llvm.org GIT mirror llvm / 492acdd include / llvm / IR / InstrTypes.h
492acdd

Tree @492acdd (Download .tar.gz)

InstrTypes.h @492acddraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_INSTRTYPES_H
#define LLVM_IR_INSTRTYPES_H

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/OperandTraits.h"

namespace llvm {

class LLVMContext;

//===----------------------------------------------------------------------===//
//                            TerminatorInst Class
//===----------------------------------------------------------------------===//

/// Subclasses of this class are all able to terminate a basic
/// block. Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
  TerminatorInst(Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps,
                 Instruction *InsertBefore = nullptr)
    : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}

  TerminatorInst(Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
    : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}

  // Out of line virtual method, so the vtable, etc has a home.
  ~TerminatorInst() override;

  /// Virtual methods - Terminators should overload these and provide inline
  /// overrides of non-V methods.
  virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
  virtual unsigned getNumSuccessorsV() const = 0;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;

public:
  /// Return the number of successors that this terminator has.
  unsigned getNumSuccessors() const {
    return getNumSuccessorsV();
  }

  /// Return the specified successor.
  BasicBlock *getSuccessor(unsigned idx) const {
    return getSuccessorV(idx);
  }

  /// Update the specified successor to point at the provided block.
  void setSuccessor(unsigned idx, BasicBlock *B) {
    setSuccessorV(idx, B);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->isTerminator();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  // \brief Returns true if this terminator relates to exception handling.
  bool isExceptional() const {
    switch (getOpcode()) {
    case Instruction::CatchSwitch:
    case Instruction::CatchRet:
    case Instruction::CleanupRet:
    case Instruction::Invoke:
    case Instruction::Resume:
      return true;
    default:
      return false;
    }
  }

  //===--------------------------------------------------------------------===//
  // succ_iterator definition
  //===--------------------------------------------------------------------===//

  template <class Term, class BB> // Successor Iterator
  class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB,
                                            int, BB *, BB *> {
    typedef std::iterator<std::random_access_iterator_tag, BB, int, BB *, BB *>
        super;

  public:
    typedef typename super::pointer pointer;
    typedef typename super::reference reference;

  private:
    Term TermInst;
    unsigned idx;
    typedef SuccIterator<Term, BB> Self;

    inline bool index_is_valid(unsigned idx) {
      return idx < TermInst->getNumSuccessors();
    }

    /// \brief Proxy object to allow write access in operator[]
    class SuccessorProxy {
      Self it;

    public:
      explicit SuccessorProxy(const Self &it) : it(it) {}

      SuccessorProxy(const SuccessorProxy &) = default;

      SuccessorProxy &operator=(SuccessorProxy r) {
        *this = reference(r);
        return *this;
      }

      SuccessorProxy &operator=(reference r) {
        it.TermInst->setSuccessor(it.idx, r);
        return *this;
      }

      operator reference() const { return *it; }
    };

  public:
    // begin iterator
    explicit inline SuccIterator(Term T) : TermInst(T), idx(0) {}
    // end iterator
    inline SuccIterator(Term T, bool) : TermInst(T) {
      if (TermInst)
        idx = TermInst->getNumSuccessors();
      else
        // Term == NULL happens, if a basic block is not fully constructed and
        // consequently getTerminator() returns NULL. In this case we construct
        // a SuccIterator which describes a basic block that has zero
        // successors.
        // Defining SuccIterator for incomplete and malformed CFGs is especially
        // useful for debugging.
        idx = 0;
    }

    /// This is used to interface between code that wants to
    /// operate on terminator instructions directly.
    unsigned getSuccessorIndex() const { return idx; }

    inline bool operator==(const Self &x) const { return idx == x.idx; }
    inline bool operator!=(const Self &x) const { return !operator==(x); }

    inline reference operator*() const { return TermInst->getSuccessor(idx); }
    inline pointer operator->() const { return operator*(); }

    inline Self &operator++() {
      ++idx;
      return *this;
    } // Preincrement

    inline Self operator++(int) { // Postincrement
      Self tmp = *this;
      ++*this;
      return tmp;
    }

    inline Self &operator--() {
      --idx;
      return *this;
    }                             // Predecrement
    inline Self operator--(int) { // Postdecrement
      Self tmp = *this;
      --*this;
      return tmp;
    }

    inline bool operator<(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx < x.idx;
    }

    inline bool operator<=(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx <= x.idx;
    }
    inline bool operator>=(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx >= x.idx;
    }

    inline bool operator>(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx > x.idx;
    }

    inline Self &operator+=(int Right) {
      unsigned new_idx = idx + Right;
      assert(index_is_valid(new_idx) && "Iterator index out of bound");
      idx = new_idx;
      return *this;
    }

    inline Self operator+(int Right) const {
      Self tmp = *this;
      tmp += Right;
      return tmp;
    }

    inline Self &operator-=(int Right) { return operator+=(-Right); }

    inline Self operator-(int Right) const { return operator+(-Right); }

    inline int operator-(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot work on iterators of different blocks!");
      int distance = idx - x.idx;
      return distance;
    }

    inline SuccessorProxy operator[](int offset) {
      Self tmp = *this;
      tmp += offset;
      return SuccessorProxy(tmp);
    }

    /// Get the source BB of this iterator.
    inline BB *getSource() {
      assert(TermInst && "Source not available, if basic block was malformed");
      return TermInst->getParent();
    }
  };

  typedef SuccIterator<TerminatorInst *, BasicBlock> succ_iterator;
  typedef SuccIterator<const TerminatorInst *, const BasicBlock>
      succ_const_iterator;
  typedef llvm::iterator_range<succ_iterator> succ_range;
  typedef llvm::iterator_range<succ_const_iterator> succ_const_range;

private:
  inline succ_iterator succ_begin() { return succ_iterator(this); }
  inline succ_const_iterator succ_begin() const {
    return succ_const_iterator(this);
  }
  inline succ_iterator succ_end() { return succ_iterator(this, true); }
  inline succ_const_iterator succ_end() const {
    return succ_const_iterator(this, true);
  }

public:
  inline succ_range successors() {
    return succ_range(succ_begin(), succ_end());
  }
  inline succ_const_range successors() const {
    return succ_const_range(succ_begin(), succ_end());
  }
};

//===----------------------------------------------------------------------===//
//                          UnaryInstruction Class
//===----------------------------------------------------------------------===//

class UnaryInstruction : public Instruction {
  void *operator new(size_t, unsigned) = delete;

protected:
  UnaryInstruction(Type *Ty, unsigned iType, Value *V,
                   Instruction *IB = nullptr)
    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    Op<0>() = V;
  }
  UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    Op<0>() = V;
  }

public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  // Out of line virtual method, so the vtable, etc has a home.
  ~UnaryInstruction() override;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Load ||
           I->getOpcode() == Instruction::VAArg ||
           I->getOpcode() == Instruction::ExtractValue ||
           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<UnaryInstruction> :
  public FixedNumOperandTraits<UnaryInstruction, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)

//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
  void *operator new(size_t, unsigned) = delete;

protected:
  void init(BinaryOps iType);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, Instruction *InsertBefore);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;
  BinaryOperator *cloneImpl() const;

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name = Twine(),
                                Instruction *InsertBefore = nullptr);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name, BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name = "") {\
    return Create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, BasicBlock *BB) {\
    return Create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, Instruction *I) {\
    return Create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  static BinaryOperator *CreateWithCopiedFlags(BinaryOps Opc,
                                               Value *V1, Value *V2,
                                               BinaryOperator *CopyBO,
                                               const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->copyIRFlags(CopyBO);
    return BO;
  }

  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setIsExact(true);
    return BO;
  }

#define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                       \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2,        \
                                                  const Twine &Name = "") {    \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name);                \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);            \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, Instruction *I) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);             \
  }

  DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
  DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
  DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
  DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
  DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
  DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
  DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
  DEFINE_HELPERS(Shl, NUW) // CreateNUWShl

  DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
  DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
  DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
  DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr

#undef DEFINE_HELPERS

  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  ///
  /// Create the NEG and NOT instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
                                    Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
                                    BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);

  /// Check if the given Value is a NEG, FNeg, or NOT instruction.
  ///
  static bool isNeg(const Value *V);
  static bool isFNeg(const Value *V, bool IgnoreZeroSign=false);
  static bool isNot(const Value *V);

  /// Helper functions to extract the unary argument of a NEG, FNEG or NOT
  /// operation implemented via Sub, FSub, or Xor.
  ///
  static const Value *getNegArgument(const Value *BinOp);
  static       Value *getNegArgument(      Value *BinOp);
  static const Value *getFNegArgument(const Value *BinOp);
  static       Value *getFNegArgument(      Value *BinOp);
  static const Value *getNotArgument(const Value *BinOp);
  static       Value *getNotArgument(      Value *BinOp);

  BinaryOps getOpcode() const {
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  /// Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the instruction
  /// cannot be reversed (ie, it's a Div), then return true.
  ///
  bool swapOperands();

  /// Set or clear the nsw flag on this instruction, which must be an operator
  /// which supports this flag. See LangRef.html for the meaning of this flag.
  void setHasNoUnsignedWrap(bool b = true);

  /// Set or clear the nsw flag on this instruction, which must be an operator
  /// which supports this flag. See LangRef.html for the meaning of this flag.
  void setHasNoSignedWrap(bool b = true);

  /// Set or clear the exact flag on this instruction, which must be an operator
  /// which supports this flag. See LangRef.html for the meaning of this flag.
  void setIsExact(bool b = true);

  /// Determine whether the no unsigned wrap flag is set.
  bool hasNoUnsignedWrap() const;

  /// Determine whether the no signed wrap flag is set.
  bool hasNoSignedWrap() const;

  /// Determine whether the exact flag is set.
  bool isExact() const;

  /// Convenience method to copy supported wrapping, exact, and fast-math flags
  /// from V to this instruction.
  void copyIRFlags(const Value *V);

  /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
  /// V and this instruction.
  void andIRFlags(const Value *V);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->isBinaryOp();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<BinaryOperator> :
  public FixedNumOperandTraits<BinaryOperator, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)

//===----------------------------------------------------------------------===//
//                               CastInst Class
//===----------------------------------------------------------------------===//

/// This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// @brief Base class of casting instructions.
class CastInst : public UnaryInstruction {
  void anchor() override;

protected:
  /// @brief Constructor with insert-before-instruction semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
    : UnaryInstruction(Ty, iType, S, InsertBefore) {
    setName(NameStr);
  }
  /// @brief Constructor with insert-at-end-of-block semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr, BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    setName(NameStr);
  }

public:
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category (Instruction::isCast(opcode) returns true). This
  /// constructor has insert-before-instruction semantics to automatically
  /// insert the new CastInst before InsertBefore (if it is non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode of the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category. This constructor has insert-at-end-of-block semantics
  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
  /// its non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode for the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
  ///
  /// If the value is a pointer type and the destination an integer type,
  /// creates a PtrToInt cast. If the value is an integer type and the
  /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
  /// a bitcast.
  static CastInst *CreateBitOrPointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The integer value to be casted (operand 0)
    Type *Ty,          ///< The integer type to which operand is casted
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Check whether it is valid to call getCastOpcode for these types.
  static bool isCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// @brief Check whether a bitcast between these types is valid
  static bool isBitCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// @brief Check whether a bitcast, inttoptr, or ptrtoint cast between these
  /// types is valid and a no-op.
  ///
  /// This ensures that any pointer<->integer cast has enough bits in the
  /// integer and any other cast is a bitcast.
  static bool isBitOrNoopPointerCastable(
      Type *SrcTy,  ///< The Type from which the value should be cast.
      Type *DestTy, ///< The Type to which the value should be cast.
      const DataLayout &DL);

  /// Returns the opcode necessary to cast Val into Ty using usual casting
  /// rules.
  /// @brief Infer the opcode for cast operand and type
  static Instruction::CastOps getCastOpcode(
    const Value *Val, ///< The value to cast
    bool SrcIsSigned, ///< Whether to treat the source as signed
    Type *Ty,   ///< The Type to which the value should be casted
    bool DstIsSigned  ///< Whether to treate the dest. as signed
  );

  /// There are several places where we need to know if a cast instruction
  /// only deals with integer source and destination types. To simplify that
  /// logic, this method is provided.
  /// @returns true iff the cast has only integral typed operand and dest type.
  /// @brief Determine if this is an integer-only cast.
  bool isIntegerCast() const;

  /// A lossless cast is one that does not alter the basic value. It implies
  /// a no-op cast but is more stringent, preventing things like int->float,
  /// long->double, or int->ptr.
  /// @returns true iff the cast is lossless.
  /// @brief Determine if this is a lossless cast.
  bool isLosslessCast() const;

  /// A no-op cast is one that can be effected without changing any bits.
  /// It implies that the source and destination types are the same size. The
  /// IntPtrTy argument is used to make accurate determinations for casts
  /// involving Integer and Pointer types. They are no-op casts if the integer
  /// is the same size as the pointer. However, pointer size varies with
  /// platform. Generally, the result of DataLayout::getIntPtrType() should be
  /// passed in. If that's not available, use Type::Int64Ty, which will make
  /// the isNoopCast call conservative.
  /// @brief Determine if the described cast is a no-op cast.
  static bool isNoopCast(
    Instruction::CastOps Opcode,  ///< Opcode of cast
    Type *SrcTy,   ///< SrcTy of cast
    Type *DstTy,   ///< DstTy of cast
    Type *IntPtrTy ///< Integer type corresponding to Ptr types
  );

  /// @brief Determine if this cast is a no-op cast.
  bool isNoopCast(
    Type *IntPtrTy ///< Integer type corresponding to pointer
  ) const;

  /// @brief Determine if this cast is a no-op cast.
  ///
  /// \param DL is the DataLayout to get the Int Ptr type from.
  bool isNoopCast(const DataLayout &DL) const;

  /// Determine how a pair of casts can be eliminated, if they can be at all.
  /// This is a helper function for both CastInst and ConstantExpr.
  /// @returns 0 if the CastInst pair can't be eliminated, otherwise
  /// returns Instruction::CastOps value for a cast that can replace
  /// the pair, casting SrcTy to DstTy.
  /// @brief Determine if a cast pair is eliminable
  static unsigned isEliminableCastPair(
    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    Instruction::CastOps secondOpcode, ///< Opcode of second cast
    Type *SrcTy, ///< SrcTy of 1st cast
    Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    Type *DstTy, ///< DstTy of 2nd cast
    Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
    Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
    Type *DstIntPtrTy  ///< Integer type corresponding to Ptr DstTy, or null
  );

  /// @brief Return the opcode of this CastInst
  Instruction::CastOps getOpcode() const {
    return Instruction::CastOps(Instruction::getOpcode());
  }

  /// @brief Return the source type, as a convenience
  Type* getSrcTy() const { return getOperand(0)->getType(); }
  /// @brief Return the destination type, as a convenience
  Type* getDestTy() const { return getType(); }

  /// This method can be used to determine if a cast from S to DstTy using
  /// Opcode op is valid or not.
  /// @returns true iff the proposed cast is valid.
  /// @brief Determine if a cast is valid without creating one.
  static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->isCast();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               CmpInst Class
//===----------------------------------------------------------------------===//

/// This class is the base class for the comparison instructions.
/// @brief Abstract base class of comparison instructions.
class CmpInst : public Instruction {
public:
  /// This enumeration lists the possible predicates for CmpInst subclasses.
  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  enum Predicate {
    // Opcode              U L G E    Intuitive operation
    FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
    FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
    FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
    FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
    FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
    FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
    FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
    FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
    FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
    FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
    FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    ICMP_EQ    = 32,  ///< equal
    ICMP_NE    = 33,  ///< not equal
    ICMP_UGT   = 34,  ///< unsigned greater than
    ICMP_UGE   = 35,  ///< unsigned greater or equal
    ICMP_ULT   = 36,  ///< unsigned less than
    ICMP_ULE   = 37,  ///< unsigned less or equal
    ICMP_SGT   = 38,  ///< signed greater than
    ICMP_SGE   = 39,  ///< signed greater or equal
    ICMP_SLT   = 40,  ///< signed less than
    ICMP_SLE   = 41,  ///< signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };

private:
  void *operator new(size_t, unsigned) = delete;
  CmpInst() = delete;

protected:
  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name = "",
          Instruction *InsertBefore = nullptr);

  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name,
          BasicBlock *InsertAtEnd);

  void anchor() override; // Out of line virtual method.

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  /// Construct a compare instruction, given the opcode, the predicate and
  /// the two operands.  Optionally (if InstBefore is specified) insert the
  /// instruction into a BasicBlock right before the specified instruction.
  /// The specified Instruction is allowed to be a dereferenced end iterator.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op,
                         Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name = "",
                         Instruction *InsertBefore = nullptr);

  /// Construct a compare instruction, given the opcode, the predicate and the
  /// two operands.  Also automatically insert this instruction to the end of
  /// the BasicBlock specified.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);

  /// @brief Get the opcode casted to the right type
  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const {
    return Predicate(getSubclassDataFromInstruction());
  }

  /// @brief Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { setInstructionSubclassData(P); }

  static bool isFPPredicate(Predicate P) {
    return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
  }

  static bool isIntPredicate(Predicate P) {
    return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
  }

  bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
  bool isIntPredicate() const { return isIntPredicate(getPredicate()); }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate.
  /// @brief Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred.
  /// @brief Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two
  /// operands of the CmpInst instruction without changing the result
  /// produced.
  /// @brief Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @brief Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// @brief Provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Swap the operands and adjust predicate accordingly to retain
  /// the same comparison.
  void swapOperands();

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this CmpInst is commutative.
  bool isCommutative() const;

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this is an equals/not equals predicate.
  bool isEquality() const;

  /// @returns true if the comparison is signed, false otherwise.
  /// @brief Determine if this instruction is using a signed comparison.
  bool isSigned() const {
    return isSigned(getPredicate());
  }

  /// @returns true if the comparison is unsigned, false otherwise.
  /// @brief Determine if this instruction is using an unsigned comparison.
  bool isUnsigned() const {
    return isUnsigned(getPredicate());
  }

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the unsigned predicate pred.
  /// @brief return the signed version of a predicate
  static Predicate getSignedPredicate(Predicate pred);

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the predicate for this instruction (which
  /// has to be an unsigned predicate).
  /// @brief return the signed version of a predicate
  Predicate getSignedPredicate() {
    return getSignedPredicate(getPredicate());
  }

  /// This is just a convenience.
  /// @brief Determine if this is true when both operands are the same.
  bool isTrueWhenEqual() const {
    return isTrueWhenEqual(getPredicate());
  }

  /// This is just a convenience.
  /// @brief Determine if this is false when both operands are the same.
  bool isFalseWhenEqual() const {
    return isFalseWhenEqual(getPredicate());
  }

  /// @returns true if the predicate is unsigned, false otherwise.
  /// @brief Determine if the predicate is an unsigned operation.
  static bool isUnsigned(Predicate predicate);

  /// @returns true if the predicate is signed, false otherwise.
  /// @brief Determine if the predicate is an signed operation.
  static bool isSigned(Predicate predicate);

  /// @brief Determine if the predicate is an ordered operation.
  static bool isOrdered(Predicate predicate);

  /// @brief Determine if the predicate is an unordered operation.
  static bool isUnordered(Predicate predicate);

  /// Determine if the predicate is true when comparing a value with itself.
  static bool isTrueWhenEqual(Predicate predicate);

  /// Determine if the predicate is false when comparing a value with itself.
  static bool isFalseWhenEqual(Predicate predicate);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp ||
           I->getOpcode() == Instruction::FCmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  /// @brief Create a result type for fcmp/icmp
  static Type* makeCmpResultType(Type* opnd_type) {
    if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
      return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
                             vt->getNumElements());
    }
    return Type::getInt1Ty(opnd_type->getContext());
  }

private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};

// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)

//===----------------------------------------------------------------------===//
//                           FuncletPadInst Class
//===----------------------------------------------------------------------===//
class FuncletPadInst : public Instruction {
private:
  void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);

  FuncletPadInst(const FuncletPadInst &CPI);

  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, Instruction *InsertBefore);
  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, BasicBlock *InsertAtEnd);

protected:
  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;
  friend class CatchPadInst;
  friend class CleanupPadInst;
  FuncletPadInst *cloneImpl() const;

public:
  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getNumArgOperands - Return the number of funcletpad arguments.
  ///
  unsigned getNumArgOperands() const { return getNumOperands() - 1; }

  /// Convenience accessors

  /// \brief Return the outer EH-pad this funclet is nested within.
  ///
  /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
  /// is a CatchPadInst.
  Value *getParentPad() const { return Op<-1>(); }
  void setParentPad(Value *ParentPad) {
    assert(ParentPad);
    Op<-1>() = ParentPad;
  }

  /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
  ///
  Value *getArgOperand(unsigned i) const { return getOperand(i); }
  void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }

  /// arg_operands - iteration adapter for range-for loops.
  op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }

  /// arg_operands - iteration adapter for range-for loops.
  const_op_range arg_operands() const {
    return const_op_range(op_begin(), op_end() - 1);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) { return I->isFuncletPad(); }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<FuncletPadInst>
    : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)

/// \brief A lightweight accessor for an operand bundle meant to be passed
/// around by value.
struct OperandBundleUse {
  ArrayRef<Use> Inputs;

  OperandBundleUse() {}
  explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
      : Inputs(Inputs), Tag(Tag) {}

  /// \brief Return true if the operand at index \p Idx in this operand bundle
  /// has the attribute A.
  bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
    if (isDeoptOperandBundle())
      if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
        return Inputs[Idx]->getType()->isPointerTy();

    // Conservative answer:  no operands have any attributes.
    return false;
  };

  /// \brief Return the tag of this operand bundle as a string.
  StringRef getTagName() const {
    return Tag->getKey();
  }

  /// \brief Return the tag of this operand bundle as an integer.
  ///
  /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
  /// and this function returns the unique integer getOrInsertBundleTag
  /// associated the tag of this operand bundle to.
  uint32_t getTagID() const {
    return Tag->getValue();
  }

  /// \brief Return true if this is a "deopt" operand bundle.
  bool isDeoptOperandBundle() const {
    return getTagID() == LLVMContext::OB_deopt;
  }

  /// \brief Return true if this is a "funclet" operand bundle.
  bool isFuncletOperandBundle() const {
    return getTagID() == LLVMContext::OB_funclet;
  }

private:
  /// \brief Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
  StringMapEntry<uint32_t> *Tag;
};

/// \brief A container for an operand bundle being viewed as a set of values
/// rather than a set of uses.
///
/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
/// so it is possible to create and pass around "self-contained" instances of
/// OperandBundleDef and ConstOperandBundleDef.
template <typename InputTy> class OperandBundleDefT {
  std::string Tag;
  std::vector<InputTy> Inputs;

public:
  explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
  explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(Inputs) {}

  explicit OperandBundleDefT(const OperandBundleUse &OBU) {
    Tag = OBU.getTagName();
    Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end());
  }

  ArrayRef<InputTy> inputs() const { return Inputs; }

  typedef typename std::vector<InputTy>::const_iterator input_iterator;
  size_t input_size() const { return Inputs.size(); }
  input_iterator input_begin() const { return Inputs.begin(); }
  input_iterator input_end() const { return Inputs.end(); }

  StringRef getTag() const { return Tag; }
};

typedef OperandBundleDefT<Value *> OperandBundleDef;
typedef OperandBundleDefT<const Value *> ConstOperandBundleDef;

/// \brief A mixin to add operand bundle functionality to llvm instruction
/// classes.
///
/// OperandBundleUser uses the descriptor area co-allocated with the host User
/// to store some meta information about which operands are "normal" operands,
/// and which ones belong to some operand bundle.
///
/// The layout of an operand bundle user is
///
///          +-----------uint32_t End-------------------------------------+
///          |                                                            |
///          |  +--------uint32_t Begin--------------------+              |
///          |  |                                          |              |
///          ^  ^                                          v              v
///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
///  | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
///   v  v                                  ^              ^
///   |  |                                  |              |
///   |  +--------uint32_t Begin------------+              |
///   |                                                    |
///   +-----------uint32_t End-----------------------------+
///
///
/// BOI0, BOI1 ... are descriptions of operand bundles in this User's use list.
/// These descriptions are installed and managed by this class, and they're all
/// instances of OperandBundleUser<T>::BundleOpInfo.
///
/// DU is an additional descriptor installed by User's 'operator new' to keep
/// track of the 'BOI0 ... BOIN' co-allocation.  OperandBundleUser does not
/// access or modify DU in any way, it's an implementation detail private to
/// User.
///
/// The regular Use& vector for the User starts at U0.  The operand bundle uses
/// are part of the Use& vector, just like normal uses.  In the diagram above,
/// the operand bundle uses start at BOI0_U0.  Each instance of BundleOpInfo has
/// information about a contiguous set of uses constituting an operand bundle,
/// and the total set of operand bundle uses themselves form a contiguous set of
/// uses (i.e. there are no gaps between uses corresponding to individual
/// operand bundles).
///
/// This class does not know the location of the set of operand bundle uses
/// within the use list -- that is decided by the User using this class via the
/// BeginIdx argument in populateBundleOperandInfos.
///
/// Currently operand bundle users with hung-off operands are not supported.
template <typename InstrTy, typename OpIteratorTy> class OperandBundleUser {
public:
  /// \brief Return the number of operand bundles associated with this User.
  unsigned getNumOperandBundles() const {
    return std::distance(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// \brief Return true if this User has any operand bundles.
  bool hasOperandBundles() const { return getNumOperandBundles() != 0; }

  /// \brief Return the index of the first bundle operand in the Use array.
  unsigned getBundleOperandsStartIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_begin()->Begin;
  }

  /// \brief Return the index of the last bundle operand in the Use array.
  unsigned getBundleOperandsEndIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_end()[-1].End;
  }

  /// \brief Return the total number operands (not operand bundles) used by
  /// every operand bundle in this OperandBundleUser.
  unsigned getNumTotalBundleOperands() const {
    if (!hasOperandBundles())
      return 0;

    unsigned Begin = getBundleOperandsStartIndex();
    unsigned End = getBundleOperandsEndIndex();

    assert(Begin <= End && "Should be!");
    return End - Begin;
  }

  /// \brief Return the operand bundle at a specific index.
  OperandBundleUse getOperandBundleAt(unsigned Index) const {
    assert(Index < getNumOperandBundles() && "Index out of bounds!");
    return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
  }

  /// \brief Return the number of operand bundles with the tag Name attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(StringRef Name) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagName() == Name)
        Count++;

    return Count;
  }

  /// \brief Return the number of operand bundles with the tag ID attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(uint32_t ID) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagID() == ID)
        Count++;

    return Count;
  }

  /// \brief Return an operand bundle by name, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
    assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagName() == Name)
        return U;
    }

    return None;
  }

  /// \brief Return an operand bundle by tag ID, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
    assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagID() == ID)
        return U;
    }

    return None;
  }

  /// \brief Return the list of operand bundles attached to this instruction as
  /// a vector of OperandBundleDefs.
  ///
  /// This function copies the OperandBundeUse instances associated with this
  /// OperandBundleUser to a vector of OperandBundleDefs.  Note:
  /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
  /// representations of operand bundles (see documentation above).
  void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      Defs.emplace_back(getOperandBundleAt(i));
  }

  /// \brief Return the operand bundle for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
    return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
  }

  /// \brief Return true if this operand bundle user has operand bundles that
  /// may read from the heap.
  bool hasReadingOperandBundles() const {
    // Implementation note: this is a conservative implementation of operand
    // bundle semantics, where *any* operand bundle forces a callsite to be at
    // least readonly.
    return hasOperandBundles();
  }

  /// \brief Return true if this operand bundle user has operand bundles that
  /// may write to the heap.
  bool hasClobberingOperandBundles() const {
    for (auto &BOI : bundle_op_infos()) {
      if (BOI.Tag->second == LLVMContext::OB_deopt ||
          BOI.Tag->second == LLVMContext::OB_funclet)
        continue;

      // This instruction has an operand bundle that is not known to us.
      // Assume the worst.
      return true;
    }

    return false;
  }

  /// \brief Return true if the bundle operand at index \p OpIdx has the
  /// attribute \p A.
  bool bundleOperandHasAttr(unsigned OpIdx,  Attribute::AttrKind A) const {
    auto &BOI = getBundleOpInfoForOperand(OpIdx);
    auto OBU = operandBundleFromBundleOpInfo(BOI);
    return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
  }

  /// \brief Return true if \p Other has the same sequence of operand bundle
  /// tags with the same number of operands on each one of them as this
  /// OperandBundleUser.
  bool hasIdenticalOperandBundleSchema(
      const OperandBundleUser<InstrTy, OpIteratorTy> &Other) const {
    if (getNumOperandBundles() != Other.getNumOperandBundles())
      return false;

    return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
                      Other.bundle_op_info_begin());
  };

  /// \brief Return true if this operand bundle user contains operand bundles
  /// with tags other than those specified in \p IDs.
  bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      uint32_t ID = getOperandBundleAt(i).getTagID();
      if (std::find(IDs.begin(), IDs.end(), ID) == IDs.end())
        return true;
    }
    return false;
  }

protected:
  /// \brief Is the function attribute S disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(StringRef S) const {
    // Operand bundles only possibly disallow readnone, readonly and argmenonly
    // attributes.  All String attributes are fine.
    return false;
  }

  /// \brief Is the function attribute A disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
    switch (A) {
    default:
      return false;

    case Attribute::ArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ReadNone:
      return hasReadingOperandBundles();

    case Attribute::ReadOnly:
      return hasClobberingOperandBundles();
    }

    llvm_unreachable("switch has a default case!");
  }

  /// \brief Used to keep track of an operand bundle.  See the main comment on
  /// OperandBundleUser above.
  struct BundleOpInfo {
    /// \brief The operand bundle tag, interned by
    /// LLVMContextImpl::getOrInsertBundleTag.
    StringMapEntry<uint32_t> *Tag;

    /// \brief The index in the Use& vector where operands for this operand
    /// bundle starts.
    uint32_t Begin;

    /// \brief The index in the Use& vector where operands for this operand
    /// bundle ends.
    uint32_t End;

    bool operator==(const BundleOpInfo &Other) const {
      return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
    }
  };

  /// \brief Simple helper function to map a BundleOpInfo to an
  /// OperandBundleUse.
  OperandBundleUse
  operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
    auto op_begin = static_cast<const InstrTy *>(this)->op_begin();
    ArrayRef<Use> Inputs(op_begin + BOI.Begin, op_begin + BOI.End);
    return OperandBundleUse(BOI.Tag, Inputs);
  }

  typedef BundleOpInfo *bundle_op_iterator;
  typedef const BundleOpInfo *const_bundle_op_iterator;

  /// \brief Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  bundle_op_iterator bundle_op_info_begin() {
    if (!static_cast<InstrTy *>(this)->hasDescriptor())
      return nullptr;

    uint8_t *BytesBegin = static_cast<InstrTy *>(this)->getDescriptor().begin();
    return reinterpret_cast<bundle_op_iterator>(BytesBegin);
  }

  /// \brief Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_begin() const {
    auto *NonConstThis =
        const_cast<OperandBundleUser<InstrTy, OpIteratorTy> *>(this);
    return NonConstThis->bundle_op_info_begin();
  }

  /// \brief Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  bundle_op_iterator bundle_op_info_end() {
    if (!static_cast<InstrTy *>(this)->hasDescriptor())
      return nullptr;

    uint8_t *BytesEnd = static_cast<InstrTy *>(this)->getDescriptor().end();
    return reinterpret_cast<bundle_op_iterator>(BytesEnd);
  }

  /// \brief Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_end() const {
    auto *NonConstThis =
        const_cast<OperandBundleUser<InstrTy, OpIteratorTy> *>(this);
    return NonConstThis->bundle_op_info_end();
  }

  /// \brief Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<bundle_op_iterator> bundle_op_infos() {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// \brief Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// \brief Populate the BundleOpInfo instances and the Use& vector from \p
  /// Bundles.  Return the op_iterator pointing to the Use& one past the last
  /// last bundle operand use.
  ///
  /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
  /// instance allocated in this User's descriptor.
  OpIteratorTy populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
                                          const unsigned BeginIndex) {
    auto It = static_cast<InstrTy *>(this)->op_begin() + BeginIndex;
    for (auto &B : Bundles)
      It = std::copy(B.input_begin(), B.input_end(), It);

    auto *ContextImpl = static_cast<InstrTy *>(this)->getContext().pImpl;
    auto BI = Bundles.begin();
    unsigned CurrentIndex = BeginIndex;

    for (auto &BOI : bundle_op_infos()) {
      assert(BI != Bundles.end() && "Incorrect allocation?");

      BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
      BOI.Begin = CurrentIndex;
      BOI.End = CurrentIndex + BI->input_size();
      CurrentIndex = BOI.End;
      BI++;
    }

    assert(BI == Bundles.end() && "Incorrect allocation?");

    return It;
  }

  /// \brief Return the BundleOpInfo for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
    for (auto &BOI : bundle_op_infos())
      if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
        return BOI;

    llvm_unreachable("Did not find operand bundle for operand!");
  }

  /// \brief Return the total number of values used in \p Bundles.
  static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
    unsigned Total = 0;
    for (auto &B : Bundles)
      Total += B.input_size();
    return Total;
  }
};

} // end llvm namespace

#endif // LLVM_IR_INSTRTYPES_H