llvm.org GIT mirror llvm / 48973d7 include / llvm / IR / InstrTypes.h
48973d7

Tree @48973d7 (Download .tar.gz)

InstrTypes.h @48973d7raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
//===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_INSTRTYPES_H
#define LLVM_IR_INSTRTYPES_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <vector>

namespace llvm {

namespace Intrinsic {
enum ID : unsigned;
}

//===----------------------------------------------------------------------===//
//                          UnaryInstruction Class
//===----------------------------------------------------------------------===//

class UnaryInstruction : public Instruction {
protected:
  UnaryInstruction(Type *Ty, unsigned iType, Value *V,
                   Instruction *IB = nullptr)
    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    Op<0>() = V;
  }
  UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    Op<0>() = V;
  }

public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isUnaryOp() ||
           I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Load ||
           I->getOpcode() == Instruction::VAArg ||
           I->getOpcode() == Instruction::ExtractValue ||
           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<UnaryInstruction> :
  public FixedNumOperandTraits<UnaryInstruction, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)

//===----------------------------------------------------------------------===//
//                                UnaryOperator Class
//===----------------------------------------------------------------------===//

class UnaryOperator : public UnaryInstruction {
  void AssertOK();

protected:
  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
                const Twine &Name, Instruction *InsertBefore);
  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
                const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;

  UnaryOperator *cloneImpl() const;

public:

  /// Construct a unary instruction, given the opcode and an operand.
  /// Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static UnaryOperator *Create(UnaryOps Op, Value *S,
                               const Twine &Name = Twine(),
                               Instruction *InsertBefore = nullptr);

  /// Construct a unary instruction, given the opcode and an operand.
  /// Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static UnaryOperator *Create(UnaryOps Op, Value *S,
                               const Twine &Name,
                               BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name = "") {\
    return Create(Instruction::OPC, V, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
                                    BasicBlock *BB) {\
    return Create(Instruction::OPC, V, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
                                    Instruction *I) {\
    return Create(Instruction::OPC, V, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  UnaryOps getOpcode() const {
    return static_cast<UnaryOps>(Instruction::getOpcode());
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isUnaryOp();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
  void AssertOK();

protected:
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, Instruction *InsertBefore);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;

  BinaryOperator *cloneImpl() const;

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name = Twine(),
                                Instruction *InsertBefore = nullptr);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name, BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name = "") {\
    return Create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, BasicBlock *BB) {\
    return Create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, Instruction *I) {\
    return Create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  static BinaryOperator *CreateWithCopiedFlags(BinaryOps Opc,
                                               Value *V1, Value *V2,
                                               Instruction *CopyO,
                                               const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->copyIRFlags(CopyO);
    return BO;
  }

  static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
                                       const Twine &Name = "") {
    Value *Zero = ConstantFP::getNegativeZero(Op->getType());
    return CreateWithCopiedFlags(Instruction::FSub, Zero, Op, FMFSource);
  }

  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setIsExact(true);
    return BO;
  }

#define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                       \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2,        \
                                                  const Twine &Name = "") {    \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name);                \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);            \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, Instruction *I) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);             \
  }

  DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
  DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
  DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
  DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
  DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
  DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
  DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
  DEFINE_HELPERS(Shl, NUW) // CreateNUWShl

  DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
  DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
  DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
  DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr

#undef DEFINE_HELPERS

  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  ///
  /// Create the NEG and NOT instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
                                    Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
                                    BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);

  BinaryOps getOpcode() const {
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  /// Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the instruction
  /// cannot be reversed (ie, it's a Div), then return true.
  ///
  bool swapOperands();

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isBinaryOp();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<BinaryOperator> :
  public FixedNumOperandTraits<BinaryOperator, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)

//===----------------------------------------------------------------------===//
//                               CastInst Class
//===----------------------------------------------------------------------===//

/// This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// Base class of casting instructions.
class CastInst : public UnaryInstruction {
protected:
  /// Constructor with insert-before-instruction semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
    : UnaryInstruction(Ty, iType, S, InsertBefore) {
    setName(NameStr);
  }
  /// Constructor with insert-at-end-of-block semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr, BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    setName(NameStr);
  }

public:
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category (Instruction::isCast(opcode) returns true). This
  /// constructor has insert-before-instruction semantics to automatically
  /// insert the new CastInst before InsertBefore (if it is non-null).
  /// Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode of the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category. This constructor has insert-at-end-of-block semantics
  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
  /// its non-null).
  /// Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode for the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
  ///
  /// If the value is a pointer type and the destination an integer type,
  /// creates a PtrToInt cast. If the value is an integer type and the
  /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
  /// a bitcast.
  static CastInst *CreateBitOrPointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The integer value to be casted (operand 0)
    Type *Ty,          ///< The integer type to which operand is casted
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Check whether it is valid to call getCastOpcode for these types.
  static bool isCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// Check whether a bitcast between these types is valid
  static bool isBitCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// Check whether a bitcast, inttoptr, or ptrtoint cast between these
  /// types is valid and a no-op.
  ///
  /// This ensures that any pointer<->integer cast has enough bits in the
  /// integer and any other cast is a bitcast.
  static bool isBitOrNoopPointerCastable(
      Type *SrcTy,  ///< The Type from which the value should be cast.
      Type *DestTy, ///< The Type to which the value should be cast.
      const DataLayout &DL);

  /// Returns the opcode necessary to cast Val into Ty using usual casting
  /// rules.
  /// Infer the opcode for cast operand and type
  static Instruction::CastOps getCastOpcode(
    const Value *Val, ///< The value to cast
    bool SrcIsSigned, ///< Whether to treat the source as signed
    Type *Ty,   ///< The Type to which the value should be casted
    bool DstIsSigned  ///< Whether to treate the dest. as signed
  );

  /// There are several places where we need to know if a cast instruction
  /// only deals with integer source and destination types. To simplify that
  /// logic, this method is provided.
  /// @returns true iff the cast has only integral typed operand and dest type.
  /// Determine if this is an integer-only cast.
  bool isIntegerCast() const;

  /// A lossless cast is one that does not alter the basic value. It implies
  /// a no-op cast but is more stringent, preventing things like int->float,
  /// long->double, or int->ptr.
  /// @returns true iff the cast is lossless.
  /// Determine if this is a lossless cast.
  bool isLosslessCast() const;

  /// A no-op cast is one that can be effected without changing any bits.
  /// It implies that the source and destination types are the same size. The
  /// DataLayout argument is to determine the pointer size when examining casts
  /// involving Integer and Pointer types. They are no-op casts if the integer
  /// is the same size as the pointer. However, pointer size varies with
  /// platform.
  /// Determine if the described cast is a no-op cast.
  static bool isNoopCast(
    Instruction::CastOps Opcode, ///< Opcode of cast
    Type *SrcTy,         ///< SrcTy of cast
    Type *DstTy,         ///< DstTy of cast
    const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
  );

  /// Determine if this cast is a no-op cast.
  ///
  /// \param DL is the DataLayout to determine pointer size.
  bool isNoopCast(const DataLayout &DL) const;

  /// Determine how a pair of casts can be eliminated, if they can be at all.
  /// This is a helper function for both CastInst and ConstantExpr.
  /// @returns 0 if the CastInst pair can't be eliminated, otherwise
  /// returns Instruction::CastOps value for a cast that can replace
  /// the pair, casting SrcTy to DstTy.
  /// Determine if a cast pair is eliminable
  static unsigned isEliminableCastPair(
    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    Instruction::CastOps secondOpcode, ///< Opcode of second cast
    Type *SrcTy, ///< SrcTy of 1st cast
    Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    Type *DstTy, ///< DstTy of 2nd cast
    Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
    Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
    Type *DstIntPtrTy  ///< Integer type corresponding to Ptr DstTy, or null
  );

  /// Return the opcode of this CastInst
  Instruction::CastOps getOpcode() const {
    return Instruction::CastOps(Instruction::getOpcode());
  }

  /// Return the source type, as a convenience
  Type* getSrcTy() const { return getOperand(0)->getType(); }
  /// Return the destination type, as a convenience
  Type* getDestTy() const { return getType(); }

  /// This method can be used to determine if a cast from S to DstTy using
  /// Opcode op is valid or not.
  /// @returns true iff the proposed cast is valid.
  /// Determine if a cast is valid without creating one.
  static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isCast();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               CmpInst Class
//===----------------------------------------------------------------------===//

/// This class is the base class for the comparison instructions.
/// Abstract base class of comparison instructions.
class CmpInst : public Instruction {
public:
  /// This enumeration lists the possible predicates for CmpInst subclasses.
  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  ///
  /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of
  /// FCMP_* values. Changing the bit patterns requires a potential change to
  /// those passes.
  enum Predicate {
    // Opcode              U L G E    Intuitive operation
    FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
    FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
    FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
    FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
    FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
    FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
    FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
    FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
    FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
    FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
    FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    ICMP_EQ    = 32,  ///< equal
    ICMP_NE    = 33,  ///< not equal
    ICMP_UGT   = 34,  ///< unsigned greater than
    ICMP_UGE   = 35,  ///< unsigned greater or equal
    ICMP_ULT   = 36,  ///< unsigned less than
    ICMP_ULE   = 37,  ///< unsigned less or equal
    ICMP_SGT   = 38,  ///< signed greater than
    ICMP_SGE   = 39,  ///< signed greater or equal
    ICMP_SLT   = 40,  ///< signed less than
    ICMP_SLE   = 41,  ///< signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };

protected:
  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name = "",
          Instruction *InsertBefore = nullptr,
          Instruction *FlagsSource = nullptr);

  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name,
          BasicBlock *InsertAtEnd);

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Construct a compare instruction, given the opcode, the predicate and
  /// the two operands.  Optionally (if InstBefore is specified) insert the
  /// instruction into a BasicBlock right before the specified instruction.
  /// The specified Instruction is allowed to be a dereferenced end iterator.
  /// Create a CmpInst
  static CmpInst *Create(OtherOps Op,
                         Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name = "",
                         Instruction *InsertBefore = nullptr);

  /// Construct a compare instruction, given the opcode, the predicate and the
  /// two operands.  Also automatically insert this instruction to the end of
  /// the BasicBlock specified.
  /// Create a CmpInst
  static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);

  /// Get the opcode casted to the right type
  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// Return the predicate for this instruction.
  Predicate getPredicate() const {
    return Predicate(getSubclassDataFromInstruction());
  }

  /// Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { setInstructionSubclassData(P); }

  static bool isFPPredicate(Predicate P) {
    return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
  }

  static bool isIntPredicate(Predicate P) {
    return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
  }

  static StringRef getPredicateName(Predicate P);

  bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
  bool isIntPredicate() const { return isIntPredicate(getPredicate()); }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate.
  /// Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred.
  /// Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two
  /// operands of the CmpInst instruction without changing the result
  /// produced.
  /// Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// For predicate of kind "is X or equal to 0" returns the predicate "is X".
  /// For predicate of kind "is X" returns the predicate "is X or equal to 0".
  /// does not support other kind of predicates.
  /// @returns the predicate that does not contains is equal to zero if
  /// it had and vice versa.
  /// Return the flipped strictness of predicate
  Predicate getFlippedStrictnessPredicate() const {
    return getFlippedStrictnessPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// Return the flipped strictness of predicate
  static Predicate getFlippedStrictnessPredicate(Predicate pred);

  /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
  /// Returns the non-strict version of strict comparisons.
  Predicate getNonStrictPredicate() const {
    return getNonStrictPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @returns the non-strict version of comparison provided in \p pred.
  /// If \p pred is not a strict comparison predicate, returns \p pred.
  /// Returns the non-strict version of strict comparisons.
  static Predicate getNonStrictPredicate(Predicate pred);

  /// Provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// This is just a convenience that dispatches to the subclasses.
  /// Swap the operands and adjust predicate accordingly to retain
  /// the same comparison.
  void swapOperands();

  /// This is just a convenience that dispatches to the subclasses.
  /// Determine if this CmpInst is commutative.
  bool isCommutative() const;

  /// This is just a convenience that dispatches to the subclasses.
  /// Determine if this is an equals/not equals predicate.
  bool isEquality() const;

  /// @returns true if the comparison is signed, false otherwise.
  /// Determine if this instruction is using a signed comparison.
  bool isSigned() const {
    return isSigned(getPredicate());
  }

  /// @returns true if the comparison is unsigned, false otherwise.
  /// Determine if this instruction is using an unsigned comparison.
  bool isUnsigned() const {
    return isUnsigned(getPredicate());
  }

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the unsigned predicate pred.
  /// return the signed version of a predicate
  static Predicate getSignedPredicate(Predicate pred);

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the predicate for this instruction (which
  /// has to be an unsigned predicate).
  /// return the signed version of a predicate
  Predicate getSignedPredicate() {
    return getSignedPredicate(getPredicate());
  }

  /// This is just a convenience.
  /// Determine if this is true when both operands are the same.
  bool isTrueWhenEqual() const {
    return isTrueWhenEqual(getPredicate());
  }

  /// This is just a convenience.
  /// Determine if this is false when both operands are the same.
  bool isFalseWhenEqual() const {
    return isFalseWhenEqual(getPredicate());
  }

  /// @returns true if the predicate is unsigned, false otherwise.
  /// Determine if the predicate is an unsigned operation.
  static bool isUnsigned(Predicate predicate);

  /// @returns true if the predicate is signed, false otherwise.
  /// Determine if the predicate is an signed operation.
  static bool isSigned(Predicate predicate);

  /// Determine if the predicate is an ordered operation.
  static bool isOrdered(Predicate predicate);

  /// Determine if the predicate is an unordered operation.
  static bool isUnordered(Predicate predicate);

  /// Determine if the predicate is true when comparing a value with itself.
  static bool isTrueWhenEqual(Predicate predicate);

  /// Determine if the predicate is false when comparing a value with itself.
  static bool isFalseWhenEqual(Predicate predicate);

  /// Determine if Pred1 implies Pred2 is true when two compares have matching
  /// operands.
  static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2);

  /// Determine if Pred1 implies Pred2 is false when two compares have matching
  /// operands.
  static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2);

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp ||
           I->getOpcode() == Instruction::FCmp;
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  /// Create a result type for fcmp/icmp
  static Type* makeCmpResultType(Type* opnd_type) {
    if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
      return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
                             vt->getNumElements());
    }
    return Type::getInt1Ty(opnd_type->getContext());
  }

private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};

// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)

/// A lightweight accessor for an operand bundle meant to be passed
/// around by value.
struct OperandBundleUse {
  ArrayRef<Use> Inputs;

  OperandBundleUse() = default;
  explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
      : Inputs(Inputs), Tag(Tag) {}

  /// Return true if the operand at index \p Idx in this operand bundle
  /// has the attribute A.
  bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
    if (isDeoptOperandBundle())
      if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
        return Inputs[Idx]->getType()->isPointerTy();

    // Conservative answer:  no operands have any attributes.
    return false;
  }

  /// Return the tag of this operand bundle as a string.
  StringRef getTagName() const {
    return Tag->getKey();
  }

  /// Return the tag of this operand bundle as an integer.
  ///
  /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
  /// and this function returns the unique integer getOrInsertBundleTag
  /// associated the tag of this operand bundle to.
  uint32_t getTagID() const {
    return Tag->getValue();
  }

  /// Return true if this is a "deopt" operand bundle.
  bool isDeoptOperandBundle() const {
    return getTagID() == LLVMContext::OB_deopt;
  }

  /// Return true if this is a "funclet" operand bundle.
  bool isFuncletOperandBundle() const {
    return getTagID() == LLVMContext::OB_funclet;
  }

private:
  /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
  StringMapEntry<uint32_t> *Tag;
};

/// A container for an operand bundle being viewed as a set of values
/// rather than a set of uses.
///
/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
/// so it is possible to create and pass around "self-contained" instances of
/// OperandBundleDef and ConstOperandBundleDef.
template <typename InputTy> class OperandBundleDefT {
  std::string Tag;
  std::vector<InputTy> Inputs;

public:
  explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
  explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(Inputs) {}

  explicit OperandBundleDefT(const OperandBundleUse &OBU) {
    Tag = OBU.getTagName();
    Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end());
  }

  ArrayRef<InputTy> inputs() const { return Inputs; }

  using input_iterator = typename std::vector<InputTy>::const_iterator;

  size_t input_size() const { return Inputs.size(); }
  input_iterator input_begin() const { return Inputs.begin(); }
  input_iterator input_end() const { return Inputs.end(); }

  StringRef getTag() const { return Tag; }
};

using OperandBundleDef = OperandBundleDefT<Value *>;
using ConstOperandBundleDef = OperandBundleDefT<const Value *>;

//===----------------------------------------------------------------------===//
//                               CallBase Class
//===----------------------------------------------------------------------===//

/// Base class for all callable instructions (InvokeInst and CallInst)
/// Holds everything related to calling a function.
///
/// All call-like instructions are required to use a common operand layout:
/// - Zero or more arguments to the call,
/// - Zero or more operand bundles with zero or more operand inputs each
///   bundle,
/// - Zero or more subclass controlled operands
/// - The called function.
///
/// This allows this base class to easily access the called function and the
/// start of the arguments without knowing how many other operands a particular
/// subclass requires. Note that accessing the end of the argument list isn't
/// as cheap as most other operations on the base class.
class CallBase : public Instruction {
protected:
  /// The last operand is the called operand.
  static constexpr int CalledOperandOpEndIdx = -1;

  AttributeList Attrs; ///< parameter attributes for callable
  FunctionType *FTy;

  template <class... ArgsTy>
  CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
      : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}

  using Instruction::Instruction;

  bool hasDescriptor() const { return Value::HasDescriptor; }

  unsigned getNumSubclassExtraOperands() const {
    switch (getOpcode()) {
    case Instruction::Call:
      return 0;
    case Instruction::Invoke:
      return 2;
    case Instruction::CallBr:
      return getNumSubclassExtraOperandsDynamic();
    }
    llvm_unreachable("Invalid opcode!");
  }

  /// Get the number of extra operands for instructions that don't have a fixed
  /// number of extra operands.
  unsigned getNumSubclassExtraOperandsDynamic() const;

public:
  using Instruction::getContext;

  static bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Call ||
           I->getOpcode() == Instruction::Invoke ||
           I->getOpcode() == Instruction::CallBr;
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  FunctionType *getFunctionType() const { return FTy; }

  void mutateFunctionType(FunctionType *FTy) {
    Value::mutateType(FTy->getReturnType());
    this->FTy = FTy;
  }

  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// data_operands_begin/data_operands_end - Return iterators iterating over
  /// the call / invoke argument list and bundle operands.  For invokes, this is
  /// the set of instruction operands except the invoke target and the two
  /// successor blocks; and for calls this is the set of instruction operands
  /// except the call target.
  User::op_iterator data_operands_begin() { return op_begin(); }
  User::const_op_iterator data_operands_begin() const {
    return const_cast<CallBase *>(this)->data_operands_begin();
  }
  User::op_iterator data_operands_end() {
    // Walk from the end of the operands over the called operand and any
    // subclass operands.
    return op_end() - getNumSubclassExtraOperands() - 1;
  }
  User::const_op_iterator data_operands_end() const {
    return const_cast<CallBase *>(this)->data_operands_end();
  }
  iterator_range<User::op_iterator> data_ops() {
    return make_range(data_operands_begin(), data_operands_end());
  }
  iterator_range<User::const_op_iterator> data_ops() const {
    return make_range(data_operands_begin(), data_operands_end());
  }
  bool data_operands_empty() const {
    return data_operands_end() == data_operands_begin();
  }
  unsigned data_operands_size() const {
    return std::distance(data_operands_begin(), data_operands_end());
  }

  bool isDataOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return data_operands_begin() <= U && U < data_operands_end();
  }
  bool isDataOperand(Value::const_user_iterator UI) const {
    return isDataOperand(&UI.getUse());
  }

  /// Given a value use iterator, return the data operand corresponding to it.
  /// Iterator must actually correspond to a data operand.
  unsigned getDataOperandNo(Value::const_user_iterator UI) const {
    return getDataOperandNo(&UI.getUse());
  }

  /// Given a use for a data operand, get the data operand number that
  /// corresponds to it.
  unsigned getDataOperandNo(const Use *U) const {
    assert(isDataOperand(U) && "Data operand # out of range!");
    return U - data_operands_begin();
  }

  /// Return the iterator pointing to the beginning of the argument list.
  User::op_iterator arg_begin() { return op_begin(); }
  User::const_op_iterator arg_begin() const {
    return const_cast<CallBase *>(this)->arg_begin();
  }

  /// Return the iterator pointing to the end of the argument list.
  User::op_iterator arg_end() {
    // From the end of the data operands, walk backwards past the bundle
    // operands.
    return data_operands_end() - getNumTotalBundleOperands();
  }
  User::const_op_iterator arg_end() const {
    return const_cast<CallBase *>(this)->arg_end();
  }

  /// Iteration adapter for range-for loops.
  iterator_range<User::op_iterator> args() {
    return make_range(arg_begin(), arg_end());
  }
  iterator_range<User::const_op_iterator> args() const {
    return make_range(arg_begin(), arg_end());
  }
  bool arg_empty() const { return arg_end() == arg_begin(); }
  unsigned arg_size() const { return arg_end() - arg_begin(); }

  // Legacy API names that duplicate the above and will be removed once users
  // are migrated.
  iterator_range<User::op_iterator> arg_operands() {
    return make_range(arg_begin(), arg_end());
  }
  iterator_range<User::const_op_iterator> arg_operands() const {
    return make_range(arg_begin(), arg_end());
  }
  unsigned getNumArgOperands() const { return arg_size(); }

  Value *getArgOperand(unsigned i) const {
    assert(i < getNumArgOperands() && "Out of bounds!");
    return getOperand(i);
  }

  void setArgOperand(unsigned i, Value *v) {
    assert(i < getNumArgOperands() && "Out of bounds!");
    setOperand(i, v);
  }

  /// Wrappers for getting the \c Use of a call argument.
  const Use &getArgOperandUse(unsigned i) const {
    assert(i < getNumArgOperands() && "Out of bounds!");
    return User::getOperandUse(i);
  }
  Use &getArgOperandUse(unsigned i) {
    assert(i < getNumArgOperands() && "Out of bounds!");
    return User::getOperandUse(i);
  }

  bool isArgOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return arg_begin() <= U && U < arg_end();
  }
  bool isArgOperand(Value::const_user_iterator UI) const {
    return isArgOperand(&UI.getUse());
  }

  /// Returns true if this CallSite passes the given Value* as an argument to
  /// the called function.
  bool hasArgument(const Value *V) const {
    return llvm::any_of(args(), [V](const Value *Arg) { return Arg == V; });
  }

  Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); }

  // DEPRECATED: This routine will be removed in favor of `getCalledOperand` in
  // the near future.
  Value *getCalledValue() const { return getCalledOperand(); }

  const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); }
  Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); }

  /// Returns the function called, or null if this is an
  /// indirect function invocation.
  Function *getCalledFunction() const {
    return dyn_cast_or_null<Function>(getCalledOperand());
  }

  /// Return true if the callsite is an indirect call.
  bool isIndirectCall() const;

  /// Determine whether the passed iterator points to the callee operand's Use.
  bool isCallee(Value::const_user_iterator UI) const {
    return isCallee(&UI.getUse());
  }

  /// Determine whether this Use is the callee operand's Use.
  bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; }

  /// Helper to get the caller (the parent function).
  Function *getCaller();
  const Function *getCaller() const {
    return const_cast<CallBase *>(this)->getCaller();
  }

  /// Tests if this call site must be tail call optimized. Only a CallInst can
  /// be tail call optimized.
  bool isMustTailCall() const;

  /// Tests if this call site is marked as a tail call.
  bool isTailCall() const;

  /// Returns the intrinsic ID of the intrinsic called or
  /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if
  /// this is an indirect call.
  Intrinsic::ID getIntrinsicID() const;

  void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; }

  /// Sets the function called, including updating the function type.
  void setCalledFunction(Function *Fn) {
    setCalledFunction(Fn->getFunctionType(), Fn);
  }

  /// Sets the function called, including updating the function type.
  void setCalledFunction(FunctionCallee Fn) {
    setCalledFunction(Fn.getFunctionType(), Fn.getCallee());
  }

  /// Sets the function called, including updating to the specified function
  /// type.
  void setCalledFunction(FunctionType *FTy, Value *Fn) {
    this->FTy = FTy;
    assert(FTy == cast<FunctionType>(
                      cast<PointerType>(Fn->getType())->getElementType()));
    // This function doesn't mutate the return type, only the function
    // type. Seems broken, but I'm just gonna stick an assert in for now.
    assert(getType() == FTy->getReturnType());
    setCalledOperand(Fn);
  }

  CallingConv::ID getCallingConv() const {
    return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
  }

  void setCallingConv(CallingConv::ID CC) {
    auto ID = static_cast<unsigned>(CC);
    assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
    setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
                               (ID << 2));
  }

  /// Check if this call is an inline asm statement.
  bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }

  /// \name Attribute API
  ///
  /// These methods access and modify attributes on this call (including
  /// looking through to the attributes on the called function when necessary).
  ///@{

  /// Return the parameter attributes for this call.
  ///
  AttributeList getAttributes() const { return Attrs; }

  /// Set the parameter attributes for this call.
  ///
  void setAttributes(AttributeList A) { Attrs = A; }

  /// Determine whether this call has the given attribute.
  bool hasFnAttr(Attribute::AttrKind Kind) const {
    assert(Kind != Attribute::NoBuiltin &&
           "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin");
    return hasFnAttrImpl(Kind);
  }

  /// Determine whether this call has the given attribute.
  bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }

  /// adds the attribute to the list of attributes.
  void addAttribute(unsigned i, Attribute::AttrKind Kind) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addAttribute(getContext(), i, Kind);
    setAttributes(PAL);
  }

  /// adds the attribute to the list of attributes.
  void addAttribute(unsigned i, Attribute Attr) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addAttribute(getContext(), i, Attr);
    setAttributes(PAL);
  }

  /// Adds the attribute to the indicated argument
  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
    setAttributes(PAL);
  }

  /// Adds the attribute to the indicated argument
  void addParamAttr(unsigned ArgNo, Attribute Attr) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
    setAttributes(PAL);
  }

  /// removes the attribute from the list of attributes.
  void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
    AttributeList PAL = getAttributes();
    PAL = PAL.removeAttribute(getContext(), i, Kind);
    setAttributes(PAL);
  }

  /// removes the attribute from the list of attributes.
  void removeAttribute(unsigned i, StringRef Kind) {
    AttributeList PAL = getAttributes();
    PAL = PAL.removeAttribute(getContext(), i, Kind);
    setAttributes(PAL);
  }

  /// Removes the attribute from the given argument
  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
    setAttributes(PAL);
  }

  /// Removes the attribute from the given argument
  void removeParamAttr(unsigned ArgNo, StringRef Kind) {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    AttributeList PAL = getAttributes();
    PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
    setAttributes(PAL);
  }

  /// adds the dereferenceable attribute to the list of attributes.
  void addDereferenceableAttr(unsigned i, uint64_t Bytes) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
    setAttributes(PAL);
  }

  /// adds the dereferenceable_or_null attribute to the list of
  /// attributes.
  void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
    AttributeList PAL = getAttributes();
    PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
    setAttributes(PAL);
  }

  /// Determine whether the return value has the given attribute.
  bool hasRetAttr(Attribute::AttrKind Kind) const;

  /// Determine whether the argument or parameter has the given attribute.
  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;

  /// Get the attribute of a given kind at a position.
  Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
    return getAttributes().getAttribute(i, Kind);
  }

  /// Get the attribute of a given kind at a position.
  Attribute getAttribute(unsigned i, StringRef Kind) const {
    return getAttributes().getAttribute(i, Kind);
  }

  /// Get the attribute of a given kind from a given arg
  Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    return getAttributes().getParamAttr(ArgNo, Kind);
  }

  /// Get the attribute of a given kind from a given arg
  Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
    assert(ArgNo < getNumArgOperands() && "Out of bounds");
    return getAttributes().getParamAttr(ArgNo, Kind);
  }

  /// Return true if the data operand at index \p i has the attribute \p
  /// A.
  ///
  /// Data operands include call arguments and values used in operand bundles,
  /// but does not include the callee operand.  This routine dispatches to the
  /// underlying AttributeList or the OperandBundleUser as appropriate.
  ///
  /// The index \p i is interpreted as
  ///
  ///  \p i == Attribute::ReturnIndex  -> the return value
  ///  \p i in [1, arg_size + 1)  -> argument number (\p i - 1)
  ///  \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
  ///     (\p i - 1) in the operand list.
  bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
    // Note that we have to add one because `i` isn't zero-indexed.
    assert(i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) &&
           "Data operand index out of bounds!");

    // The attribute A can either be directly specified, if the operand in
    // question is a call argument; or be indirectly implied by the kind of its
    // containing operand bundle, if the operand is a bundle operand.

    if (i == AttributeList::ReturnIndex)
      return hasRetAttr(Kind);

    // FIXME: Avoid these i - 1 calculations and update the API to use
    // zero-based indices.
    if (i < (getNumArgOperands() + 1))
      return paramHasAttr(i - 1, Kind);

    assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
           "Must be either a call argument or an operand bundle!");
    return bundleOperandHasAttr(i - 1, Kind);
  }

  /// Determine whether this data operand is not captured.
  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotCapture(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
  }

  /// Determine whether this argument is passed by value.
  bool isByValArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal);
  }

  /// Determine whether this argument is passed in an alloca.
  bool isInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine whether this argument is passed by value or in an alloca.
  bool isByValOrInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal) ||
           paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine if there are is an inalloca argument. Only the last argument can
  /// have the inalloca attribute.
  bool hasInAllocaArgument() const {
    return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotAccessMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool onlyReadsMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotReadMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  /// Extract the alignment of the return value.
  unsigned getRetAlignment() const { return Attrs.getRetAlignment(); }

  /// Extract the alignment for a call or parameter (0=unknown).
  unsigned getParamAlignment(unsigned ArgNo) const {
    return Attrs.getParamAlignment(ArgNo);
  }

  /// Extract the byval type for a call or parameter (nullptr=unknown).
  Type *getParamByValType(unsigned ArgNo) const {
    return Attrs.getParamByValType(ArgNo);
  }

  /// Extract the number of dereferenceable bytes for a call or
  /// parameter (0=unknown).
  uint64_t getDereferenceableBytes(unsigned i) const {
    return Attrs.getDereferenceableBytes(i);
  }

  /// Extract the number of dereferenceable_or_null bytes for a call or
  /// parameter (0=unknown).
  uint64_t getDereferenceableOrNullBytes(unsigned i) const {
    return Attrs.getDereferenceableOrNullBytes(i);
  }

  /// Return true if the return value is known to be not null.
  /// This may be because it has the nonnull attribute, or because at least
  /// one byte is dereferenceable and the pointer is in addrspace(0).
  bool isReturnNonNull() const;

  /// Determine if the return value is marked with NoAlias attribute.
  bool returnDoesNotAlias() const {
    return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
  }

  /// If one of the arguments has the 'returned' attribute, returns its
  /// operand value. Otherwise, return nullptr.
  Value *getReturnedArgOperand() const;

  /// Return true if the call should not be treated as a call to a
  /// builtin.
  bool isNoBuiltin() const {
    return hasFnAttrImpl(Attribute::NoBuiltin) &&
           !hasFnAttrImpl(Attribute::Builtin);
  }

  /// Determine if the call requires strict floating point semantics.
  bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }

  /// Return true if the call should not be inlined.
  bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
  void setIsNoInline() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
  }
  /// Determine if the call does not access memory.
  bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
  void setDoesNotAccessMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
  }

  /// Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
  }
  void setOnlyReadsMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
  }

  /// Determine if the call does not access or only writes memory.
  bool doesNotReadMemory() const {
    return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
  }
  void setDoesNotReadMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
  }

  /// Determine if the call can access memmory only using pointers based
  /// on its arguments.
  bool onlyAccessesArgMemory() const {
    return hasFnAttr(Attribute::ArgMemOnly);
  }
  void setOnlyAccessesArgMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
  }

  /// Determine if the function may only access memory that is
  /// inaccessible from the IR.
  bool onlyAccessesInaccessibleMemory() const {
    return hasFnAttr(Attribute::InaccessibleMemOnly);
  }
  void setOnlyAccessesInaccessibleMemory() {
    addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly);
  }

  /// Determine if the function may only access memory that is
  /// either inaccessible from the IR or pointed to by its arguments.
  bool onlyAccessesInaccessibleMemOrArgMem() const {
    return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
  }
  void setOnlyAccessesInaccessibleMemOrArgMem() {
    addAttribute(AttributeList::FunctionIndex,
                 Attribute::InaccessibleMemOrArgMemOnly);
  }
  /// Determine if the call cannot return.
  bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
  void setDoesNotReturn() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
  }

  /// Determine if the call should not perform indirect branch tracking.
  bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }

  /// Determine if the call cannot unwind.
  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
  void setDoesNotThrow() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
  }

  /// Determine if the invoke cannot be duplicated.
  bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); }
  void setCannotDuplicate() {
    addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
  }

  /// Determine if the invoke is convergent
  bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
  void setConvergent() {
    addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
  }
  void setNotConvergent() {
    removeAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
  }

  /// Determine if the call returns a structure through first
  /// pointer argument.
  bool hasStructRetAttr() const {
    if (getNumArgOperands() == 0)
      return false;

    // Be friendly and also check the callee.
    return paramHasAttr(0, Attribute::StructRet);
  }

  /// Determine if any call argument is an aggregate passed by value.
  bool hasByValArgument() const {
    return Attrs.hasAttrSomewhere(Attribute::ByVal);
  }

  ///@{
  // End of attribute API.

  /// \name Operand Bundle API
  ///
  /// This group of methods provides the API to access and manipulate operand
  /// bundles on this call.
  /// @{

  /// Return the number of operand bundles associated with this User.
  unsigned getNumOperandBundles() const {
    return std::distance(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Return true if this User has any operand bundles.
  bool hasOperandBundles() const { return getNumOperandBundles() != 0; }

  /// Return the index of the first bundle operand in the Use array.
  unsigned getBundleOperandsStartIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_begin()->Begin;
  }

  /// Return the index of the last bundle operand in the Use array.
  unsigned getBundleOperandsEndIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_end()[-1].End;
  }

  /// Return true if the operand at index \p Idx is a bundle operand.
  bool isBundleOperand(unsigned Idx) const {
    return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() &&
           Idx < getBundleOperandsEndIndex();
  }

  /// Returns true if the use is a bundle operand.
  bool isBundleOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return hasOperandBundles() && isBundleOperand(U - op_begin());
  }
  bool isBundleOperand(Value::const_user_iterator UI) const {
    return isBundleOperand(&UI.getUse());
  }

  /// Return the total number operands (not operand bundles) used by
  /// every operand bundle in this OperandBundleUser.
  unsigned getNumTotalBundleOperands() const {
    if (!hasOperandBundles())
      return 0;

    unsigned Begin = getBundleOperandsStartIndex();
    unsigned End = getBundleOperandsEndIndex();

    assert(Begin <= End && "Should be!");
    return End - Begin;
  }

  /// Return the operand bundle at a specific index.
  OperandBundleUse getOperandBundleAt(unsigned Index) const {
    assert(Index < getNumOperandBundles() && "Index out of bounds!");
    return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
  }

  /// Return the number of operand bundles with the tag Name attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(StringRef Name) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagName() == Name)
        Count++;

    return Count;
  }

  /// Return the number of operand bundles with the tag ID attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(uint32_t ID) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagID() == ID)
        Count++;

    return Count;
  }

  /// Return an operand bundle by name, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
    assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagName() == Name)
        return U;
    }

    return None;
  }

  /// Return an operand bundle by tag ID, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
    assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagID() == ID)
        return U;
    }

    return None;
  }

  /// Return the list of operand bundles attached to this instruction as
  /// a vector of OperandBundleDefs.
  ///
  /// This function copies the OperandBundeUse instances associated with this
  /// OperandBundleUser to a vector of OperandBundleDefs.  Note:
  /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
  /// representations of operand bundles (see documentation above).
  void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      Defs.emplace_back(getOperandBundleAt(i));
  }

  /// Return the operand bundle for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
    return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
  }

  /// Return true if this operand bundle user has operand bundles that
  /// may read from the heap.
  bool hasReadingOperandBundles() const {
    // Implementation note: this is a conservative implementation of operand
    // bundle semantics, where *any* operand bundle forces a callsite to be at
    // least readonly.
    return hasOperandBundles();
  }

  /// Return true if this operand bundle user has operand bundles that
  /// may write to the heap.
  bool hasClobberingOperandBundles() const {
    for (auto &BOI : bundle_op_infos()) {
      if (BOI.Tag->second == LLVMContext::OB_deopt ||
          BOI.Tag->second == LLVMContext::OB_funclet)
        continue;

      // This instruction has an operand bundle that is not known to us.
      // Assume the worst.
      return true;
    }

    return false;
  }

  /// Return true if the bundle operand at index \p OpIdx has the
  /// attribute \p A.
  bool bundleOperandHasAttr(unsigned OpIdx,  Attribute::AttrKind A) const {
    auto &BOI = getBundleOpInfoForOperand(OpIdx);
    auto OBU = operandBundleFromBundleOpInfo(BOI);
    return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
  }

  /// Return true if \p Other has the same sequence of operand bundle
  /// tags with the same number of operands on each one of them as this
  /// OperandBundleUser.
  bool hasIdenticalOperandBundleSchema(const CallBase &Other) const {
    if (getNumOperandBundles() != Other.getNumOperandBundles())
      return false;

    return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
                      Other.bundle_op_info_begin());
  }

  /// Return true if this operand bundle user contains operand bundles
  /// with tags other than those specified in \p IDs.
  bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      uint32_t ID = getOperandBundleAt(i).getTagID();
      if (!is_contained(IDs, ID))
        return true;
    }
    return false;
  }

  /// Is the function attribute S disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(StringRef S) const {
    // Operand bundles only possibly disallow readnone, readonly and argmenonly
    // attributes.  All String attributes are fine.
    return false;
  }

  /// Is the function attribute A disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
    switch (A) {
    default:
      return false;

    case Attribute::InaccessibleMemOrArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::InaccessibleMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ReadNone:
      return hasReadingOperandBundles();

    case Attribute::ReadOnly:
      return hasClobberingOperandBundles();
    }

    llvm_unreachable("switch has a default case!");
  }

  /// Used to keep track of an operand bundle.  See the main comment on
  /// OperandBundleUser above.
  struct BundleOpInfo {
    /// The operand bundle tag, interned by
    /// LLVMContextImpl::getOrInsertBundleTag.
    StringMapEntry<uint32_t> *Tag;

    /// The index in the Use& vector where operands for this operand
    /// bundle starts.
    uint32_t Begin;

    /// The index in the Use& vector where operands for this operand
    /// bundle ends.
    uint32_t End;

    bool operator==(const BundleOpInfo &Other) const {
      return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
    }
  };

  /// Simple helper function to map a BundleOpInfo to an
  /// OperandBundleUse.
  OperandBundleUse
  operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
    auto begin = op_begin();
    ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End);
    return OperandBundleUse(BOI.Tag, Inputs);
  }

  using bundle_op_iterator = BundleOpInfo *;
  using const_bundle_op_iterator = const BundleOpInfo *;

  /// Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  ///
  /// OperandBundleUser uses the descriptor area co-allocated with the host User
  /// to store some meta information about which operands are "normal" operands,
  /// and which ones belong to some operand bundle.
  ///
  /// The layout of an operand bundle user is
  ///
  ///          +-----------uint32_t End-------------------------------------+
  ///          |                                                            |
  ///          |  +--------uint32_t Begin--------------------+              |
  ///          |  |                                          |              |
  ///          ^  ^                                          v              v
  ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
  ///  | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
  ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
  ///   v  v                                  ^              ^
  ///   |  |                                  |              |
  ///   |  +--------uint32_t Begin------------+              |
  ///   |                                                    |
  ///   +-----------uint32_t End-----------------------------+
  ///
  ///
  /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use
  /// list. These descriptions are installed and managed by this class, and
  /// they're all instances of OperandBundleUser<T>::BundleOpInfo.
  ///
  /// DU is an additional descriptor installed by User's 'operator new' to keep
  /// track of the 'BOI0 ... BOIN' co-allocation.  OperandBundleUser does not
  /// access or modify DU in any way, it's an implementation detail private to
  /// User.
  ///
  /// The regular Use& vector for the User starts at U0.  The operand bundle
  /// uses are part of the Use& vector, just like normal uses.  In the diagram
  /// above, the operand bundle uses start at BOI0_U0.  Each instance of
  /// BundleOpInfo has information about a contiguous set of uses constituting
  /// an operand bundle, and the total set of operand bundle uses themselves
  /// form a contiguous set of uses (i.e. there are no gaps between uses
  /// corresponding to individual operand bundles).
  ///
  /// This class does not know the location of the set of operand bundle uses
  /// within the use list -- that is decided by the User using this class via
  /// the BeginIdx argument in populateBundleOperandInfos.
  ///
  /// Currently operand bundle users with hung-off operands are not supported.
  bundle_op_iterator bundle_op_info_begin() {
    if (!hasDescriptor())
      return nullptr;

    uint8_t *BytesBegin = getDescriptor().begin();
    return reinterpret_cast<bundle_op_iterator>(BytesBegin);
  }

  /// Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_begin() const {
    auto *NonConstThis = const_cast<CallBase *>(this);
    return NonConstThis->bundle_op_info_begin();
  }

  /// Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  bundle_op_iterator bundle_op_info_end() {
    if (!hasDescriptor())
      return nullptr;

    uint8_t *BytesEnd = getDescriptor().end();
    return reinterpret_cast<bundle_op_iterator>(BytesEnd);
  }

  /// Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_end() const {
    auto *NonConstThis = const_cast<CallBase *>(this);
    return NonConstThis->bundle_op_info_end();
  }

  /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<bundle_op_iterator> bundle_op_infos() {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Populate the BundleOpInfo instances and the Use& vector from \p
  /// Bundles.  Return the op_iterator pointing to the Use& one past the last
  /// last bundle operand use.
  ///
  /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
  /// instance allocated in this User's descriptor.
  op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
                                         const unsigned BeginIndex);

  /// Return the BundleOpInfo for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
    for (auto &BOI : bundle_op_infos())
      if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
        return BOI;

    llvm_unreachable("Did not find operand bundle for operand!");
  }

protected:
  /// Return the total number of values used in \p Bundles.
  static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
    unsigned Total = 0;
    for (auto &B : Bundles)
      Total += B.input_size();
    return Total;
  }

  /// @}
  // End of operand bundle API.

private:
  bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
  bool hasFnAttrOnCalledFunction(StringRef Kind) const;

  template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
    if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind))
      return true;

    // Operand bundles override attributes on the called function, but don't
    // override attributes directly present on the call instruction.
    if (isFnAttrDisallowedByOpBundle(Kind))
      return false;

    return hasFnAttrOnCalledFunction(Kind);
  }
};

template <>
struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value)

//===----------------------------------------------------------------------===//
//                           FuncletPadInst Class
//===----------------------------------------------------------------------===//
class FuncletPadInst : public Instruction {
private:
  FuncletPadInst(const FuncletPadInst &CPI);

  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, Instruction *InsertBefore);
  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, BasicBlock *InsertAtEnd);

  void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);

protected:
  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;
  friend class CatchPadInst;
  friend class CleanupPadInst;

  FuncletPadInst *cloneImpl() const;

public:
  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getNumArgOperands - Return the number of funcletpad arguments.
  ///
  unsigned getNumArgOperands() const { return getNumOperands() - 1; }

  /// Convenience accessors

  /// Return the outer EH-pad this funclet is nested within.
  ///
  /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
  /// is a CatchPadInst.
  Value *getParentPad() const { return Op<-1>(); }
  void setParentPad(Value *ParentPad) {
    assert(ParentPad);
    Op<-1>() = ParentPad;
  }

  /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
  ///
  Value *getArgOperand(unsigned i) const { return getOperand(i); }
  void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }

  /// arg_operands - iteration adapter for range-for loops.
  op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }

  /// arg_operands - iteration adapter for range-for loops.
  const_op_range arg_operands() const {
    return const_op_range(op_begin(), op_end() - 1);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) { return I->isFuncletPad(); }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<FuncletPadInst>
    : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)

} // end namespace llvm

#endif // LLVM_IR_INSTRTYPES_H