llvm.org GIT mirror llvm / 4956e30 lib / Transforms / Utils / InlineFunction.cpp
4956e30

Tree @4956e30 (Download .tar.gz)

InlineFunction.cpp @4956e30raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using ProfileCount = Function::ProfileCount;

static cl::opt<bool>
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
  cl::Hidden,
  cl::desc("Convert noalias attributes to metadata during inlining."));

static cl::opt<bool>
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
  cl::init(true), cl::Hidden,
  cl::desc("Convert align attributes to assumptions during inlining."));

llvm::InlineResult llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
                                        AAResults *CalleeAAR,
                                        bool InsertLifetime) {
  return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
}

llvm::InlineResult llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
                                        AAResults *CalleeAAR,
                                        bool InsertLifetime) {
  return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
}

namespace {

  /// A class for recording information about inlining a landing pad.
  class LandingPadInliningInfo {
    /// Destination of the invoke's unwind.
    BasicBlock *OuterResumeDest;

    /// Destination for the callee's resume.
    BasicBlock *InnerResumeDest = nullptr;

    /// LandingPadInst associated with the invoke.
    LandingPadInst *CallerLPad = nullptr;

    /// PHI for EH values from landingpad insts.
    PHINode *InnerEHValuesPHI = nullptr;

    SmallVector<Value*, 8> UnwindDestPHIValues;

  public:
    LandingPadInliningInfo(InvokeInst *II)
        : OuterResumeDest(II->getUnwindDest()) {
      // If there are PHI nodes in the unwind destination block, we need to keep
      // track of which values came into them from the invoke before removing
      // the edge from this block.
      BasicBlock *InvokeBB = II->getParent();
      BasicBlock::iterator I = OuterResumeDest->begin();
      for (; isa<PHINode>(I); ++I) {
        // Save the value to use for this edge.
        PHINode *PHI = cast<PHINode>(I);
        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
      }

      CallerLPad = cast<LandingPadInst>(I);
    }

    /// The outer unwind destination is the target of
    /// unwind edges introduced for calls within the inlined function.
    BasicBlock *getOuterResumeDest() const {
      return OuterResumeDest;
    }

    BasicBlock *getInnerResumeDest();

    LandingPadInst *getLandingPadInst() const { return CallerLPad; }

    /// Forward the 'resume' instruction to the caller's landing pad block.
    /// When the landing pad block has only one predecessor, this is
    /// a simple branch. When there is more than one predecessor, we need to
    /// split the landing pad block after the landingpad instruction and jump
    /// to there.
    void forwardResume(ResumeInst *RI,
                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);

    /// Add incoming-PHI values to the unwind destination block for the given
    /// basic block, using the values for the original invoke's source block.
    void addIncomingPHIValuesFor(BasicBlock *BB) const {
      addIncomingPHIValuesForInto(BB, OuterResumeDest);
    }

    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
      BasicBlock::iterator I = dest->begin();
      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
        PHINode *phi = cast<PHINode>(I);
        phi->addIncoming(UnwindDestPHIValues[i], src);
      }
    }
  };

} // end anonymous namespace

/// Get or create a target for the branch from ResumeInsts.
BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
  if (InnerResumeDest) return InnerResumeDest;

  // Split the landing pad.
  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
  InnerResumeDest =
    OuterResumeDest->splitBasicBlock(SplitPoint,
                                     OuterResumeDest->getName() + ".body");

  // The number of incoming edges we expect to the inner landing pad.
  const unsigned PHICapacity = 2;

  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
  Instruction *InsertPoint = &InnerResumeDest->front();
  BasicBlock::iterator I = OuterResumeDest->begin();
  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    PHINode *OuterPHI = cast<PHINode>(I);
    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
                                        OuterPHI->getName() + ".lpad-body",
                                        InsertPoint);
    OuterPHI->replaceAllUsesWith(InnerPHI);
    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
  }

  // Create a PHI for the exception values.
  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
                                     "eh.lpad-body", InsertPoint);
  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);

  // All done.
  return InnerResumeDest;
}

/// Forward the 'resume' instruction to the caller's landing pad block.
/// When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void LandingPadInliningInfo::forwardResume(
    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
  BasicBlock *Dest = getInnerResumeDest();
  BasicBlock *Src = RI->getParent();

  BranchInst::Create(Dest, Src);

  // Update the PHIs in the destination. They were inserted in an order which
  // makes this work.
  addIncomingPHIValuesForInto(Src, Dest);

  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
  RI->eraseFromParent();
}

/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
static Value *getParentPad(Value *EHPad) {
  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
    return FPI->getParentPad();
  return cast<CatchSwitchInst>(EHPad)->getParentPad();
}

using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;

/// Helper for getUnwindDestToken that does the descendant-ward part of
/// the search.
static Value *getUnwindDestTokenHelper(Instruction *EHPad,
                                       UnwindDestMemoTy &MemoMap) {
  SmallVector<Instruction *, 8> Worklist(1, EHPad);

  while (!Worklist.empty()) {
    Instruction *CurrentPad = Worklist.pop_back_val();
    // We only put pads on the worklist that aren't in the MemoMap.  When
    // we find an unwind dest for a pad we may update its ancestors, but
    // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
    // so they should never get updated while queued on the worklist.
    assert(!MemoMap.count(CurrentPad));
    Value *UnwindDestToken = nullptr;
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
      if (CatchSwitch->hasUnwindDest()) {
        UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
      } else {
        // Catchswitch doesn't have a 'nounwind' variant, and one might be
        // annotated as "unwinds to caller" when really it's nounwind (see
        // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
        // parent's unwind dest from this.  We can check its catchpads'
        // descendants, since they might include a cleanuppad with an
        // "unwinds to caller" cleanupret, which can be trusted.
        for (auto HI = CatchSwitch->handler_begin(),
                  HE = CatchSwitch->handler_end();
             HI != HE && !UnwindDestToken; ++HI) {
          BasicBlock *HandlerBlock = *HI;
          auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
          for (User *Child : CatchPad->users()) {
            // Intentionally ignore invokes here -- since the catchswitch is
            // marked "unwind to caller", it would be a verifier error if it
            // contained an invoke which unwinds out of it, so any invoke we'd
            // encounter must unwind to some child of the catch.
            if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
              continue;

            Instruction *ChildPad = cast<Instruction>(Child);
            auto Memo = MemoMap.find(ChildPad);
            if (Memo == MemoMap.end()) {
              // Haven't figured out this child pad yet; queue it.
              Worklist.push_back(ChildPad);
              continue;
            }
            // We've already checked this child, but might have found that
            // it offers no proof either way.
            Value *ChildUnwindDestToken = Memo->second;
            if (!ChildUnwindDestToken)
              continue;
            // We already know the child's unwind dest, which can either
            // be ConstantTokenNone to indicate unwind to caller, or can
            // be another child of the catchpad.  Only the former indicates
            // the unwind dest of the catchswitch.
            if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
              UnwindDestToken = ChildUnwindDestToken;
              break;
            }
            assert(getParentPad(ChildUnwindDestToken) == CatchPad);
          }
        }
      }
    } else {
      auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
      for (User *U : CleanupPad->users()) {
        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
          if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
            UnwindDestToken = RetUnwindDest->getFirstNonPHI();
          else
            UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
          break;
        }
        Value *ChildUnwindDestToken;
        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
          ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
        } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
          Instruction *ChildPad = cast<Instruction>(U);
          auto Memo = MemoMap.find(ChildPad);
          if (Memo == MemoMap.end()) {
            // Haven't resolved this child yet; queue it and keep searching.
            Worklist.push_back(ChildPad);
            continue;
          }
          // We've checked this child, but still need to ignore it if it
          // had no proof either way.
          ChildUnwindDestToken = Memo->second;
          if (!ChildUnwindDestToken)
            continue;
        } else {
          // Not a relevant user of the cleanuppad
          continue;
        }
        // In a well-formed program, the child/invoke must either unwind to
        // an(other) child of the cleanup, or exit the cleanup.  In the
        // first case, continue searching.
        if (isa<Instruction>(ChildUnwindDestToken) &&
            getParentPad(ChildUnwindDestToken) == CleanupPad)
          continue;
        UnwindDestToken = ChildUnwindDestToken;
        break;
      }
    }
    // If we haven't found an unwind dest for CurrentPad, we may have queued its
    // children, so move on to the next in the worklist.
    if (!UnwindDestToken)
      continue;

    // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
    // any ancestors of CurrentPad up to but not including UnwindDestToken's
    // parent pad.  Record this in the memo map, and check to see if the
    // original EHPad being queried is one of the ones exited.
    Value *UnwindParent;
    if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
      UnwindParent = getParentPad(UnwindPad);
    else
      UnwindParent = nullptr;
    bool ExitedOriginalPad = false;
    for (Instruction *ExitedPad = CurrentPad;
         ExitedPad && ExitedPad != UnwindParent;
         ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
      // Skip over catchpads since they just follow their catchswitches.
      if (isa<CatchPadInst>(ExitedPad))
        continue;
      MemoMap[ExitedPad] = UnwindDestToken;
      ExitedOriginalPad |= (ExitedPad == EHPad);
    }

    if (ExitedOriginalPad)
      return UnwindDestToken;

    // Continue the search.
  }

  // No definitive information is contained within this funclet.
  return nullptr;
}

/// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
/// return that pad instruction.  If it unwinds to caller, return
/// ConstantTokenNone.  If it does not have a definitive unwind destination,
/// return nullptr.
///
/// This routine gets invoked for calls in funclets in inlinees when inlining
/// an invoke.  Since many funclets don't have calls inside them, it's queried
/// on-demand rather than building a map of pads to unwind dests up front.
/// Determining a funclet's unwind dest may require recursively searching its
/// descendants, and also ancestors and cousins if the descendants don't provide
/// an answer.  Since most funclets will have their unwind dest immediately
/// available as the unwind dest of a catchswitch or cleanupret, this routine
/// searches top-down from the given pad and then up. To avoid worst-case
/// quadratic run-time given that approach, it uses a memo map to avoid
/// re-processing funclet trees.  The callers that rewrite the IR as they go
/// take advantage of this, for correctness, by checking/forcing rewritten
/// pads' entries to match the original callee view.
static Value *getUnwindDestToken(Instruction *EHPad,
                                 UnwindDestMemoTy &MemoMap) {
  // Catchpads unwind to the same place as their catchswitch;
  // redirct any queries on catchpads so the code below can
  // deal with just catchswitches and cleanuppads.
  if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
    EHPad = CPI->getCatchSwitch();

  // Check if we've already determined the unwind dest for this pad.
  auto Memo = MemoMap.find(EHPad);
  if (Memo != MemoMap.end())
    return Memo->second;

  // Search EHPad and, if necessary, its descendants.
  Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
  assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
  if (UnwindDestToken)
    return UnwindDestToken;

  // No information is available for this EHPad from itself or any of its
  // descendants.  An unwind all the way out to a pad in the caller would
  // need also to agree with the unwind dest of the parent funclet, so
  // search up the chain to try to find a funclet with information.  Put
  // null entries in the memo map to avoid re-processing as we go up.
  MemoMap[EHPad] = nullptr;
#ifndef NDEBUG
  SmallPtrSet<Instruction *, 4> TempMemos;
  TempMemos.insert(EHPad);
#endif
  Instruction *LastUselessPad = EHPad;
  Value *AncestorToken;
  for (AncestorToken = getParentPad(EHPad);
       auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
       AncestorToken = getParentPad(AncestorToken)) {
    // Skip over catchpads since they just follow their catchswitches.
    if (isa<CatchPadInst>(AncestorPad))
      continue;
    // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
    // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
    // call to getUnwindDestToken, that would mean that AncestorPad had no
    // information in itself, its descendants, or its ancestors.  If that
    // were the case, then we should also have recorded the lack of information
    // for the descendant that we're coming from.  So assert that we don't
    // find a null entry in the MemoMap for AncestorPad.
    assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
    auto AncestorMemo = MemoMap.find(AncestorPad);
    if (AncestorMemo == MemoMap.end()) {
      UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
    } else {
      UnwindDestToken = AncestorMemo->second;
    }
    if (UnwindDestToken)
      break;
    LastUselessPad = AncestorPad;
    MemoMap[LastUselessPad] = nullptr;
#ifndef NDEBUG
    TempMemos.insert(LastUselessPad);
#endif
  }

  // We know that getUnwindDestTokenHelper was called on LastUselessPad and
  // returned nullptr (and likewise for EHPad and any of its ancestors up to
  // LastUselessPad), so LastUselessPad has no information from below.  Since
  // getUnwindDestTokenHelper must investigate all downward paths through
  // no-information nodes to prove that a node has no information like this,
  // and since any time it finds information it records it in the MemoMap for
  // not just the immediately-containing funclet but also any ancestors also
  // exited, it must be the case that, walking downward from LastUselessPad,
  // visiting just those nodes which have not been mapped to an unwind dest
  // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
  // they are just used to keep getUnwindDestTokenHelper from repeating work),
  // any node visited must have been exhaustively searched with no information
  // for it found.
  SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
  while (!Worklist.empty()) {
    Instruction *UselessPad = Worklist.pop_back_val();
    auto Memo = MemoMap.find(UselessPad);
    if (Memo != MemoMap.end() && Memo->second) {
      // Here the name 'UselessPad' is a bit of a misnomer, because we've found
      // that it is a funclet that does have information about unwinding to
      // a particular destination; its parent was a useless pad.
      // Since its parent has no information, the unwind edge must not escape
      // the parent, and must target a sibling of this pad.  This local unwind
      // gives us no information about EHPad.  Leave it and the subtree rooted
      // at it alone.
      assert(getParentPad(Memo->second) == getParentPad(UselessPad));
      continue;
    }
    // We know we don't have information for UselesPad.  If it has an entry in
    // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
    // added on this invocation of getUnwindDestToken; if a previous invocation
    // recorded nullptr, it would have had to prove that the ancestors of
    // UselessPad, which include LastUselessPad, had no information, and that
    // in turn would have required proving that the descendants of
    // LastUselesPad, which include EHPad, have no information about
    // LastUselessPad, which would imply that EHPad was mapped to nullptr in
    // the MemoMap on that invocation, which isn't the case if we got here.
    assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
    // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
    // information that we'd be contradicting by making a map entry for it
    // (which is something that getUnwindDestTokenHelper must have proved for
    // us to get here).  Just assert on is direct users here; the checks in
    // this downward walk at its descendants will verify that they don't have
    // any unwind edges that exit 'UselessPad' either (i.e. they either have no
    // unwind edges or unwind to a sibling).
    MemoMap[UselessPad] = UnwindDestToken;
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
      assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
      for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
        auto *CatchPad = HandlerBlock->getFirstNonPHI();
        for (User *U : CatchPad->users()) {
          assert(
              (!isa<InvokeInst>(U) ||
               (getParentPad(
                    cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
                CatchPad)) &&
              "Expected useless pad");
          if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
            Worklist.push_back(cast<Instruction>(U));
        }
      }
    } else {
      assert(isa<CleanupPadInst>(UselessPad));
      for (User *U : UselessPad->users()) {
        assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
        assert((!isa<InvokeInst>(U) ||
                (getParentPad(
                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
                 UselessPad)) &&
               "Expected useless pad");
        if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
          Worklist.push_back(cast<Instruction>(U));
      }
    }
  }

  return UnwindDestToken;
}

/// When we inline a basic block into an invoke,
/// we have to turn all of the calls that can throw into invokes.
/// This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
    BasicBlock *BB, BasicBlock *UnwindEdge,
    UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = &*BBI++;

    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);

    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
      continue;

    // We do not need to (and in fact, cannot) convert possibly throwing calls
    // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
    // invokes.  The caller's "segment" of the deoptimization continuation
    // attached to the newly inlined @llvm.experimental_deoptimize
    // (resp. @llvm.experimental.guard) call should contain the exception
    // handling logic, if any.
    if (auto *F = CI->getCalledFunction())
      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
          F->getIntrinsicID() == Intrinsic::experimental_guard)
        continue;

    if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
      // This call is nested inside a funclet.  If that funclet has an unwind
      // destination within the inlinee, then unwinding out of this call would
      // be UB.  Rewriting this call to an invoke which targets the inlined
      // invoke's unwind dest would give the call's parent funclet multiple
      // unwind destinations, which is something that subsequent EH table
      // generation can't handle and that the veirifer rejects.  So when we
      // see such a call, leave it as a call.
      auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
      Value *UnwindDestToken =
          getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
      if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
        continue;
#ifndef NDEBUG
      Instruction *MemoKey;
      if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
        MemoKey = CatchPad->getCatchSwitch();
      else
        MemoKey = FuncletPad;
      assert(FuncletUnwindMap->count(MemoKey) &&
             (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
             "must get memoized to avoid confusing later searches");
#endif // NDEBUG
    }

    changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
    return BB;
  }
  return nullptr;
}

/// If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
                                    ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *InvokeDest = II->getUnwindDest();

  Function *Caller = FirstNewBlock->getParent();

  // The inlined code is currently at the end of the function, scan from the
  // start of the inlined code to its end, checking for stuff we need to
  // rewrite.
  LandingPadInliningInfo Invoke(II);

  // Get all of the inlined landing pad instructions.
  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
       I != E; ++I)
    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
      InlinedLPads.insert(II->getLandingPadInst());

  // Append the clauses from the outer landing pad instruction into the inlined
  // landing pad instructions.
  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
  for (LandingPadInst *InlinedLPad : InlinedLPads) {
    unsigned OuterNum = OuterLPad->getNumClauses();
    InlinedLPad->reserveClauses(OuterNum);
    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
    if (OuterLPad->isCleanup())
      InlinedLPad->setCleanup(true);
  }

  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
       BB != E; ++BB) {
    if (InlinedCodeInfo.ContainsCalls)
      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
              &*BB, Invoke.getOuterResumeDest()))
        // Update any PHI nodes in the exceptional block to indicate that there
        // is now a new entry in them.
        Invoke.addIncomingPHIValuesFor(NewBB);

    // Forward any resumes that are remaining here.
    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
      Invoke.forwardResume(RI, InlinedLPads);
  }

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction. Eliminate these entries (which might even delete the
  // PHI node) now.
  InvokeDest->removePredecessor(II->getParent());
}

/// If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
                               ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *UnwindDest = II->getUnwindDest();
  Function *Caller = FirstNewBlock->getParent();

  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");

  // If there are PHI nodes in the unwind destination block, we need to keep
  // track of which values came into them from the invoke before removing the
  // edge from this block.
  SmallVector<Value *, 8> UnwindDestPHIValues;
  BasicBlock *InvokeBB = II->getParent();
  for (Instruction &I : *UnwindDest) {
    // Save the value to use for this edge.
    PHINode *PHI = dyn_cast<PHINode>(&I);
    if (!PHI)
      break;
    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
  }

  // Add incoming-PHI values to the unwind destination block for the given basic
  // block, using the values for the original invoke's source block.
  auto UpdatePHINodes = [&](BasicBlock *Src) {
    BasicBlock::iterator I = UnwindDest->begin();
    for (Value *V : UnwindDestPHIValues) {
      PHINode *PHI = cast<PHINode>(I);
      PHI->addIncoming(V, Src);
      ++I;
    }
  };

  // This connects all the instructions which 'unwind to caller' to the invoke
  // destination.
  UnwindDestMemoTy FuncletUnwindMap;
  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
       BB != E; ++BB) {
    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
      if (CRI->unwindsToCaller()) {
        auto *CleanupPad = CRI->getCleanupPad();
        CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
        CRI->eraseFromParent();
        UpdatePHINodes(&*BB);
        // Finding a cleanupret with an unwind destination would confuse
        // subsequent calls to getUnwindDestToken, so map the cleanuppad
        // to short-circuit any such calls and recognize this as an "unwind
        // to caller" cleanup.
        assert(!FuncletUnwindMap.count(CleanupPad) ||
               isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
        FuncletUnwindMap[CleanupPad] =
            ConstantTokenNone::get(Caller->getContext());
      }
    }

    Instruction *I = BB->getFirstNonPHI();
    if (!I->isEHPad())
      continue;

    Instruction *Replacement = nullptr;
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
      if (CatchSwitch->unwindsToCaller()) {
        Value *UnwindDestToken;
        if (auto *ParentPad =
                dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
          // This catchswitch is nested inside another funclet.  If that
          // funclet has an unwind destination within the inlinee, then
          // unwinding out of this catchswitch would be UB.  Rewriting this
          // catchswitch to unwind to the inlined invoke's unwind dest would
          // give the parent funclet multiple unwind destinations, which is
          // something that subsequent EH table generation can't handle and
          // that the veirifer rejects.  So when we see such a call, leave it
          // as "unwind to caller".
          UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
          if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
            continue;
        } else {
          // This catchswitch has no parent to inherit constraints from, and
          // none of its descendants can have an unwind edge that exits it and
          // targets another funclet in the inlinee.  It may or may not have a
          // descendant that definitively has an unwind to caller.  In either
          // case, we'll have to assume that any unwinds out of it may need to
          // be routed to the caller, so treat it as though it has a definitive
          // unwind to caller.
          UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
        }
        auto *NewCatchSwitch = CatchSwitchInst::Create(
            CatchSwitch->getParentPad(), UnwindDest,
            CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
            CatchSwitch);
        for (BasicBlock *PadBB : CatchSwitch->handlers())
          NewCatchSwitch->addHandler(PadBB);
        // Propagate info for the old catchswitch over to the new one in
        // the unwind map.  This also serves to short-circuit any subsequent
        // checks for the unwind dest of this catchswitch, which would get
        // confused if they found the outer handler in the callee.
        FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
        Replacement = NewCatchSwitch;
      }
    } else if (!isa<FuncletPadInst>(I)) {
      llvm_unreachable("unexpected EHPad!");
    }

    if (Replacement) {
      Replacement->takeName(I);
      I->replaceAllUsesWith(Replacement);
      I->eraseFromParent();
      UpdatePHINodes(&*BB);
    }
  }

  if (InlinedCodeInfo.ContainsCalls)
    for (Function::iterator BB = FirstNewBlock->getIterator(),
                            E = Caller->end();
         BB != E; ++BB)
      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
              &*BB, UnwindDest, &FuncletUnwindMap))
        // Update any PHI nodes in the exceptional block to indicate that there
        // is now a new entry in them.
        UpdatePHINodes(NewBB);

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction. Eliminate these entries (which might even delete the
  // PHI node) now.
  UnwindDest->removePredecessor(InvokeBB);
}

/// When inlining a call site that has !llvm.mem.parallel_loop_access or
/// llvm.access.group metadata, that metadata should be propagated to all
/// memory-accessing cloned instructions.
static void PropagateParallelLoopAccessMetadata(CallSite CS,
                                                ValueToValueMapTy &VMap) {
  MDNode *M =
    CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
  MDNode *CallAccessGroup =
      CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
  if (!M && !CallAccessGroup)
    return;

  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (!VMI->second)
      continue;

    Instruction *NI = dyn_cast<Instruction>(VMI->second);
    if (!NI)
      continue;

    if (M) {
      if (MDNode *PM =
              NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
        M = MDNode::concatenate(PM, M);
      NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
      } else if (NI->mayReadOrWriteMemory()) {
        NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
      }
    }

    if (NI->mayReadOrWriteMemory()) {
      MDNode *UnitedAccGroups = uniteAccessGroups(
          NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
      NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
    }
  }
}

/// When inlining a function that contains noalias scope metadata,
/// this metadata needs to be cloned so that the inlined blocks
/// have different "unique scopes" at every call site. Were this not done, then
/// aliasing scopes from a function inlined into a caller multiple times could
/// not be differentiated (and this would lead to miscompiles because the
/// non-aliasing property communicated by the metadata could have
/// call-site-specific control dependencies).
static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
  const Function *CalledFunc = CS.getCalledFunction();
  SetVector<const MDNode *> MD;

  // Note: We could only clone the metadata if it is already used in the
  // caller. I'm omitting that check here because it might confuse
  // inter-procedural alias analysis passes. We can revisit this if it becomes
  // an efficiency or overhead problem.

  for (const BasicBlock &I : *CalledFunc)
    for (const Instruction &J : I) {
      if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
        MD.insert(M);
      if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
        MD.insert(M);
    }

  if (MD.empty())
    return;

  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
  // the set.
  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
  while (!Queue.empty()) {
    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
        if (MD.insert(M1))
          Queue.push_back(M1);
  }

  // Now we have a complete set of all metadata in the chains used to specify
  // the noalias scopes and the lists of those scopes.
  SmallVector<TempMDTuple, 16> DummyNodes;
  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
  for (const MDNode *I : MD) {
    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
    MDMap[I].reset(DummyNodes.back().get());
  }

  // Create new metadata nodes to replace the dummy nodes, replacing old
  // metadata references with either a dummy node or an already-created new
  // node.
  for (const MDNode *I : MD) {
    SmallVector<Metadata *, 4> NewOps;
    for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
      const Metadata *V = I->getOperand(i);
      if (const MDNode *M = dyn_cast<MDNode>(V))
        NewOps.push_back(MDMap[M]);
      else
        NewOps.push_back(const_cast<Metadata *>(V));
    }

    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
    MDTuple *TempM = cast<MDTuple>(MDMap[I]);
    assert(TempM->isTemporary() && "Expected temporary node");

    TempM->replaceAllUsesWith(NewM);
  }

  // Now replace the metadata in the new inlined instructions with the
  // repacements from the map.
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (!VMI->second)
      continue;

    Instruction *NI = dyn_cast<Instruction>(VMI->second);
    if (!NI)
      continue;

    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
      MDNode *NewMD = MDMap[M];
      // If the call site also had alias scope metadata (a list of scopes to
      // which instructions inside it might belong), propagate those scopes to
      // the inlined instructions.
      if (MDNode *CSM =
              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
        NewMD = MDNode::concatenate(NewMD, CSM);
      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
    } else if (NI->mayReadOrWriteMemory()) {
      if (MDNode *M =
              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
        NI->setMetadata(LLVMContext::MD_alias_scope, M);
    }

    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
      MDNode *NewMD = MDMap[M];
      // If the call site also had noalias metadata (a list of scopes with
      // which instructions inside it don't alias), propagate those scopes to
      // the inlined instructions.
      if (MDNode *CSM =
              CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
        NewMD = MDNode::concatenate(NewMD, CSM);
      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
    } else if (NI->mayReadOrWriteMemory()) {
      if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
        NI->setMetadata(LLVMContext::MD_noalias, M);
    }
  }
}

/// If the inlined function has noalias arguments,
/// then add new alias scopes for each noalias argument, tag the mapped noalias
/// parameters with noalias metadata specifying the new scope, and tag all
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
                                  const DataLayout &DL, AAResults *CalleeAAR) {
  if (!EnableNoAliasConversion)
    return;

  const Function *CalledFunc = CS.getCalledFunction();
  SmallVector<const Argument *, 4> NoAliasArgs;

  for (const Argument &Arg : CalledFunc->args())
    if (Arg.hasNoAliasAttr() && !Arg.use_empty())
      NoAliasArgs.push_back(&Arg);

  if (NoAliasArgs.empty())
    return;

  // To do a good job, if a noalias variable is captured, we need to know if
  // the capture point dominates the particular use we're considering.
  DominatorTree DT;
  DT.recalculate(const_cast<Function&>(*CalledFunc));

  // noalias indicates that pointer values based on the argument do not alias
  // pointer values which are not based on it. So we add a new "scope" for each
  // noalias function argument. Accesses using pointers based on that argument
  // become part of that alias scope, accesses using pointers not based on that
  // argument are tagged as noalias with that scope.

  DenseMap<const Argument *, MDNode *> NewScopes;
  MDBuilder MDB(CalledFunc->getContext());

  // Create a new scope domain for this function.
  MDNode *NewDomain =
    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
    const Argument *A = NoAliasArgs[i];

    std::string Name = CalledFunc->getName();
    if (A->hasName()) {
      Name += ": %";
      Name += A->getName();
    } else {
      Name += ": argument ";
      Name += utostr(i);
    }

    // Note: We always create a new anonymous root here. This is true regardless
    // of the linkage of the callee because the aliasing "scope" is not just a
    // property of the callee, but also all control dependencies in the caller.
    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
    NewScopes.insert(std::make_pair(A, NewScope));
  }

  // Iterate over all new instructions in the map; for all memory-access
  // instructions, add the alias scope metadata.
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
      if (!VMI->second)
        continue;

      Instruction *NI = dyn_cast<Instruction>(VMI->second);
      if (!NI)
        continue;

      bool IsArgMemOnlyCall = false, IsFuncCall = false;
      SmallVector<const Value *, 2> PtrArgs;

      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
        PtrArgs.push_back(LI->getPointerOperand());
      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
        PtrArgs.push_back(SI->getPointerOperand());
      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
        PtrArgs.push_back(VAAI->getPointerOperand());
      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
        PtrArgs.push_back(CXI->getPointerOperand());
      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
        PtrArgs.push_back(RMWI->getPointerOperand());
      else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
        // If we know that the call does not access memory, then we'll still
        // know that about the inlined clone of this call site, and we don't
        // need to add metadata.
        if (ICS.doesNotAccessMemory())
          continue;

        IsFuncCall = true;
        if (CalleeAAR) {
          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
          if (MRB == FMRB_OnlyAccessesArgumentPointees ||
              MRB == FMRB_OnlyReadsArgumentPointees)
            IsArgMemOnlyCall = true;
        }

        for (Value *Arg : ICS.args()) {
          // We need to check the underlying objects of all arguments, not just
          // the pointer arguments, because we might be passing pointers as
          // integers, etc.
          // However, if we know that the call only accesses pointer arguments,
          // then we only need to check the pointer arguments.
          if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
            continue;

          PtrArgs.push_back(Arg);
        }
      }

      // If we found no pointers, then this instruction is not suitable for
      // pairing with an instruction to receive aliasing metadata.
      // However, if this is a call, this we might just alias with none of the
      // noalias arguments.
      if (PtrArgs.empty() && !IsFuncCall)
        continue;

      // It is possible that there is only one underlying object, but you
      // need to go through several PHIs to see it, and thus could be
      // repeated in the Objects list.
      SmallPtrSet<const Value *, 4> ObjSet;
      SmallVector<Metadata *, 4> Scopes, NoAliases;

      SmallSetVector<const Argument *, 4> NAPtrArgs;
      for (const Value *V : PtrArgs) {
        SmallVector<Value *, 4> Objects;
        GetUnderlyingObjects(const_cast<Value*>(V),
                             Objects, DL, /* LI = */ nullptr);

        for (Value *O : Objects)
          ObjSet.insert(O);
      }

      // Figure out if we're derived from anything that is not a noalias
      // argument.
      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
      for (const Value *V : ObjSet) {
        // Is this value a constant that cannot be derived from any pointer
        // value (we need to exclude constant expressions, for example, that
        // are formed from arithmetic on global symbols).
        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
                             isa<ConstantPointerNull>(V) ||
                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
        if (IsNonPtrConst)
          continue;

        // If this is anything other than a noalias argument, then we cannot
        // completely describe the aliasing properties using alias.scope
        // metadata (and, thus, won't add any).
        if (const Argument *A = dyn_cast<Argument>(V)) {
          if (!A->hasNoAliasAttr())
            UsesAliasingPtr = true;
        } else {
          UsesAliasingPtr = true;
        }

        // If this is not some identified function-local object (which cannot
        // directly alias a noalias argument), or some other argument (which,
        // by definition, also cannot alias a noalias argument), then we could
        // alias a noalias argument that has been captured).
        if (!isa<Argument>(V) &&
            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
          CanDeriveViaCapture = true;
      }

      // A function call can always get captured noalias pointers (via other
      // parameters, globals, etc.).
      if (IsFuncCall && !IsArgMemOnlyCall)
        CanDeriveViaCapture = true;

      // First, we want to figure out all of the sets with which we definitely
      // don't alias. Iterate over all noalias set, and add those for which:
      //   1. The noalias argument is not in the set of objects from which we
      //      definitely derive.
      //   2. The noalias argument has not yet been captured.
      // An arbitrary function that might load pointers could see captured
      // noalias arguments via other noalias arguments or globals, and so we
      // must always check for prior capture.
      for (const Argument *A : NoAliasArgs) {
        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
                                 // It might be tempting to skip the
                                 // PointerMayBeCapturedBefore check if
                                 // A->hasNoCaptureAttr() is true, but this is
                                 // incorrect because nocapture only guarantees
                                 // that no copies outlive the function, not
                                 // that the value cannot be locally captured.
                                 !PointerMayBeCapturedBefore(A,
                                   /* ReturnCaptures */ false,
                                   /* StoreCaptures */ false, I, &DT)))
          NoAliases.push_back(NewScopes[A]);
      }

      if (!NoAliases.empty())
        NI->setMetadata(LLVMContext::MD_noalias,
                        MDNode::concatenate(
                            NI->getMetadata(LLVMContext::MD_noalias),
                            MDNode::get(CalledFunc->getContext(), NoAliases)));

      // Next, we want to figure out all of the sets to which we might belong.
      // We might belong to a set if the noalias argument is in the set of
      // underlying objects. If there is some non-noalias argument in our list
      // of underlying objects, then we cannot add a scope because the fact
      // that some access does not alias with any set of our noalias arguments
      // cannot itself guarantee that it does not alias with this access
      // (because there is some pointer of unknown origin involved and the
      // other access might also depend on this pointer). We also cannot add
      // scopes to arbitrary functions unless we know they don't access any
      // non-parameter pointer-values.
      bool CanAddScopes = !UsesAliasingPtr;
      if (CanAddScopes && IsFuncCall)
        CanAddScopes = IsArgMemOnlyCall;

      if (CanAddScopes)
        for (const Argument *A : NoAliasArgs) {
          if (ObjSet.count(A))
            Scopes.push_back(NewScopes[A]);
        }

      if (!Scopes.empty())
        NI->setMetadata(
            LLVMContext::MD_alias_scope,
            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
                                MDNode::get(CalledFunc->getContext(), Scopes)));
    }
  }
}

/// If the inlined function has non-byval align arguments, then
/// add @llvm.assume-based alignment assumptions to preserve this information.
static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
  if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
    return;

  AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
  auto &DL = CS.getCaller()->getParent()->getDataLayout();

  // To avoid inserting redundant assumptions, we should check for assumptions
  // already in the caller. To do this, we might need a DT of the caller.
  DominatorTree DT;
  bool DTCalculated = false;

  Function *CalledFunc = CS.getCalledFunction();
  for (Argument &Arg : CalledFunc->args()) {
    unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
    if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
      if (!DTCalculated) {
        DT.recalculate(*CS.getCaller());
        DTCalculated = true;
      }

      // If we can already prove the asserted alignment in the context of the
      // caller, then don't bother inserting the assumption.
      Value *ArgVal = CS.getArgument(Arg.getArgNo());
      if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
        continue;

      CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
                              .CreateAlignmentAssumption(DL, ArgVal, Align);
      AC->registerAssumption(NewAsmp);
    }
  }
}

/// Once we have cloned code over from a callee into the caller,
/// update the specified callgraph to reflect the changes we made.
/// Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
                                         Function::iterator FirstNewBlock,
                                         ValueToValueMapTy &VMap,
                                         InlineFunctionInfo &IFI) {
  CallGraph &CG = *IFI.CG;
  const Function *Caller = CS.getCaller();
  const Function *Callee = CS.getCalledFunction();
  CallGraphNode *CalleeNode = CG[Callee];
  CallGraphNode *CallerNode = CG[Caller];

  // Since we inlined some uninlined call sites in the callee into the caller,
  // add edges from the caller to all of the callees of the callee.
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();

  // Consider the case where CalleeNode == CallerNode.
  CallGraphNode::CalledFunctionsVector CallCache;
  if (CalleeNode == CallerNode) {
    CallCache.assign(I, E);
    I = CallCache.begin();
    E = CallCache.end();
  }

  for (; I != E; ++I) {
    const Value *OrigCall = I->first;

    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
    // Only copy the edge if the call was inlined!
    if (VMI == VMap.end() || VMI->second == nullptr)
      continue;

    // If the call was inlined, but then constant folded, there is no edge to
    // add.  Check for this case.
    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
    if (!NewCall)
      continue;

    // We do not treat intrinsic calls like real function calls because we
    // expect them to become inline code; do not add an edge for an intrinsic.
    CallSite CS = CallSite(NewCall);
    if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
      continue;

    // Remember that this call site got inlined for the client of
    // InlineFunction.
    IFI.InlinedCalls.push_back(NewCall);

    // It's possible that inlining the callsite will cause it to go from an
    // indirect to a direct call by resolving a function pointer.  If this
    // happens, set the callee of the new call site to a more precise
    // destination.  This can also happen if the call graph node of the caller
    // was just unnecessarily imprecise.
    if (!I->second->getFunction())
      if (Function *F = CallSite(NewCall).getCalledFunction()) {
        // Indirect call site resolved to direct call.
        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);

        continue;
      }

    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
  }

  // Update the call graph by deleting the edge from Callee to Caller.  We must
  // do this after the loop above in case Caller and Callee are the same.
  CallerNode->removeCallEdgeFor(CS);
}

static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
                                    BasicBlock *InsertBlock,
                                    InlineFunctionInfo &IFI) {
  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
  IRBuilder<> Builder(InsertBlock, InsertBlock->begin());

  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));

  // Always generate a memcpy of alignment 1 here because we don't know
  // the alignment of the src pointer.  Other optimizations can infer
  // better alignment.
  Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
}

/// When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
                                  const Function *CalledFunc,
                                  InlineFunctionInfo &IFI,
                                  unsigned ByValAlignment) {
  PointerType *ArgTy = cast<PointerType>(Arg->getType());
  Type *AggTy = ArgTy->getElementType();

  Function *Caller = TheCall->getFunction();
  const DataLayout &DL = Caller->getParent()->getDataLayout();

  // If the called function is readonly, then it could not mutate the caller's
  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
  // temporary.
  if (CalledFunc->onlyReadsMemory()) {
    // If the byval argument has a specified alignment that is greater than the
    // passed in pointer, then we either have to round up the input pointer or
    // give up on this transformation.
    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
      return Arg;

    AssumptionCache *AC =
        IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;

    // If the pointer is already known to be sufficiently aligned, or if we can
    // round it up to a larger alignment, then we don't need a temporary.
    if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
        ByValAlignment)
      return Arg;

    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
    // for code quality, but rarely happens and is required for correctness.
  }

  // Create the alloca.  If we have DataLayout, use nice alignment.
  unsigned Align = DL.getPrefTypeAlignment(AggTy);

  // If the byval had an alignment specified, we *must* use at least that
  // alignment, as it is required by the byval argument (and uses of the
  // pointer inside the callee).
  Align = std::max(Align, ByValAlignment);

  Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
                                    nullptr, Align, Arg->getName(),
                                    &*Caller->begin()->begin());
  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));

  // Uses of the argument in the function should use our new alloca
  // instead.
  return NewAlloca;
}

// Check whether this Value is used by a lifetime intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
  for (User *U : V->users())
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
      if (II->isLifetimeStartOrEnd())
        return true;
  return false;
}

// Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
  Type *Ty = AI->getType();
  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
                                       Ty->getPointerAddressSpace());
  if (Ty == Int8PtrTy)
    return isUsedByLifetimeMarker(AI);

  // Do a scan to find all the casts to i8*.
  for (User *U : AI->users()) {
    if (U->getType() != Int8PtrTy) continue;
    if (U->stripPointerCasts() != AI) continue;
    if (isUsedByLifetimeMarker(U))
      return true;
  }
  return false;
}

/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
/// block. Allocas used in inalloca calls and allocas of dynamic array size
/// cannot be static.
static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
  return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
}

/// Update inlined instructions' line numbers to
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
                             Instruction *TheCall, bool CalleeHasDebugInfo) {
  const DebugLoc &TheCallDL = TheCall->getDebugLoc();
  if (!TheCallDL)
    return;

  auto &Ctx = Fn->getContext();
  DILocation *InlinedAtNode = TheCallDL;

  // Create a unique call site, not to be confused with any other call from the
  // same location.
  InlinedAtNode = DILocation::getDistinct(
      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());

  // Cache the inlined-at nodes as they're built so they are reused, without
  // this every instruction's inlined-at chain would become distinct from each
  // other.
  DenseMap<const MDNode *, MDNode *> IANodes;

  for (; FI != Fn->end(); ++FI) {
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
         BI != BE; ++BI) {
      if (DebugLoc DL = BI->getDebugLoc()) {
        auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
                                            IANodes);
        auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
        BI->setDebugLoc(IDL);
        continue;
      }

      if (CalleeHasDebugInfo)
        continue;

      // If the inlined instruction has no line number, make it look as if it
      // originates from the call location. This is important for
      // ((__always_inline__, __nodebug__)) functions which must use caller
      // location for all instructions in their function body.

      // Don't update static allocas, as they may get moved later.
      if (auto *AI = dyn_cast<AllocaInst>(BI))
        if (allocaWouldBeStaticInEntry(AI))
          continue;

      BI->setDebugLoc(TheCallDL);
    }
  }
}

/// Update the block frequencies of the caller after a callee has been inlined.
///
/// Each block cloned into the caller has its block frequency scaled by the
/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
/// callee's entry block gets the same frequency as the callsite block and the
/// relative frequencies of all cloned blocks remain the same after cloning.
static void updateCallerBFI(BasicBlock *CallSiteBlock,
                            const ValueToValueMapTy &VMap,
                            BlockFrequencyInfo *CallerBFI,
                            BlockFrequencyInfo *CalleeBFI,
                            const BasicBlock &CalleeEntryBlock) {
  SmallPtrSet<BasicBlock *, 16> ClonedBBs;
  for (auto const &Entry : VMap) {
    if (!isa<BasicBlock>(Entry.first) || !Entry.second)
      continue;
    auto *OrigBB = cast<BasicBlock>(Entry.first);
    auto *ClonedBB = cast<BasicBlock>(Entry.second);
    uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
    if (!ClonedBBs.insert(ClonedBB).second) {
      // Multiple blocks in the callee might get mapped to one cloned block in
      // the caller since we prune the callee as we clone it. When that happens,
      // we want to use the maximum among the original blocks' frequencies.
      uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
      if (NewFreq > Freq)
        Freq = NewFreq;
    }
    CallerBFI->setBlockFreq(ClonedBB, Freq);
  }
  BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
  CallerBFI->setBlockFreqAndScale(
      EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
      ClonedBBs);
}

/// Update the branch metadata for cloned call instructions.
static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
                              const ProfileCount &CalleeEntryCount,
                              const Instruction *TheCall,
                              ProfileSummaryInfo *PSI,
                              BlockFrequencyInfo *CallerBFI) {
  if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
      CalleeEntryCount.getCount() < 1)
    return;
  auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
  uint64_t CallCount =
      std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
               CalleeEntryCount.getCount());

  for (auto const &Entry : VMap)
    if (isa<CallInst>(Entry.first))
      if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
        CI->updateProfWeight(CallCount, CalleeEntryCount.getCount());
  for (BasicBlock &BB : *Callee)
    // No need to update the callsite if it is pruned during inlining.
    if (VMap.count(&BB))
      for (Instruction &I : BB)
        if (CallInst *CI = dyn_cast<CallInst>(&I))
          CI->updateProfWeight(CalleeEntryCount.getCount() - CallCount,
                               CalleeEntryCount.getCount());
}

/// Update the entry count of callee after inlining.
///
/// The callsite's block count is subtracted from the callee's function entry
/// count.
static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB,
                              Instruction *CallInst, Function *Callee,
                              ProfileSummaryInfo *PSI) {
  // If the callee has a original count of N, and the estimated count of
  // callsite is M, the new callee count is set to N - M. M is estimated from
  // the caller's entry count, its entry block frequency and the block frequency
  // of the callsite.
  auto CalleeCount = Callee->getEntryCount();
  if (!CalleeCount.hasValue() || !PSI)
    return;
  auto CallCount = PSI->getProfileCount(CallInst, CallerBFI);
  if (!CallCount.hasValue())
    return;
  // Since CallSiteCount is an estimate, it could exceed the original callee
  // count and has to be set to 0.
  if (CallCount.getValue() > CalleeCount.getCount())
    CalleeCount.setCount(0);
  else
    CalleeCount.setCount(CalleeCount.getCount() - CallCount.getValue());
  Callee->setEntryCount(CalleeCount);
}

/// This function inlines the called function into the basic block of the
/// caller. This returns false if it is not possible to inline this call.
/// The program is still in a well defined state if this occurs though.
///
/// Note that this only does one level of inlining.  For example, if the
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
/// exists in the instruction stream.  Similarly this will inline a recursive
/// function by one level.
llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
                                        AAResults *CalleeAAR,
                                        bool InsertLifetime,
                                        Function *ForwardVarArgsTo) {
  Instruction *TheCall = CS.getInstruction();
  assert(TheCall->getParent() && TheCall->getFunction()
         && "Instruction not in function!");

  // If IFI has any state in it, zap it before we fill it in.
  IFI.reset();

  Function *CalledFunc = CS.getCalledFunction();
  if (!CalledFunc ||               // Can't inline external function or indirect
      CalledFunc->isDeclaration()) // call!
    return "external or indirect";

  // The inliner does not know how to inline through calls with operand bundles
  // in general ...
  if (CS.hasOperandBundles()) {
    for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
      uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
      // ... but it knows how to inline through "deopt" operand bundles ...
      if (Tag == LLVMContext::OB_deopt)
        continue;
      // ... and "funclet" operand bundles.
      if (Tag == LLVMContext::OB_funclet)
        continue;

      return "unsupported operand bundle";
    }
  }

  // If the call to the callee cannot throw, set the 'nounwind' flag on any
  // calls that we inline.
  bool MarkNoUnwind = CS.doesNotThrow();

  BasicBlock *OrigBB = TheCall->getParent();
  Function *Caller = OrigBB->getParent();

  // GC poses two hazards to inlining, which only occur when the callee has GC:
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
  //     caller.
  //  2. If the caller has a differing GC, it is invalid to inline.
  if (CalledFunc->hasGC()) {
    if (!Caller->hasGC())
      Caller->setGC(CalledFunc->getGC());
    else if (CalledFunc->getGC() != Caller->getGC())
      return "incompatible GC";
  }

  // Get the personality function from the callee if it contains a landing pad.
  Constant *CalledPersonality =
      CalledFunc->hasPersonalityFn()
          ? CalledFunc->getPersonalityFn()->stripPointerCasts()
          : nullptr;

  // Find the personality function used by the landing pads of the caller. If it
  // exists, then check to see that it matches the personality function used in
  // the callee.
  Constant *CallerPersonality =
      Caller->hasPersonalityFn()
          ? Caller->getPersonalityFn()->stripPointerCasts()
          : nullptr;
  if (CalledPersonality) {
    if (!CallerPersonality)
      Caller->setPersonalityFn(CalledPersonality);
    // If the personality functions match, then we can perform the
    // inlining. Otherwise, we can't inline.
    // TODO: This isn't 100% true. Some personality functions are proper
    //       supersets of others and can be used in place of the other.
    else if (CalledPersonality != CallerPersonality)
      return "incompatible personality";
  }

  // We need to figure out which funclet the callsite was in so that we may
  // properly nest the callee.
  Instruction *CallSiteEHPad = nullptr;
  if (CallerPersonality) {
    EHPersonality Personality = classifyEHPersonality(CallerPersonality);
    if (isScopedEHPersonality(Personality)) {
      Optional<OperandBundleUse> ParentFunclet =
          CS.getOperandBundle(LLVMContext::OB_funclet);
      if (ParentFunclet)
        CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());

      // OK, the inlining site is legal.  What about the target function?

      if (CallSiteEHPad) {
        if (Personality == EHPersonality::MSVC_CXX) {
          // The MSVC personality cannot tolerate catches getting inlined into
          // cleanup funclets.
          if (isa<CleanupPadInst>(CallSiteEHPad)) {
            // Ok, the call site is within a cleanuppad.  Let's check the callee
            // for catchpads.
            for (const BasicBlock &CalledBB : *CalledFunc) {
              if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
                return "catch in cleanup funclet";
            }
          }
        } else if (isAsynchronousEHPersonality(Personality)) {
          // SEH is even less tolerant, there may not be any sort of exceptional
          // funclet in the callee.
          for (const BasicBlock &CalledBB : *CalledFunc) {
            if (CalledBB.isEHPad())
              return "SEH in cleanup funclet";
          }
        }
      }
    }
  }

  // Determine if we are dealing with a call in an EHPad which does not unwind
  // to caller.
  bool EHPadForCallUnwindsLocally = false;
  if (CallSiteEHPad && CS.isCall()) {
    UnwindDestMemoTy FuncletUnwindMap;
    Value *CallSiteUnwindDestToken =
        getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);

    EHPadForCallUnwindsLocally =
        CallSiteUnwindDestToken &&
        !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
  }

  // Get an iterator to the last basic block in the function, which will have
  // the new function inlined after it.
  Function::iterator LastBlock = --Caller->end();

  // Make sure to capture all of the return instructions from the cloned
  // function.
  SmallVector<ReturnInst*, 8> Returns;
  ClonedCodeInfo InlinedFunctionInfo;
  Function::iterator FirstNewBlock;

  { // Scope to destroy VMap after cloning.
    ValueToValueMapTy VMap;
    // Keep a list of pair (dst, src) to emit byval initializations.
    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;

    auto &DL = Caller->getParent()->getDataLayout();

    // Calculate the vector of arguments to pass into the function cloner, which
    // matches up the formal to the actual argument values.
    CallSite::arg_iterator AI = CS.arg_begin();
    unsigned ArgNo = 0;
    for (Function::arg_iterator I = CalledFunc->arg_begin(),
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
      Value *ActualArg = *AI;

      // When byval arguments actually inlined, we need to make the copy implied
      // by them explicit.  However, we don't do this if the callee is readonly
      // or readnone, because the copy would be unneeded: the callee doesn't
      // modify the struct.
      if (CS.isByValArgument(ArgNo)) {
        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
                                        CalledFunc->getParamAlignment(ArgNo));
        if (ActualArg != *AI)
          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
      }

      VMap[&*I] = ActualArg;
    }

    // Add alignment assumptions if necessary. We do this before the inlined
    // instructions are actually cloned into the caller so that we can easily
    // check what will be known at the start of the inlined code.
    AddAlignmentAssumptions(CS, IFI);

    // We want the inliner to prune the code as it copies.  We would LOVE to
    // have no dead or constant instructions leftover after inlining occurs
    // (which can happen, e.g., because an argument was constant), but we'll be
    // happy with whatever the cloner can do.
    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
                              /*ModuleLevelChanges=*/false, Returns, ".i",
                              &InlinedFunctionInfo, TheCall);
    // Remember the first block that is newly cloned over.
    FirstNewBlock = LastBlock; ++FirstNewBlock;

    if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
      // Update the BFI of blocks cloned into the caller.
      updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
                      CalledFunc->front());

    updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
                      IFI.PSI, IFI.CallerBFI);
    // Update the profile count of callee.
    updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI);

    // Inject byval arguments initialization.
    for (std::pair<Value*, Value*> &Init : ByValInit)
      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
                              &*FirstNewBlock, IFI);

    Optional<OperandBundleUse> ParentDeopt =
        CS.getOperandBundle(LLVMContext::OB_deopt);
    if (ParentDeopt) {
      SmallVector<OperandBundleDef, 2> OpDefs;

      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
        Instruction *I = dyn_cast_or_null<Instruction>(VH);
        if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef

        OpDefs.clear();

        CallSite ICS(I);
        OpDefs.reserve(ICS.getNumOperandBundles());

        for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
          auto ChildOB = ICS.getOperandBundleAt(i);
          if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
            // If the inlined call has other operand bundles, let them be
            OpDefs.emplace_back(ChildOB);
            continue;
          }

          // It may be useful to separate this logic (of handling operand
          // bundles) out to a separate "policy" component if this gets crowded.
          // Prepend the parent's deoptimization continuation to the newly
          // inlined call's deoptimization continuation.
          std::vector<Value *> MergedDeoptArgs;
          MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
                                  ChildOB.Inputs.size());

          MergedDeoptArgs.insert(MergedDeoptArgs.end(),
                                 ParentDeopt->Inputs.begin(),
                                 ParentDeopt->Inputs.end());
          MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
                                 ChildOB.Inputs.end());

          OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
        }

        Instruction *NewI = nullptr;
        if (isa<CallInst>(I))
          NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
        else
          NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);

        // Note: the RAUW does the appropriate fixup in VMap, so we need to do
        // this even if the call returns void.
        I->replaceAllUsesWith(NewI);

        VH = nullptr;
        I->eraseFromParent();
      }
    }

    // Update the callgraph if requested.
    if (IFI.CG)
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);

    // For 'nodebug' functions, the associated DISubprogram is always null.
    // Conservatively avoid propagating the callsite debug location to
    // instructions inlined from a function whose DISubprogram is not null.
    fixupLineNumbers(Caller, FirstNewBlock, TheCall,
                     CalledFunc->getSubprogram() != nullptr);

    // Clone existing noalias metadata if necessary.
    CloneAliasScopeMetadata(CS, VMap);

    // Add noalias metadata if necessary.
    AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);

    // Propagate llvm.mem.parallel_loop_access if necessary.
    PropagateParallelLoopAccessMetadata(CS, VMap);

    // Register any cloned assumptions.
    if (IFI.GetAssumptionCache)
      for (BasicBlock &NewBlock :
           make_range(FirstNewBlock->getIterator(), Caller->end()))
        for (Instruction &I : NewBlock) {
          if (auto *II = dyn_cast<IntrinsicInst>(&I))
            if (II->getIntrinsicID() == Intrinsic::assume)
              (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
        }
  }

  // If there are any alloca instructions in the block that used to be the entry
  // block for the callee, move them to the entry block of the caller.  First
  // calculate which instruction they should be inserted before.  We insert the
  // instructions at the end of the current alloca list.
  {
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
         E = FirstNewBlock->end(); I != E; ) {
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
      if (!AI) continue;

      // If the alloca is now dead, remove it.  This often occurs due to code
      // specialization.
      if (AI->use_empty()) {
        AI->eraseFromParent();
        continue;
      }

      if (!allocaWouldBeStaticInEntry(AI))
        continue;

      // Keep track of the static allocas that we inline into the caller.
      IFI.StaticAllocas.push_back(AI);

      // Scan for the block of allocas that we can move over, and move them
      // all at once.
      while (isa<AllocaInst>(I) &&
             allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
        ++I;
      }

      // Transfer all of the allocas over in a block.  Using splice means
      // that the instructions aren't removed from the symbol table, then
      // reinserted.
      Caller->getEntryBlock().getInstList().splice(
          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
    }
    // Move any dbg.declares describing the allocas into the entry basic block.
    DIBuilder DIB(*Caller->getParent());
    for (auto &AI : IFI.StaticAllocas)
      replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0,
                                 DIExpression::NoDeref);
  }

  SmallVector<Value*,4> VarArgsToForward;
  SmallVector<AttributeSet, 4> VarArgsAttrs;
  for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
       i < CS.getNumArgOperands(); i++) {
    VarArgsToForward.push_back(CS.getArgOperand(i));
    VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
  }

  bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
  if (InlinedFunctionInfo.ContainsCalls) {
    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
      CallSiteTailKind = CI->getTailCallKind();

    // For inlining purposes, the "notail" marker is the same as no marker.
    if (CallSiteTailKind == CallInst::TCK_NoTail)
      CallSiteTailKind = CallInst::TCK_None;

    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
         ++BB) {
      for (auto II = BB->begin(); II != BB->end();) {
        Instruction &I = *II++;
        CallInst *CI = dyn_cast<CallInst>(&I);
        if (!CI)
          continue;

        // Forward varargs from inlined call site to calls to the
        // ForwardVarArgsTo function, if requested, and to musttail calls.
        if (!VarArgsToForward.empty() &&
            ((ForwardVarArgsTo &&
              CI->getCalledFunction() == ForwardVarArgsTo) ||
             CI->isMustTailCall())) {
          // Collect attributes for non-vararg parameters.
          AttributeList Attrs = CI->getAttributes();
          SmallVector<AttributeSet, 8> ArgAttrs;
          if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
            for (unsigned ArgNo = 0;
                 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
              ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
          }

          // Add VarArg attributes.
          ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
          Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
                                     Attrs.getRetAttributes(), ArgAttrs);
          // Add VarArgs to existing parameters.
          SmallVector<Value *, 6> Params(CI->arg_operands());
          Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
          CallInst *NewCI =
              CallInst::Create(CI->getCalledFunction() ? CI->getCalledFunction()
                                                       : CI->getCalledValue(),
                               Params, "", CI);
          NewCI->setDebugLoc(CI->getDebugLoc());
          NewCI->setAttributes(Attrs);
          NewCI->setCallingConv(CI->getCallingConv());
          CI->replaceAllUsesWith(NewCI);
          CI->eraseFromParent();
          CI = NewCI;
        }

        if (Function *F = CI->getCalledFunction())
          InlinedDeoptimizeCalls |=
              F->getIntrinsicID() == Intrinsic::experimental_deoptimize;

        // We need to reduce the strength of any inlined tail calls.  For
        // musttail, we have to avoid introducing potential unbounded stack
        // growth.  For example, if functions 'f' and 'g' are mutually recursive
        // with musttail, we can inline 'g' into 'f' so long as we preserve
        // musttail on the cloned call to 'f'.  If either the inlined call site
        // or the cloned call site is *not* musttail, the program already has
        // one frame of stack growth, so it's safe to remove musttail.  Here is
        // a table of example transformations:
        //
        //    f -> musttail g -> musttail f  ==>  f -> musttail f
        //    f -> musttail g ->     tail f  ==>  f ->     tail f
        //    f ->          g -> musttail f  ==>  f ->          f
        //    f ->          g ->     tail f  ==>  f ->          f
        //
        // Inlined notail calls should remain notail calls.
        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
        if (ChildTCK != CallInst::TCK_NoTail)
          ChildTCK = std::min(CallSiteTailKind, ChildTCK);
        CI->setTailCallKind(ChildTCK);
        InlinedMustTailCalls |= CI->isMustTailCall();

        // Calls inlined through a 'nounwind' call site should be marked
        // 'nounwind'.
        if (MarkNoUnwind)
          CI->setDoesNotThrow();
      }
    }
  }

  // Leave lifetime markers for the static alloca's, scoping them to the
  // function we just inlined.
  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
    IRBuilder<> builder(&FirstNewBlock->front());
    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
      AllocaInst *AI = IFI.StaticAllocas[ai];
      // Don't mark swifterror allocas. They can't have bitcast uses.
      if (AI->isSwiftError())
        continue;

      // If the alloca is already scoped to something smaller than the whole
      // function then there's no need to add redundant, less accurate markers.
      if (hasLifetimeMarkers(AI))
        continue;

      // Try to determine the size of the allocation.
      ConstantInt *AllocaSize = nullptr;
      if (ConstantInt *AIArraySize =
          dyn_cast<ConstantInt>(AI->getArraySize())) {
        auto &DL = Caller->getParent()->getDataLayout();
        Type *AllocaType = AI->getAllocatedType();
        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();

        // Don't add markers for zero-sized allocas.
        if (AllocaArraySize == 0)
          continue;

        // Check that array size doesn't saturate uint64_t and doesn't
        // overflow when it's multiplied by type size.
        if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
            std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
                AllocaTypeSize) {
          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
                                        AllocaArraySize * AllocaTypeSize);
        }
      }

      builder.CreateLifetimeStart(AI, AllocaSize);
      for (ReturnInst *RI : Returns) {
        // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
        // call and a return.  The return kills all local allocas.
        if (InlinedMustTailCalls &&
            RI->getParent()->getTerminatingMustTailCall())
          continue;
        if (InlinedDeoptimizeCalls &&
            RI->getParent()->getTerminatingDeoptimizeCall())
          continue;
        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
      }
    }
  }

  // If the inlined code contained dynamic alloca instructions, wrap the inlined
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    Module *M = Caller->getParent();
    // Get the two intrinsics we care about.
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);

    // Insert the llvm.stacksave.
    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
                             .CreateCall(StackSave, {}, "savedstack");

    // Insert a call to llvm.stackrestore before any return instructions in the
    // inlined function.
    for (ReturnInst *RI : Returns) {
      // Don't insert llvm.stackrestore calls between a musttail or deoptimize
      // call and a return.  The return will restore the stack pointer.
      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
        continue;
      if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
        continue;
      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
    }
  }

  // If we are inlining for an invoke instruction, we must make sure to rewrite
  // any call instructions into invoke instructions.  This is sensitive to which
  // funclet pads were top-level in the inlinee, so must be done before
  // rewriting the "parent pad" links.
  if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
    BasicBlock *UnwindDest = II->getUnwindDest();
    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
    if (isa<LandingPadInst>(FirstNonPHI)) {
      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
    } else {
      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
    }
  }

  // Update the lexical scopes of the new funclets and callsites.
  // Anything that had 'none' as its parent is now nested inside the callsite's
  // EHPad.

  if (CallSiteEHPad) {
    for (Function::iterator BB = FirstNewBlock->getIterator(),
                            E = Caller->end();
         BB != E; ++BB) {
      // Add bundle operands to any top-level call sites.
      SmallVector<OperandBundleDef, 1> OpBundles;
      for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
        Instruction *I = &*BBI++;
        CallSite CS(I);
        if (!CS)
          continue;

        // Skip call sites which are nounwind intrinsics.
        auto *CalledFn =
            dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
        if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
          continue;

        // Skip call sites which already have a "funclet" bundle.
        if (CS.getOperandBundle(LLVMContext::OB_funclet))
          continue;

        CS.getOperandBundlesAsDefs(OpBundles);
        OpBundles.emplace_back("funclet", CallSiteEHPad);

        Instruction *NewInst;
        if (CS.isCall())
          NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
        else
          NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
        NewInst->takeName(I);
        I->replaceAllUsesWith(NewInst);
        I->eraseFromParent();

        OpBundles.clear();
      }

      // It is problematic if the inlinee has a cleanupret which unwinds to
      // caller and we inline it into a call site which doesn't unwind but into
      // an EH pad that does.  Such an edge must be dynamically unreachable.
      // As such, we replace the cleanupret with unreachable.
      if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
        if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
          changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);

      Instruction *I = BB->getFirstNonPHI();
      if (!I->isEHPad())
        continue;

      if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
        if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
          CatchSwitch->setParentPad(CallSiteEHPad);
      } else {
        auto *FPI = cast<FuncletPadInst>(I);
        if (isa<ConstantTokenNone>(FPI->getParentPad()))
          FPI->setParentPad(CallSiteEHPad);
      }
    }
  }

  if (InlinedDeoptimizeCalls) {
    // We need to at least remove the deoptimizing returns from the Return set,
    // so that the control flow from those returns does not get merged into the
    // caller (but terminate it instead).  If the caller's return type does not
    // match the callee's return type, we also need to change the return type of
    // the intrinsic.
    if (Caller->getReturnType() == TheCall->getType()) {
      auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
        return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
      });
      Returns.erase(NewEnd, Returns.end());
    } else {
      SmallVector<ReturnInst *, 8> NormalReturns;
      Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
          Caller->getParent(), Intrinsic::experimental_deoptimize,
          {Caller->getReturnType()});

      for (ReturnInst *RI : Returns) {
        CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
        if (!DeoptCall) {
          NormalReturns.push_back(RI);
          continue;
        }

        // The calling convention on the deoptimize call itself may be bogus,
        // since the code we're inlining may have undefined behavior (and may
        // never actually execute at runtime); but all
        // @llvm.experimental.deoptimize declarations have to have the same
        // calling convention in a well-formed module.
        auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
        NewDeoptIntrinsic->setCallingConv(CallingConv);
        auto *CurBB = RI->getParent();
        RI->eraseFromParent();

        SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
                                         DeoptCall->arg_end());

        SmallVector<OperandBundleDef, 1> OpBundles;
        DeoptCall->getOperandBundlesAsDefs(OpBundles);
        DeoptCall->eraseFromParent();
        assert(!OpBundles.empty() &&
               "Expected at least the deopt operand bundle");

        IRBuilder<> Builder(CurBB);
        CallInst *NewDeoptCall =
            Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
        NewDeoptCall->setCallingConv(CallingConv);
        if (NewDeoptCall->getType()->isVoidTy())
          Builder.CreateRetVoid();
        else
          Builder.CreateRet(NewDeoptCall);
      }

      // Leave behind the normal returns so we can merge control flow.
      std::swap(Returns, NormalReturns);
    }
  }

  // Handle any inlined musttail call sites.  In order for a new call site to be
  // musttail, the source of the clone and the inlined call site must have been
  // musttail.  Therefore it's safe to return without merging control into the
  // phi below.
  if (InlinedMustTailCalls) {
    // Check if we need to bitcast the result of any musttail calls.
    Type *NewRetTy = Caller->getReturnType();
    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;

    // Handle the returns preceded by musttail calls separately.
    SmallVector<ReturnInst *, 8> NormalReturns;
    for (ReturnInst *RI : Returns) {
      CallInst *ReturnedMustTail =
          RI->getParent()->getTerminatingMustTailCall();
      if (!ReturnedMustTail) {
        NormalReturns.push_back(RI);
        continue;
      }
      if (!NeedBitCast)
        continue;

      // Delete the old return and any preceding bitcast.
      BasicBlock *CurBB = RI->getParent();
      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
      RI->eraseFromParent();
      if (OldCast)
        OldCast->eraseFromParent();

      // Insert a new bitcast and return with the right type.
      IRBuilder<> Builder(CurBB);
      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
    }

    // Leave behind the normal returns so we can merge control flow.
    std::swap(Returns, NormalReturns);
  }

  // Now that all of the transforms on the inlined code have taken place but
  // before we splice the inlined code into the CFG and lose track of which
  // blocks were actually inlined, collect the call sites. We only do this if
  // call graph updates weren't requested, as those provide value handle based
  // tracking of inlined call sites instead.
  if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
    // Otherwise just collect the raw call sites that were inlined.
    for (BasicBlock &NewBB :
         make_range(FirstNewBlock->getIterator(), Caller->end()))
      for (Instruction &I : NewBB)
        if (auto CS = CallSite(&I))
          IFI.InlinedCallSites.push_back(CS);
  }

  // If we cloned in _exactly one_ basic block, and if that block ends in a
  // return instruction, we splice the body of the inlined callee directly into
  // the calling basic block.
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    // Move all of the instructions right before the call.
    OrigBB->getInstList().splice(TheCall->getIterator(),
                                 FirstNewBlock->getInstList(),
                                 FirstNewBlock->begin(), FirstNewBlock->end());
    // Remove the cloned basic block.
    Caller->getBasicBlockList().pop_back();

    // If the call site was an invoke instruction, add a branch to the normal
    // destination.
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
    }

    // If the return instruction returned a value, replace uses of the call with
    // uses of the returned value.
    if (!TheCall->use_empty()) {
      ReturnInst *R = Returns[0];
      if (TheCall == R->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(R->getReturnValue());
    }
    // Since we are now done with the Call/Invoke, we can delete it.
    TheCall->eraseFromParent();

    // Since we are now done with the return instruction, delete it also.
    Returns[0]->eraseFromParent();

    // We are now done with the inlining.
    return true;
  }

  // Otherwise, we have the normal case, of more than one block to inline or
  // multiple return sites.

  // We want to clone the entire callee function into the hole between the
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
  // this is an invoke instruction or a call instruction.
  BasicBlock *AfterCallBB;
  BranchInst *CreatedBranchToNormalDest = nullptr;
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {

    // Add an unconditional branch to make this look like the CallInst case...
    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);

    // Split the basic block.  This guarantees that no PHI nodes will have to be
    // updated due to new incoming edges, and make the invoke case more
    // symmetric to the call case.
    AfterCallBB =
        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
                                CalledFunc->getName() + ".exit");

  } else {  // It's a call
    // If this is a call instruction, we need to split the basic block that
    // the call lives in.
    //
    AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
                                          CalledFunc->getName() + ".exit");
  }

  if (IFI.CallerBFI) {
    // Copy original BB's block frequency to AfterCallBB
    IFI.CallerBFI->setBlockFreq(
        AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
  }

  // Change the branch that used to go to AfterCallBB to branch to the first
  // basic block of the inlined function.
  //
  Instruction *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br &&
         "splitBasicBlock broken!");
  Br->setOperand(0, &*FirstNewBlock);

  // Now that the function is correct, make it a little bit nicer.  In
  // particular, move the basic blocks inserted from the end of the function
  // into the space made by splitting the source basic block.
  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
                                     Caller->getBasicBlockList(), FirstNewBlock,
                                     Caller->end());

  // Handle all of the return instructions that we just cloned in, and eliminate
  // any users of the original call/invoke instruction.
  Type *RTy = CalledFunc->getReturnType();

  PHINode *PHI = nullptr;
  if (Returns.size() > 1) {
    // The PHI node should go at the front of the new basic block to merge all
    // possible incoming values.
    if (!TheCall->use_empty()) {
      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
                            &AfterCallBB->front());
      // Anything that used the result of the function call should now use the
      // PHI node as their operand.
      TheCall->replaceAllUsesWith(PHI);
    }

    // Loop over all of the return instructions adding entries to the PHI node
    // as appropriate.
    if (PHI) {
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
        ReturnInst *RI = Returns[i];
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
               "Ret value not consistent in function!");
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
      }
    }

    // Add a branch to the merge points and remove return instructions.
    DebugLoc Loc;
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      ReturnInst *RI = Returns[i];
      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
      Loc = RI->getDebugLoc();
      BI->setDebugLoc(Loc);
      RI->eraseFromParent();
    }
    // We need to set the debug location to *somewhere* inside the
    // inlined function. The line number may be nonsensical, but the
    // instruction will at least be associated with the right
    // function.
    if (CreatedBranchToNormalDest)
      CreatedBranchToNormalDest->setDebugLoc(Loc);
  } else if (!Returns.empty()) {
    // Otherwise, if there is exactly one return value, just replace anything
    // using the return value of the call with the computed value.
    if (!TheCall->use_empty()) {
      if (TheCall == Returns[0]->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
    }

    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    BasicBlock *ReturnBB = Returns[0]->getParent();
    ReturnBB->replaceAllUsesWith(AfterCallBB);

    // Splice the code from the return block into the block that it will return
    // to, which contains the code that was after the call.
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
                                      ReturnBB->getInstList());

    if (CreatedBranchToNormalDest)
      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());

    // Delete the return instruction now and empty ReturnBB now.
    Returns[0]->eraseFromParent();
    ReturnBB->eraseFromParent();
  } else if (!TheCall->use_empty()) {
    // No returns, but something is using the return value of the call.  Just
    // nuke the result.
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
  }

  // Since we are now done with the Call/Invoke, we can delete it.
  TheCall->eraseFromParent();

  // If we inlined any musttail calls and the original return is now
  // unreachable, delete it.  It can only contain a bitcast and ret.
  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
    AfterCallBB->eraseFromParent();

  // We should always be able to fold the entry block of the function into the
  // single predecessor of the block...
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);

  // Splice the code entry block into calling block, right before the
  // unconditional branch.
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());

  // Remove the unconditional branch.
  OrigBB->getInstList().erase(Br);

  // Now we can remove the CalleeEntry block, which is now empty.
  Caller->getBasicBlockList().erase(CalleeEntry);

  // If we inserted a phi node, check to see if it has a single value (e.g. all
  // the entries are the same or undef).  If so, remove the PHI so it doesn't
  // block other optimizations.
  if (PHI) {
    AssumptionCache *AC =
        IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
    auto &DL = Caller->getParent()->getDataLayout();
    if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
      PHI->replaceAllUsesWith(V);
      PHI->eraseFromParent();
    }
  }

  return true;
}