XD:   // F2 0F
    EmitByte(0xF2, CurByte, OS);
    Need0FPrefix = true;
    break;
  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
  }
  
  // Handle REX prefix.
  // FIXME: Can this come before F2 etc to simplify emission?
  if (Is64BitMode) {
    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
      EmitByte(0x40 | REX, CurByte, OS);
  }
  
  // 0x0F escape code must be emitted just before the opcode.
  if (Need0FPrefix)
    EmitByte(0x0F, CurByte, OS);
  
  // FIXME: Pull this up into previous switch if REX can be moved earlier.
  switch (TSFlags & X86II::Op0Mask) {
  case X86II::TF:    // F2 0F 38
  case X86II::T8:    // 0F 38
    EmitByte(0x38, CurByte, OS);
    break;
  case X86II::TA:    // 0F 3A
    EmitByte(0x3A, CurByte, OS);
    break;
  }
  
  // If this is a two-address instruction, skip one of the register operands.
  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = 0;
  if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
    ++CurOp;
  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
    --NumOps;
  
  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
  switch (TSFlags & X86II::FormMask) {
  case X86II::MRMInitReg:
    assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
    assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
  case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
  case X86II::RawFrm:
    EmitByte(BaseOpcode, CurByte, OS);
    break;
      
  case X86II::AddRegFrm:
    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
    break;
      
  case X86II::MRMDestReg:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitRegModRMByte(MI.getOperand(CurOp),
                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
    CurOp += 2;
    break;
  
  case X86II::MRMDestMem:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitMemModRMByte(MI, CurOp,
                     GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
                     TSFlags, CurByte, OS, Fixups);
    CurOp += X86AddrNumOperands + 1;
    break;
      
  case X86II::MRMSrcReg:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
                     CurByte, OS);
    CurOp += 2;
    break;
    
  case X86II::MRMSrcMem: {
    EmitByte(BaseOpcode, CurByte, OS);

    // FIXME: Maybe lea should have its own form?  This is a horrible hack.
    int AddrOperands;
    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
      AddrOperands = X86AddrNumOperands - 1; // No segment register
    else
      AddrOperands = X86AddrNumOperands;
    
    EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, CurByte, OS, Fixups);
    CurOp += AddrOperands + 1;
    break;
  }

  case X86II::MRM0r: case X86II::MRM1r:
  case X86II::MRM2r: case X86II::MRM3r:
  case X86II::MRM4r: case X86II::MRM5r:
  case X86II::MRM6r: case X86II::MRM7r:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitRegModRMByte(MI.getOperand(CurOp++),
                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
                     CurByte, OS);
    break;
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
                     TSFlags, CurByte, OS, Fixups);
    CurOp += X86AddrNumOperands;
    break;
  case X86II::MRM_C1:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC1, CurByte, OS);
    break;
  case X86II::MRM_C2:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC2, CurByte, OS);
    break;
  case X86II::MRM_C3:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC3, CurByte, OS);
    break;
  case X86II::MRM_C4:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC4, CurByte, OS);
    break;
  case X86II::MRM_C8:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC8, CurByte, OS);
    break;
  case X86II::MRM_C9:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC9, CurByte, OS);
    break;
  case X86II::MRM_E8:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xE8, CurByte, OS);
    break;
  case X86II::MRM_F0:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xF0, CurByte, OS);
    break;
  case X86II::MRM_F8:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xF8, CurByte, OS);
    break;
  case X86II::MRM_F9:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xF9, CurByte, OS);
    break;
  }
  
  // If there is a remaining operand, it must be a trailing immediate.  Emit it
  // according to the right size for the instruction.
  if (CurOp != NumOps)
    EmitImmediate(MI.getOperand(CurOp++),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  CurByte, OS, Fixups);
  
#ifndef NDEBUG
  // FIXME: Verify.
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
    errs() << "Cannot encode all operands of: ";
    MI.dump();
    errs() << '\n';
    abort();
  }
#endif
}