llvm.org GIT mirror llvm / 4956e30 lib / Transforms / Utils / ValueMapper.cpp
4956e30

Tree @4956e30 (Download .tar.gz)

ValueMapper.cpp @4956e30raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MapValue function, which is shared by various parts of
// the lib/Transforms/Utils library.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/ValueMapper.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <limits>
#include <memory>
#include <utility>

using namespace llvm;

// Out of line method to get vtable etc for class.
void ValueMapTypeRemapper::anchor() {}
void ValueMaterializer::anchor() {}

namespace {

/// A basic block used in a BlockAddress whose function body is not yet
/// materialized.
struct DelayedBasicBlock {
  BasicBlock *OldBB;
  std::unique_ptr<BasicBlock> TempBB;

  DelayedBasicBlock(const BlockAddress &Old)
      : OldBB(Old.getBasicBlock()),
        TempBB(BasicBlock::Create(Old.getContext())) {}
};

struct WorklistEntry {
  enum EntryKind {
    MapGlobalInit,
    MapAppendingVar,
    MapGlobalAliasee,
    RemapFunction
  };
  struct GVInitTy {
    GlobalVariable *GV;
    Constant *Init;
  };
  struct AppendingGVTy {
    GlobalVariable *GV;
    Constant *InitPrefix;
  };
  struct GlobalAliaseeTy {
    GlobalAlias *GA;
    Constant *Aliasee;
  };

  unsigned Kind : 2;
  unsigned MCID : 29;
  unsigned AppendingGVIsOldCtorDtor : 1;
  unsigned AppendingGVNumNewMembers;
  union {
    GVInitTy GVInit;
    AppendingGVTy AppendingGV;
    GlobalAliaseeTy GlobalAliasee;
    Function *RemapF;
  } Data;
};

struct MappingContext {
  ValueToValueMapTy *VM;
  ValueMaterializer *Materializer = nullptr;

  /// Construct a MappingContext with a value map and materializer.
  explicit MappingContext(ValueToValueMapTy &VM,
                          ValueMaterializer *Materializer = nullptr)
      : VM(&VM), Materializer(Materializer) {}
};

class Mapper {
  friend class MDNodeMapper;

#ifndef NDEBUG
  DenseSet<GlobalValue *> AlreadyScheduled;
#endif

  RemapFlags Flags;
  ValueMapTypeRemapper *TypeMapper;
  unsigned CurrentMCID = 0;
  SmallVector<MappingContext, 2> MCs;
  SmallVector<WorklistEntry, 4> Worklist;
  SmallVector<DelayedBasicBlock, 1> DelayedBBs;
  SmallVector<Constant *, 16> AppendingInits;

public:
  Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
         ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
      : Flags(Flags), TypeMapper(TypeMapper),
        MCs(1, MappingContext(VM, Materializer)) {}

  /// ValueMapper should explicitly call \a flush() before destruction.
  ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }

  bool hasWorkToDo() const { return !Worklist.empty(); }

  unsigned
  registerAlternateMappingContext(ValueToValueMapTy &VM,
                                  ValueMaterializer *Materializer = nullptr) {
    MCs.push_back(MappingContext(VM, Materializer));
    return MCs.size() - 1;
  }

  void addFlags(RemapFlags Flags);

  void remapGlobalObjectMetadata(GlobalObject &GO);

  Value *mapValue(const Value *V);
  void remapInstruction(Instruction *I);
  void remapFunction(Function &F);

  Constant *mapConstant(const Constant *C) {
    return cast_or_null<Constant>(mapValue(C));
  }

  /// Map metadata.
  ///
  /// Find the mapping for MD.  Guarantees that the return will be resolved
  /// (not an MDNode, or MDNode::isResolved() returns true).
  Metadata *mapMetadata(const Metadata *MD);

  void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
                                    unsigned MCID);
  void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
                                    bool IsOldCtorDtor,
                                    ArrayRef<Constant *> NewMembers,
                                    unsigned MCID);
  void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
                                unsigned MCID);
  void scheduleRemapFunction(Function &F, unsigned MCID);

  void flush();

private:
  void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
  void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
                            bool IsOldCtorDtor,
                            ArrayRef<Constant *> NewMembers);
  void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
  void remapFunction(Function &F, ValueToValueMapTy &VM);

  ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
  ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }

  Value *mapBlockAddress(const BlockAddress &BA);

  /// Map metadata that doesn't require visiting operands.
  Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);

  Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
  Metadata *mapToSelf(const Metadata *MD);
};

class MDNodeMapper {
  Mapper &M;

  /// Data about a node in \a UniquedGraph.
  struct Data {
    bool HasChanged = false;
    unsigned ID = std::numeric_limits<unsigned>::max();
    TempMDNode Placeholder;
  };

  /// A graph of uniqued nodes.
  struct UniquedGraph {
    SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
    SmallVector<MDNode *, 16> POT;                  // Post-order traversal.

    /// Propagate changed operands through the post-order traversal.
    ///
    /// Iteratively update \a Data::HasChanged for each node based on \a
    /// Data::HasChanged of its operands, until fixed point.
    void propagateChanges();

    /// Get a forward reference to a node to use as an operand.
    Metadata &getFwdReference(MDNode &Op);
  };

  /// Worklist of distinct nodes whose operands need to be remapped.
  SmallVector<MDNode *, 16> DistinctWorklist;

  // Storage for a UniquedGraph.
  SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
  SmallVector<MDNode *, 16> POTStorage;

public:
  MDNodeMapper(Mapper &M) : M(M) {}

  /// Map a metadata node (and its transitive operands).
  ///
  /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
  /// algorithm handles distinct nodes and uniqued node subgraphs using
  /// different strategies.
  ///
  /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
  /// using \a mapDistinctNode().  Their mapping can always be computed
  /// immediately without visiting operands, even if their operands change.
  ///
  /// The mapping for uniqued nodes depends on whether their operands change.
  /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
  /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
  /// added to \a DistinctWorklist with \a mapDistinctNode().
  ///
  /// After mapping \c N itself, this function remaps the operands of the
  /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
  /// N has been mapped.
  Metadata *map(const MDNode &N);

private:
  /// Map a top-level uniqued node and the uniqued subgraph underneath it.
  ///
  /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
  /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
  /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
  /// operands uses the identity mapping.
  ///
  /// The algorithm works as follows:
  ///
  ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
  ///     save the post-order traversal in the given \a UniquedGraph, tracking
  ///     nodes' operands change.
  ///
  ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
  ///     through the \a UniquedGraph until fixed point, following the rule
  ///     that if a node changes, any node that references must also change.
  ///
  ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
  ///     (referencing new operands) where necessary.
  Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);

  /// Try to map the operand of an \a MDNode.
  ///
  /// If \c Op is already mapped, return the mapping.  If it's not an \a
  /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
  /// return the result of \a mapDistinctNode().
  ///
  /// \return None if \c Op is an unmapped uniqued \a MDNode.
  /// \post getMappedOp(Op) only returns None if this returns None.
  Optional<Metadata *> tryToMapOperand(const Metadata *Op);

  /// Map a distinct node.
  ///
  /// Return the mapping for the distinct node \c N, saving the result in \a
  /// DistinctWorklist for later remapping.
  ///
  /// \pre \c N is not yet mapped.
  /// \pre \c N.isDistinct().
  MDNode *mapDistinctNode(const MDNode &N);

  /// Get a previously mapped node.
  Optional<Metadata *> getMappedOp(const Metadata *Op) const;

  /// Create a post-order traversal of an unmapped uniqued node subgraph.
  ///
  /// This traverses the metadata graph deeply enough to map \c FirstN.  It
  /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
  /// metadata that has already been mapped will not be part of the POT.
  ///
  /// Each node that has a changed operand from outside the graph (e.g., a
  /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
  /// is marked with \a Data::HasChanged.
  ///
  /// \return \c true if any nodes in \c G have \a Data::HasChanged.
  /// \post \c G.POT is a post-order traversal ending with \c FirstN.
  /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
  /// to change because of operands outside the graph.
  bool createPOT(UniquedGraph &G, const MDNode &FirstN);

  /// Visit the operands of a uniqued node in the POT.
  ///
  /// Visit the operands in the range from \c I to \c E, returning the first
  /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
  /// where to continue the loop through the operands.
  ///
  /// This sets \c HasChanged if any of the visited operands change.
  MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
                        MDNode::op_iterator E, bool &HasChanged);

  /// Map all the nodes in the given uniqued graph.
  ///
  /// This visits all the nodes in \c G in post-order, using the identity
  /// mapping or creating a new node depending on \a Data::HasChanged.
  ///
  /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
  /// their operands outside of \c G.
  /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
  /// operands have changed.
  /// \post \a getMappedOp() returns the mapped node for every node in \c G.
  void mapNodesInPOT(UniquedGraph &G);

  /// Remap a node's operands using the given functor.
  ///
  /// Iterate through the operands of \c N and update them in place using \c
  /// mapOperand.
  ///
  /// \pre N.isDistinct() or N.isTemporary().
  template <class OperandMapper>
  void remapOperands(MDNode &N, OperandMapper mapOperand);
};

} // end anonymous namespace

Value *Mapper::mapValue(const Value *V) {
  ValueToValueMapTy::iterator I = getVM().find(V);

  // If the value already exists in the map, use it.
  if (I != getVM().end()) {
    assert(I->second && "Unexpected null mapping");
    return I->second;
  }

  // If we have a materializer and it can materialize a value, use that.
  if (auto *Materializer = getMaterializer()) {
    if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
      getVM()[V] = NewV;
      return NewV;
    }
  }

  // Global values do not need to be seeded into the VM if they
  // are using the identity mapping.
  if (isa<GlobalValue>(V)) {
    if (Flags & RF_NullMapMissingGlobalValues)
      return nullptr;
    return getVM()[V] = const_cast<Value *>(V);
  }

  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    // Inline asm may need *type* remapping.
    FunctionType *NewTy = IA->getFunctionType();
    if (TypeMapper) {
      NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));

      if (NewTy != IA->getFunctionType())
        V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
                           IA->hasSideEffects(), IA->isAlignStack());
    }

    return getVM()[V] = const_cast<Value *>(V);
  }

  if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
    const Metadata *MD = MDV->getMetadata();

    if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
      // Look through to grab the local value.
      if (Value *LV = mapValue(LAM->getValue())) {
        if (V == LAM->getValue())
          return const_cast<Value *>(V);
        return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
      }

      // FIXME: always return nullptr once Verifier::verifyDominatesUse()
      // ensures metadata operands only reference defined SSA values.
      return (Flags & RF_IgnoreMissingLocals)
                 ? nullptr
                 : MetadataAsValue::get(V->getContext(),
                                        MDTuple::get(V->getContext(), None));
    }

    // If this is a module-level metadata and we know that nothing at the module
    // level is changing, then use an identity mapping.
    if (Flags & RF_NoModuleLevelChanges)
      return getVM()[V] = const_cast<Value *>(V);

    // Map the metadata and turn it into a value.
    auto *MappedMD = mapMetadata(MD);
    if (MD == MappedMD)
      return getVM()[V] = const_cast<Value *>(V);
    return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
  }

  // Okay, this either must be a constant (which may or may not be mappable) or
  // is something that is not in the mapping table.
  Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
  if (!C)
    return nullptr;

  if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
    return mapBlockAddress(*BA);

  auto mapValueOrNull = [this](Value *V) {
    auto Mapped = mapValue(V);
    assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
           "Unexpected null mapping for constant operand without "
           "NullMapMissingGlobalValues flag");
    return Mapped;
  };

  // Otherwise, we have some other constant to remap.  Start by checking to see
  // if all operands have an identity remapping.
  unsigned OpNo = 0, NumOperands = C->getNumOperands();
  Value *Mapped = nullptr;
  for (; OpNo != NumOperands; ++OpNo) {
    Value *Op = C->getOperand(OpNo);
    Mapped = mapValueOrNull(Op);
    if (!Mapped)
      return nullptr;
    if (Mapped != Op)
      break;
  }

  // See if the type mapper wants to remap the type as well.
  Type *NewTy = C->getType();
  if (TypeMapper)
    NewTy = TypeMapper->remapType(NewTy);

  // If the result type and all operands match up, then just insert an identity
  // mapping.
  if (OpNo == NumOperands && NewTy == C->getType())
    return getVM()[V] = C;

  // Okay, we need to create a new constant.  We've already processed some or
  // all of the operands, set them all up now.
  SmallVector<Constant*, 8> Ops;
  Ops.reserve(NumOperands);
  for (unsigned j = 0; j != OpNo; ++j)
    Ops.push_back(cast<Constant>(C->getOperand(j)));

  // If one of the operands mismatch, push it and the other mapped operands.
  if (OpNo != NumOperands) {
    Ops.push_back(cast<Constant>(Mapped));

    // Map the rest of the operands that aren't processed yet.
    for (++OpNo; OpNo != NumOperands; ++OpNo) {
      Mapped = mapValueOrNull(C->getOperand(OpNo));
      if (!Mapped)
        return nullptr;
      Ops.push_back(cast<Constant>(Mapped));
    }
  }
  Type *NewSrcTy = nullptr;
  if (TypeMapper)
    if (auto *GEPO = dyn_cast<GEPOperator>(C))
      NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
  if (isa<ConstantArray>(C))
    return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
  if (isa<ConstantStruct>(C))
    return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
  if (isa<ConstantVector>(C))
    return getVM()[V] = ConstantVector::get(Ops);
  // If this is a no-operand constant, it must be because the type was remapped.
  if (isa<UndefValue>(C))
    return getVM()[V] = UndefValue::get(NewTy);
  if (isa<ConstantAggregateZero>(C))
    return getVM()[V] = ConstantAggregateZero::get(NewTy);
  assert(isa<ConstantPointerNull>(C));
  return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
}

Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
  Function *F = cast<Function>(mapValue(BA.getFunction()));

  // F may not have materialized its initializer.  In that case, create a
  // dummy basic block for now, and replace it once we've materialized all
  // the initializers.
  BasicBlock *BB;
  if (F->empty()) {
    DelayedBBs.push_back(DelayedBasicBlock(BA));
    BB = DelayedBBs.back().TempBB.get();
  } else {
    BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
  }

  return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
}

Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
  getVM().MD()[Key].reset(Val);
  return Val;
}

Metadata *Mapper::mapToSelf(const Metadata *MD) {
  return mapToMetadata(MD, const_cast<Metadata *>(MD));
}

Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
  if (!Op)
    return nullptr;

  if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
#ifndef NDEBUG
    if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
      assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
              M.getVM().getMappedMD(Op)) &&
             "Expected Value to be memoized");
    else
      assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
             "Expected result to be memoized");
#endif
    return *MappedOp;
  }

  const MDNode &N = *cast<MDNode>(Op);
  if (N.isDistinct())
    return mapDistinctNode(N);
  return None;
}

static Metadata *cloneOrBuildODR(const MDNode &N) {
  auto *CT = dyn_cast<DICompositeType>(&N);
  // If ODR type uniquing is enabled, we would have uniqued composite types
  // with identifiers during bitcode reading, so we can just use CT.
  if (CT && CT->getContext().isODRUniquingDebugTypes() &&
      CT->getIdentifier() != "")
    return const_cast<DICompositeType *>(CT);
  return MDNode::replaceWithDistinct(N.clone());
}

MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
  assert(N.isDistinct() && "Expected a distinct node");
  assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
  DistinctWorklist.push_back(
      cast<MDNode>((M.Flags & RF_MoveDistinctMDs)
                       ? M.mapToSelf(&N)
                       : M.mapToMetadata(&N, cloneOrBuildODR(N))));
  return DistinctWorklist.back();
}

static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
                                                  Value *MappedV) {
  if (CMD.getValue() == MappedV)
    return const_cast<ConstantAsMetadata *>(&CMD);
  return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
}

Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
  if (!Op)
    return nullptr;

  if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
    return *MappedOp;

  if (isa<MDString>(Op))
    return const_cast<Metadata *>(Op);

  if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
    return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));

  return None;
}

Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
  auto Where = Info.find(&Op);
  assert(Where != Info.end() && "Expected a valid reference");

  auto &OpD = Where->second;
  if (!OpD.HasChanged)
    return Op;

  // Lazily construct a temporary node.
  if (!OpD.Placeholder)
    OpD.Placeholder = Op.clone();

  return *OpD.Placeholder;
}

template <class OperandMapper>
void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
  assert(!N.isUniqued() && "Expected distinct or temporary nodes");
  for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
    Metadata *Old = N.getOperand(I);
    Metadata *New = mapOperand(Old);

    if (Old != New)
      N.replaceOperandWith(I, New);
  }
}

namespace {

/// An entry in the worklist for the post-order traversal.
struct POTWorklistEntry {
  MDNode *N;              ///< Current node.
  MDNode::op_iterator Op; ///< Current operand of \c N.

  /// Keep a flag of whether operands have changed in the worklist to avoid
  /// hitting the map in \a UniquedGraph.
  bool HasChanged = false;

  POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
};

} // end anonymous namespace

bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
  assert(G.Info.empty() && "Expected a fresh traversal");
  assert(FirstN.isUniqued() && "Expected uniqued node in POT");

  // Construct a post-order traversal of the uniqued subgraph under FirstN.
  bool AnyChanges = false;
  SmallVector<POTWorklistEntry, 16> Worklist;
  Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
  (void)G.Info[&FirstN];
  while (!Worklist.empty()) {
    // Start or continue the traversal through the this node's operands.
    auto &WE = Worklist.back();
    if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
      // Push a new node to traverse first.
      Worklist.push_back(POTWorklistEntry(*N));
      continue;
    }

    // Push the node onto the POT.
    assert(WE.N->isUniqued() && "Expected only uniqued nodes");
    assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
    auto &D = G.Info[WE.N];
    AnyChanges |= D.HasChanged = WE.HasChanged;
    D.ID = G.POT.size();
    G.POT.push_back(WE.N);

    // Pop the node off the worklist.
    Worklist.pop_back();
  }
  return AnyChanges;
}

MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
                                    MDNode::op_iterator E, bool &HasChanged) {
  while (I != E) {
    Metadata *Op = *I++; // Increment even on early return.
    if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
      // Check if the operand changes.
      HasChanged |= Op != *MappedOp;
      continue;
    }

    // A uniqued metadata node.
    MDNode &OpN = *cast<MDNode>(Op);
    assert(OpN.isUniqued() &&
           "Only uniqued operands cannot be mapped immediately");
    if (G.Info.insert(std::make_pair(&OpN, Data())).second)
      return &OpN; // This is a new one.  Return it.
  }
  return nullptr;
}

void MDNodeMapper::UniquedGraph::propagateChanges() {
  bool AnyChanges;
  do {
    AnyChanges = false;
    for (MDNode *N : POT) {
      auto &D = Info[N];
      if (D.HasChanged)
        continue;

      if (llvm::none_of(N->operands(), [&](const Metadata *Op) {
            auto Where = Info.find(Op);
            return Where != Info.end() && Where->second.HasChanged;
          }))
        continue;

      AnyChanges = D.HasChanged = true;
    }
  } while (AnyChanges);
}

void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
  // Construct uniqued nodes, building forward references as necessary.
  SmallVector<MDNode *, 16> CyclicNodes;
  for (auto *N : G.POT) {
    auto &D = G.Info[N];
    if (!D.HasChanged) {
      // The node hasn't changed.
      M.mapToSelf(N);
      continue;
    }

    // Remember whether this node had a placeholder.
    bool HadPlaceholder(D.Placeholder);

    // Clone the uniqued node and remap the operands.
    TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
    remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
      if (Optional<Metadata *> MappedOp = getMappedOp(Old))
        return *MappedOp;
      (void)D;
      assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
      return &G.getFwdReference(*cast<MDNode>(Old));
    });

    auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
    M.mapToMetadata(N, NewN);

    // Nodes that were referenced out of order in the POT are involved in a
    // uniquing cycle.
    if (HadPlaceholder)
      CyclicNodes.push_back(NewN);
  }

  // Resolve cycles.
  for (auto *N : CyclicNodes)
    if (!N->isResolved())
      N->resolveCycles();
}

Metadata *MDNodeMapper::map(const MDNode &N) {
  assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
  assert(!(M.Flags & RF_NoModuleLevelChanges) &&
         "MDNodeMapper::map assumes module-level changes");

  // Require resolved nodes whenever metadata might be remapped.
  assert(N.isResolved() && "Unexpected unresolved node");

  Metadata *MappedN =
      N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
  while (!DistinctWorklist.empty())
    remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
      if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
        return *MappedOp;
      return mapTopLevelUniquedNode(*cast<MDNode>(Old));
    });
  return MappedN;
}

Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
  assert(FirstN.isUniqued() && "Expected uniqued node");

  // Create a post-order traversal of uniqued nodes under FirstN.
  UniquedGraph G;
  if (!createPOT(G, FirstN)) {
    // Return early if no nodes have changed.
    for (const MDNode *N : G.POT)
      M.mapToSelf(N);
    return &const_cast<MDNode &>(FirstN);
  }

  // Update graph with all nodes that have changed.
  G.propagateChanges();

  // Map all the nodes in the graph.
  mapNodesInPOT(G);

  // Return the original node, remapped.
  return *getMappedOp(&FirstN);
}

namespace {

struct MapMetadataDisabler {
  ValueToValueMapTy &VM;

  MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
    VM.disableMapMetadata();
  }

  ~MapMetadataDisabler() { VM.enableMapMetadata(); }
};

} // end anonymous namespace

Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
  // If the value already exists in the map, use it.
  if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
    return *NewMD;

  if (isa<MDString>(MD))
    return const_cast<Metadata *>(MD);

  // This is a module-level metadata.  If nothing at the module level is
  // changing, use an identity mapping.
  if ((Flags & RF_NoModuleLevelChanges))
    return const_cast<Metadata *>(MD);

  if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
    // Disallow recursion into metadata mapping through mapValue.
    MapMetadataDisabler MMD(getVM());

    // Don't memoize ConstantAsMetadata.  Instead of lasting until the
    // LLVMContext is destroyed, they can be deleted when the GlobalValue they
    // reference is destructed.  These aren't super common, so the extra
    // indirection isn't that expensive.
    return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
  }

  assert(isa<MDNode>(MD) && "Expected a metadata node");

  return None;
}

Metadata *Mapper::mapMetadata(const Metadata *MD) {
  assert(MD && "Expected valid metadata");
  assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");

  if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
    return *NewMD;

  return MDNodeMapper(*this).map(*cast<MDNode>(MD));
}

void Mapper::flush() {
  // Flush out the worklist of global values.
  while (!Worklist.empty()) {
    WorklistEntry E = Worklist.pop_back_val();
    CurrentMCID = E.MCID;
    switch (E.Kind) {
    case WorklistEntry::MapGlobalInit:
      E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
      remapGlobalObjectMetadata(*E.Data.GVInit.GV);
      break;
    case WorklistEntry::MapAppendingVar: {
      unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
      mapAppendingVariable(*E.Data.AppendingGV.GV,
                           E.Data.AppendingGV.InitPrefix,
                           E.AppendingGVIsOldCtorDtor,
                           makeArrayRef(AppendingInits).slice(PrefixSize));
      AppendingInits.resize(PrefixSize);
      break;
    }
    case WorklistEntry::MapGlobalAliasee:
      E.Data.GlobalAliasee.GA->setAliasee(
          mapConstant(E.Data.GlobalAliasee.Aliasee));
      break;
    case WorklistEntry::RemapFunction:
      remapFunction(*E.Data.RemapF);
      break;
    }
  }
  CurrentMCID = 0;

  // Finish logic for block addresses now that all global values have been
  // handled.
  while (!DelayedBBs.empty()) {
    DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
    BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
    DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
  }
}

void Mapper::remapInstruction(Instruction *I) {
  // Remap operands.
  for (Use &Op : I->operands()) {
    Value *V = mapValue(Op);
    // If we aren't ignoring missing entries, assert that something happened.
    if (V)
      Op = V;
    else
      assert((Flags & RF_IgnoreMissingLocals) &&
             "Referenced value not in value map!");
  }

  // Remap phi nodes' incoming blocks.
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *V = mapValue(PN->getIncomingBlock(i));
      // If we aren't ignoring missing entries, assert that something happened.
      if (V)
        PN->setIncomingBlock(i, cast<BasicBlock>(V));
      else
        assert((Flags & RF_IgnoreMissingLocals) &&
               "Referenced block not in value map!");
    }
  }

  // Remap attached metadata.
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  I->getAllMetadata(MDs);
  for (const auto &MI : MDs) {
    MDNode *Old = MI.second;
    MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
    if (New != Old)
      I->setMetadata(MI.first, New);
  }

  if (!TypeMapper)
    return;

  // If the instruction's type is being remapped, do so now.
  if (auto CS = CallSite(I)) {
    SmallVector<Type *, 3> Tys;
    FunctionType *FTy = CS.getFunctionType();
    Tys.reserve(FTy->getNumParams());
    for (Type *Ty : FTy->params())
      Tys.push_back(TypeMapper->remapType(Ty));
    CS.mutateFunctionType(FunctionType::get(
        TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
    return;
  }
  if (auto *AI = dyn_cast<AllocaInst>(I))
    AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
    GEP->setSourceElementType(
        TypeMapper->remapType(GEP->getSourceElementType()));
    GEP->setResultElementType(
        TypeMapper->remapType(GEP->getResultElementType()));
  }
  I->mutateType(TypeMapper->remapType(I->getType()));
}

void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) {
  SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
  GO.getAllMetadata(MDs);
  GO.clearMetadata();
  for (const auto &I : MDs)
    GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
}

void Mapper::remapFunction(Function &F) {
  // Remap the operands.
  for (Use &Op : F.operands())
    if (Op)
      Op = mapValue(Op);

  // Remap the metadata attachments.
  remapGlobalObjectMetadata(F);

  // Remap the argument types.
  if (TypeMapper)
    for (Argument &A : F.args())
      A.mutateType(TypeMapper->remapType(A.getType()));

  // Remap the instructions.
  for (BasicBlock &BB : F)
    for (Instruction &I : BB)
      remapInstruction(&I);
}

void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
                                  bool IsOldCtorDtor,
                                  ArrayRef<Constant *> NewMembers) {
  SmallVector<Constant *, 16> Elements;
  if (InitPrefix) {
    unsigned NumElements =
        cast<ArrayType>(InitPrefix->getType())->getNumElements();
    for (unsigned I = 0; I != NumElements; ++I)
      Elements.push_back(InitPrefix->getAggregateElement(I));
  }

  PointerType *VoidPtrTy;
  Type *EltTy;
  if (IsOldCtorDtor) {
    // FIXME: This upgrade is done during linking to support the C API.  See
    // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
    VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
    auto &ST = *cast<StructType>(NewMembers.front()->getType());
    Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
    EltTy = StructType::get(GV.getContext(), Tys, false);
  }

  for (auto *V : NewMembers) {
    Constant *NewV;
    if (IsOldCtorDtor) {
      auto *S = cast<ConstantStruct>(V);
      auto *E1 = cast<Constant>(mapValue(S->getOperand(0)));
      auto *E2 = cast<Constant>(mapValue(S->getOperand(1)));
      Constant *Null = Constant::getNullValue(VoidPtrTy);
      NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null);
    } else {
      NewV = cast_or_null<Constant>(mapValue(V));
    }
    Elements.push_back(NewV);
  }

  GV.setInitializer(ConstantArray::get(
      cast<ArrayType>(GV.getType()->getElementType()), Elements));
}

void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
                                          unsigned MCID) {
  assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
  assert(MCID < MCs.size() && "Invalid mapping context");

  WorklistEntry WE;
  WE.Kind = WorklistEntry::MapGlobalInit;
  WE.MCID = MCID;
  WE.Data.GVInit.GV = &GV;
  WE.Data.GVInit.Init = &Init;
  Worklist.push_back(WE);
}

void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
                                          Constant *InitPrefix,
                                          bool IsOldCtorDtor,
                                          ArrayRef<Constant *> NewMembers,
                                          unsigned MCID) {
  assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
  assert(MCID < MCs.size() && "Invalid mapping context");

  WorklistEntry WE;
  WE.Kind = WorklistEntry::MapAppendingVar;
  WE.MCID = MCID;
  WE.Data.AppendingGV.GV = &GV;
  WE.Data.AppendingGV.InitPrefix = InitPrefix;
  WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
  WE.AppendingGVNumNewMembers = NewMembers.size();
  Worklist.push_back(WE);
  AppendingInits.append(NewMembers.begin(), NewMembers.end());
}

void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
                                      unsigned MCID) {
  assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
  assert(MCID < MCs.size() && "Invalid mapping context");

  WorklistEntry WE;
  WE.Kind = WorklistEntry::MapGlobalAliasee;
  WE.MCID = MCID;
  WE.Data.GlobalAliasee.GA = &GA;
  WE.Data.GlobalAliasee.Aliasee = &Aliasee;
  Worklist.push_back(WE);
}

void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
  assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
  assert(MCID < MCs.size() && "Invalid mapping context");

  WorklistEntry WE;
  WE.Kind = WorklistEntry::RemapFunction;
  WE.MCID = MCID;
  WE.Data.RemapF = &F;
  Worklist.push_back(WE);
}

void Mapper::addFlags(RemapFlags Flags) {
  assert(!hasWorkToDo() && "Expected to have flushed the worklist");
  this->Flags = this->Flags | Flags;
}

static Mapper *getAsMapper(void *pImpl) {
  return reinterpret_cast<Mapper *>(pImpl);
}

namespace {

class FlushingMapper {
  Mapper &M;

public:
  explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
    assert(!M.hasWorkToDo() && "Expected to be flushed");
  }

  ~FlushingMapper() { M.flush(); }

  Mapper *operator->() const { return &M; }
};

} // end anonymous namespace

ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
                         ValueMapTypeRemapper *TypeMapper,
                         ValueMaterializer *Materializer)
    : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}

ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }

unsigned
ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
                                             ValueMaterializer *Materializer) {
  return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
}

void ValueMapper::addFlags(RemapFlags Flags) {
  FlushingMapper(pImpl)->addFlags(Flags);
}

Value *ValueMapper::mapValue(const Value &V) {
  return FlushingMapper(pImpl)->mapValue(&V);
}

Constant *ValueMapper::mapConstant(const Constant &C) {
  return cast_or_null<Constant>(mapValue(C));
}

Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
  return FlushingMapper(pImpl)->mapMetadata(&MD);
}

MDNode *ValueMapper::mapMDNode(const MDNode &N) {
  return cast_or_null<MDNode>(mapMetadata(N));
}

void ValueMapper::remapInstruction(Instruction &I) {
  FlushingMapper(pImpl)->remapInstruction(&I);
}

void ValueMapper::remapFunction(Function &F) {
  FlushingMapper(pImpl)->remapFunction(F);
}

void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
                                               Constant &Init,
                                               unsigned MCID) {
  getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
}

void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
                                               Constant *InitPrefix,
                                               bool IsOldCtorDtor,
                                               ArrayRef<Constant *> NewMembers,
                                               unsigned MCID) {
  getAsMapper(pImpl)->scheduleMapAppendingVariable(
      GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
}

void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
                                           unsigned MCID) {
  getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
}

void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
  getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
}