llvm.org GIT mirror llvm / 4aee1bb lib / Target / X86 / X86CallingConv.td
4aee1bb

Tree @4aee1bb (Download .tar.gz)

X86CallingConv.td @4aee1bbraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//

/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
 : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;

//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//

// Return-value conventions common to all X86 CC's.
def RetCC_X86Common : CallingConv<[
  // Scalar values are returned in AX first, then DX.  For i8, the ABI
  // requires the values to be in AL and AH, however this code uses AL and DL
  // instead. This is because using AH for the second register conflicts with
  // the way LLVM does multiple return values -- a return of {i16,i8} would end
  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
  // for functions that return two i8 values are currently expected to pack the
  // values into an i16 (which uses AX, and thus AL:AH).
  //
  // For code that doesn't care about the ABI, we allow returning more than two
  // integer values in registers.
  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,

  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
  // can only be used by ABI non-compliant code. If the target doesn't have XMM
  // registers, it won't have vector types.
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,

  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
  // can only be used by ABI non-compliant code. This vector type is only
  // supported while using the AVX target feature.
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,

  // MMX vector types are always returned in MM0. If the target doesn't have
  // MM0, it doesn't support these vector types.
  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,

  // Long double types are always returned in ST0 (even with SSE).
  CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
]>;

// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
  // The X86-32 calling convention returns FP values in ST0, unless marked
  // with "inreg" (used here to distinguish one kind of reg from another,
  // weirdly; this is really the sse-regparm calling convention) in which
  // case they use XMM0, otherwise it is the same as the common X86 calling
  // conv.
  CCIfInReg<CCIfSubtarget<"hasSSE2()",
    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
  CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
  CCDelegateTo<RetCC_X86Common>
]>;

// X86-32 FastCC return-value convention.
def RetCC_X86_32_Fast : CallingConv<[
  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
  // SSE2.
  // This can happen when a float, 2 x float, or 3 x float vector is split by
  // target lowering, and is returned in 1-3 sse regs.
  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,

  // For integers, ECX can be used as an extra return register
  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,

  // Otherwise, it is the same as the common X86 calling convention.
  CCDelegateTo<RetCC_X86Common>
]>;

// Intel_OCL_BI return-value convention.
def RetCC_Intel_OCL_BI : CallingConv<[
  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,

  // 256-bit FP vectors
  // No more than 4 registers
  CCIfType<[v8f32, v4f64, v8i32, v4i64],
            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,

  // i32, i64 in the standard way
  CCDelegateTo<RetCC_X86Common>
]>;

// X86-32 HiPE return-value convention.
def RetCC_X86_32_HiPE : CallingConv<[
  // Promote all types to i32
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Return: HP, P, VAL1, VAL2
  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
]>;

// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
  // The X86-64 calling convention always returns FP values in XMM0.
  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,

  // MMX vector types are always returned in XMM0.
  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
  CCDelegateTo<RetCC_X86Common>
]>;

// X86-Win64 C return-value convention.
def RetCC_X86_Win64_C : CallingConv<[
  // The X86-Win64 calling convention always returns __m64 values in RAX.
  CCIfType<[x86mmx], CCBitConvertToType<i64>>,

  // Otherwise, everything is the same as 'normal' X86-64 C CC.
  CCDelegateTo<RetCC_X86_64_C>
]>;

// X86-64 HiPE return-value convention.
def RetCC_X86_64_HiPE : CallingConv<[
  // Promote all types to i64
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Return: HP, P, VAL1, VAL2
  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
]>;

// This is the root return-value convention for the X86-32 backend.
def RetCC_X86_32 : CallingConv<[
  // If FastCC, use RetCC_X86_32_Fast.
  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
  // If HiPE, use RetCC_X86_32_HiPE.
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,

  // Otherwise, use RetCC_X86_32_C.
  CCDelegateTo<RetCC_X86_32_C>
]>;

// This is the root return-value convention for the X86-64 backend.
def RetCC_X86_64 : CallingConv<[
  // HiPE uses RetCC_X86_64_HiPE
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
  // Mingw64 and native Win64 use Win64 CC
  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,

  // Otherwise, drop to normal X86-64 CC
  CCDelegateTo<RetCC_X86_64_C>
]>;

// This is the return-value convention used for the entire X86 backend.
def RetCC_X86 : CallingConv<[

  // Check if this is the Intel OpenCL built-ins calling convention
  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,

  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
  CCDelegateTo<RetCC_X86_32>
]>;

//===----------------------------------------------------------------------===//
// X86-64 Argument Calling Conventions
//===----------------------------------------------------------------------===//

def CC_X86_64_C : CallingConv<[
  // Handles byval parameters.
  CCIfByVal<CCPassByVal<8, 8>>,

  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in R10.
  CCIfNest<CCAssignToReg<[R10]>>,

  // The first 6 integer arguments are passed in integer registers.
  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,

  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
  CCIfType<[x86mmx],
            CCIfSubtarget<"isTargetDarwin()",
            CCIfSubtarget<"hasSSE2()",
            CCPromoteToType<v2i64>>>>,

  // The first 8 FP/Vector arguments are passed in XMM registers.
  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
            CCIfSubtarget<"hasSSE1()",
            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,

  // The first 8 256-bit vector arguments are passed in YMM registers, unless
  // this is a vararg function.
  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
  // fixed arguments to vararg functions are supposed to be passed in
  // registers.  Actually modeling that would be a lot of work, though.
  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
                          CCIfSubtarget<"hasAVX()",
                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
                                         YMM4, YMM5, YMM6, YMM7]>>>>,

  // Integer/FP values get stored in stack slots that are 8 bytes in size and
  // 8-byte aligned if there are no more registers to hold them.
  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,

  // Long doubles get stack slots whose size and alignment depends on the
  // subtarget.
  CCIfType<[f80], CCAssignToStack<0, 0>>,

  // Vectors get 16-byte stack slots that are 16-byte aligned.
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,

  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
           CCAssignToStack<32, 32>>
]>;

// Calling convention used on Win64
def CC_X86_Win64_C : CallingConv<[
  // FIXME: Handle byval stuff.
  // FIXME: Handle varargs.

  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in R10.
  CCIfNest<CCAssignToReg<[R10]>>,

  // 128 bit vectors are passed by pointer
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,


  // 256 bit vectors are passed by pointer
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,

  // The first 4 MMX vector arguments are passed in GPRs.
  CCIfType<[x86mmx], CCBitConvertToType<i64>>,

  // The first 4 integer arguments are passed in integer registers.
  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
                                          [XMM0, XMM1, XMM2, XMM3]>>,
  
  // Do not pass the sret argument in RCX, the Win64 thiscall calling
  // convention requires "this" to be passed in RCX.                                        
  CCIfCC<"CallingConv::X86_ThisCall", 
    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
                                                     [XMM1, XMM2, XMM3]>>>>,

  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
                                          [XMM0, XMM1, XMM2, XMM3]>>,

  // The first 4 FP/Vector arguments are passed in XMM registers.
  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
                                   [RCX , RDX , R8  , R9  ]>>,

  // Integer/FP values get stored in stack slots that are 8 bytes in size and
  // 8-byte aligned if there are no more registers to hold them.
  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,

  // Long doubles get stack slots whose size and alignment depends on the
  // subtarget.
  CCIfType<[f80], CCAssignToStack<0, 0>>
]>;

def CC_X86_64_GHC : CallingConv<[
  // Promote i8/i16/i32 arguments to i64.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
  CCIfType<[i64],
            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,

  // Pass in STG registers: F1, F2, F3, F4, D1, D2
  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
            CCIfSubtarget<"hasSSE1()",
            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
]>;

def CC_X86_64_HiPE : CallingConv<[
  // Promote i8/i16/i32 arguments to i64.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,

  // Integer/FP values get stored in stack slots that are 8 bytes in size and
  // 8-byte aligned if there are no more registers to hold them.
  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;

//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//

/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
/// values are spilled on the stack, and the first 4 vector values go in XMM
/// regs.
def CC_X86_32_Common : CallingConv<[
  // Handles byval parameters.
  CCIfByVal<CCPassByVal<4, 4>>,

  // The first 3 float or double arguments, if marked 'inreg' and if the call
  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
                CCIfSubtarget<"hasSSE2()",
                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,

  // The first 3 __m64 vector arguments are passed in mmx registers if the
  // call is not a vararg call.
  CCIfNotVarArg<CCIfType<[x86mmx],
                CCAssignToReg<[MM0, MM1, MM2]>>>,

  // Integer/Float values get stored in stack slots that are 4 bytes in
  // size and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
  
  // Doubles get 8-byte slots that are 4-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 4>>,

  // Long doubles get slots whose size depends on the subtarget.
  CCIfType<[f80], CCAssignToStack<0, 4>>,

  // The first 4 SSE vector arguments are passed in XMM registers.
  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,

  // The first 4 AVX 256-bit vector arguments are passed in YMM registers.
  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
                CCIfSubtarget<"hasAVX()",
                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,

  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,

  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
           CCAssignToStack<32, 32>>,

  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
  // passed in the parameter area.
  CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;

def CC_X86_32_C : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in ECX.
  CCIfNest<CCAssignToReg<[ECX]>>,

  // The first 3 integer arguments, if marked 'inreg' and if the call is not
  // a vararg call, are passed in integer registers.
  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_32_FastCall : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in EAX.
  CCIfNest<CCAssignToReg<[EAX]>>,

  // The first 2 integer arguments are passed in ECX/EDX
  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_32_ThisCall : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Pass sret arguments indirectly through EAX
  CCIfSRet<CCAssignToReg<[EAX]>>,

  // The first integer argument is passed in ECX
  CCIfType<[i32], CCAssignToReg<[ECX]>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_32_FastCC : CallingConv<[
  // Handles byval parameters.  Note that we can't rely on the delegation
  // to CC_X86_32_Common for this because that happens after code that
  // puts arguments in registers.
  CCIfByVal<CCPassByVal<4, 4>>,

  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // The 'nest' parameter, if any, is passed in EAX.
  CCIfNest<CCAssignToReg<[EAX]>>,

  // The first 2 integer arguments are passed in ECX/EDX
  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,

  // The first 3 float or double arguments, if the call is not a vararg
  // call and if SSE2 is available, are passed in SSE registers.
  CCIfNotVarArg<CCIfType<[f32,f64],
                CCIfSubtarget<"hasSSE2()",
                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,

  // Doubles get 8-byte slots that are 8-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 8>>,

  // Otherwise, same as everything else.
  CCDelegateTo<CC_X86_32_Common>
]>;

def CC_X86_32_GHC : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Pass in STG registers: Base, Sp, Hp, R1
  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
]>;

def CC_X86_32_HiPE : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,

  // Integer/Float values get stored in stack slots that are 4 bytes in
  // size and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
]>;

// X86-64 Intel OpenCL built-ins calling convention.
def CC_Intel_OCL_BI : CallingConv<[

  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,

  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,

  CCIfType<[i32], CCAssignToStack<4, 4>>,

  // The SSE vector arguments are passed in XMM registers.
  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,

  // The 256-bit vector arguments are passed in YMM registers.
  CCIfType<[v8f32, v4f64, v8i32, v4i64],
           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,

  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
  CCDelegateTo<CC_X86_32_C>
]>;

//===----------------------------------------------------------------------===//
// X86 Root Argument Calling Conventions
//===----------------------------------------------------------------------===//

// This is the root argument convention for the X86-32 backend.
def CC_X86_32 : CallingConv<[
  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,

  // Otherwise, drop to normal X86-32 CC
  CCDelegateTo<CC_X86_32_C>
]>;

// This is the root argument convention for the X86-64 backend.
def CC_X86_64 : CallingConv<[
  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,

  // Mingw64 and native Win64 use Win64 CC
  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,

  // Otherwise, drop to normal X86-64 CC
  CCDelegateTo<CC_X86_64_C>
]>;

// This is the argument convention used for the entire X86 backend.
def CC_X86 : CallingConv<[
  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
  CCDelegateTo<CC_X86_32>
]>;

//===----------------------------------------------------------------------===//
// Callee-saved Registers.
//===----------------------------------------------------------------------===//

def CSR_NoRegs : CalleeSavedRegs<(add)>;

def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;

def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;

def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
                                     (sequence "XMM%u", 6, 15))>;


// Standard C + YMM6-15
def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
                                                  R13, R14, R15, 
                                                  (sequence "YMM%u", 6, 15))>;

//Standard C + XMM 8-15
def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
                                                 (sequence "XMM%u", 8, 15))>;

//Standard C + YMM 8-15
def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
                                                  (sequence "YMM%u", 8, 15))>;