llvm.org GIT mirror llvm / 46fa139 lib / ExecutionEngine / ExecutionEngine.cpp
46fa139

Tree @46fa139 (Download .tar.gz)

ExecutionEngine.cpp @46fa139raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the common interface used by the various execution engine
// subclasses.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Config/alloca.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/System/Host.h"
#include "llvm/Target/TargetData.h"
#include <cmath>
#include <cstring>
using namespace llvm;

STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
STATISTIC(NumGlobals  , "Number of global vars initialized");

ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;


ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
  LazyCompilationDisabled = false;
  GVCompilationDisabled   = false;
  SymbolSearchingDisabled = false;
  Modules.push_back(P);
  assert(P && "ModuleProvider is null?");
}

ExecutionEngine::~ExecutionEngine() {
  clearAllGlobalMappings();
  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
    delete Modules[i];
}

char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
  const Type *ElTy = GV->getType()->getElementType();
  size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy);
  return new char[GVSize];
}

/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
/// Release module from ModuleProvider.
Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 
                                              std::string *ErrInfo) {
  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 
        E = Modules.end(); I != E; ++I) {
    ModuleProvider *MP = *I;
    if (MP == P) {
      Modules.erase(I);
      clearGlobalMappingsFromModule(MP->getModule());
      return MP->releaseModule(ErrInfo);
    }
  }
  return NULL;
}

/// FindFunctionNamed - Search all of the active modules to find the one that
/// defines FnName.  This is very slow operation and shouldn't be used for
/// general code.
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
      return F;
  }
  return 0;
}


/// addGlobalMapping - Tell the execution engine that the specified global is
/// at the specified location.  This is used internally as functions are JIT'd
/// and as global variables are laid out in memory.  It can and should also be
/// used by clients of the EE that want to have an LLVM global overlay
/// existing data in memory.
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
  MutexGuard locked(lock);

  DOUT << "Map " << *GV << " to " << Addr << "\n";  
  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
  CurVal = Addr;
  
  // If we are using the reverse mapping, add it too
  if (!state.getGlobalAddressReverseMap(locked).empty()) {
    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
    V = GV;
  }
}

/// clearAllGlobalMappings - Clear all global mappings and start over again
/// use in dynamic compilation scenarios when you want to move globals
void ExecutionEngine::clearAllGlobalMappings() {
  MutexGuard locked(lock);
  
  state.getGlobalAddressMap(locked).clear();
  state.getGlobalAddressReverseMap(locked).clear();
}

/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
/// particular module, because it has been removed from the JIT.
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
  MutexGuard locked(lock);
  
  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
    state.getGlobalAddressMap(locked).erase(FI);
    state.getGlobalAddressReverseMap(locked).erase(FI);
  }
  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 
       GI != GE; ++GI) {
    state.getGlobalAddressMap(locked).erase(GI);
    state.getGlobalAddressReverseMap(locked).erase(GI);
  }
}

/// updateGlobalMapping - Replace an existing mapping for GV with a new
/// address.  This updates both maps as required.  If "Addr" is null, the
/// entry for the global is removed from the mappings.
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
  MutexGuard locked(lock);

  std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);

  // Deleting from the mapping?
  if (Addr == 0) {
    std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
    void *OldVal;
    if (I == Map.end())
      OldVal = 0;
    else {
      OldVal = I->second;
      Map.erase(I); 
    }
    
    if (!state.getGlobalAddressReverseMap(locked).empty())
      state.getGlobalAddressReverseMap(locked).erase(Addr);
    return OldVal;
  }
  
  void *&CurVal = Map[GV];
  void *OldVal = CurVal;

  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
    state.getGlobalAddressReverseMap(locked).erase(CurVal);
  CurVal = Addr;
  
  // If we are using the reverse mapping, add it too
  if (!state.getGlobalAddressReverseMap(locked).empty()) {
    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
    V = GV;
  }
  return OldVal;
}

/// getPointerToGlobalIfAvailable - This returns the address of the specified
/// global value if it is has already been codegen'd, otherwise it returns null.
///
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
  MutexGuard locked(lock);
  
  std::map<const GlobalValue*, void*>::iterator I =
  state.getGlobalAddressMap(locked).find(GV);
  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
}

/// getGlobalValueAtAddress - Return the LLVM global value object that starts
/// at the specified address.
///
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
  MutexGuard locked(lock);

  // If we haven't computed the reverse mapping yet, do so first.
  if (state.getGlobalAddressReverseMap(locked).empty()) {
    for (std::map<const GlobalValue*, void *>::iterator
         I = state.getGlobalAddressMap(locked).begin(),
         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
                                                                     I->first));
  }

  std::map<void *, const GlobalValue*>::iterator I =
    state.getGlobalAddressReverseMap(locked).find(Addr);
  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
}

// CreateArgv - Turn a vector of strings into a nice argv style array of
// pointers to null terminated strings.
//
static void *CreateArgv(ExecutionEngine *EE,
                        const std::vector<std::string> &InputArgv) {
  unsigned PtrSize = EE->getTargetData()->getPointerSize();
  char *Result = new char[(InputArgv.size()+1)*PtrSize];

  DOUT << "ARGV = " << (void*)Result << "\n";
  const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);

  for (unsigned i = 0; i != InputArgv.size(); ++i) {
    unsigned Size = InputArgv[i].size()+1;
    char *Dest = new char[Size];
    DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";

    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
    Dest[Size-1] = 0;

    // Endian safe: Result[i] = (PointerTy)Dest;
    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
                           SBytePtr);
  }

  // Null terminate it
  EE->StoreValueToMemory(PTOGV(0),
                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
                         SBytePtr);
  return Result;
}


/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a module, depending on the
/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
  
  // Execute global ctors/dtors for each module in the program.
  
 GlobalVariable *GV = module->getNamedGlobal(Name);

 // If this global has internal linkage, or if it has a use, then it must be
 // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
 // this is the case, don't execute any of the global ctors, __main will do
 // it.
 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) return;
 
 // Should be an array of '{ int, void ()* }' structs.  The first value is
 // the init priority, which we ignore.
 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 if (!InitList) return;
 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
   if (ConstantStruct *CS = 
       dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
     if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
   
     Constant *FP = CS->getOperand(1);
     if (FP->isNullValue())
       break;  // Found a null terminator, exit.
   
     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
       if (CE->isCast())
         FP = CE->getOperand(0);
     if (Function *F = dyn_cast<Function>(FP)) {
       // Execute the ctor/dtor function!
       runFunction(F, std::vector<GenericValue>());
     }
   }
}

/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a program, depending on the
/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
  // Execute global ctors/dtors for each module in the program.
  for (unsigned m = 0, e = Modules.size(); m != e; ++m)
    runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
}

#ifndef NDEBUG
/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
  unsigned PtrSize = EE->getTargetData()->getPointerSize();
  for (unsigned i = 0; i < PtrSize; ++i)
    if (*(i + (uint8_t*)Loc))
      return false;
  return true;
}
#endif

/// runFunctionAsMain - This is a helper function which wraps runFunction to
/// handle the common task of starting up main with the specified argc, argv,
/// and envp parameters.
int ExecutionEngine::runFunctionAsMain(Function *Fn,
                                       const std::vector<std::string> &argv,
                                       const char * const * envp) {
  std::vector<GenericValue> GVArgs;
  GenericValue GVArgc;
  GVArgc.IntVal = APInt(32, argv.size());

  // Check main() type
  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
  const FunctionType *FTy = Fn->getFunctionType();
  const Type* PPInt8Ty = 
    PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
  switch (NumArgs) {
  case 3:
   if (FTy->getParamType(2) != PPInt8Ty) {
     cerr << "Invalid type for third argument of main() supplied\n";
     abort();
   }
   // FALLS THROUGH
  case 2:
   if (FTy->getParamType(1) != PPInt8Ty) {
     cerr << "Invalid type for second argument of main() supplied\n";
     abort();
   }
   // FALLS THROUGH
  case 1:
   if (FTy->getParamType(0) != Type::Int32Ty) {
     cerr << "Invalid type for first argument of main() supplied\n";
     abort();
   }
   // FALLS THROUGH
  case 0:
   if (FTy->getReturnType() != Type::Int32Ty &&
       FTy->getReturnType() != Type::VoidTy) {
     cerr << "Invalid return type of main() supplied\n";
     abort();
   }
   break;
  default:
   cerr << "Invalid number of arguments of main() supplied\n";
   abort();
  }
  
  if (NumArgs) {
    GVArgs.push_back(GVArgc); // Arg #0 = argc.
    if (NumArgs > 1) {
      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
             "argv[0] was null after CreateArgv");
      if (NumArgs > 2) {
        std::vector<std::string> EnvVars;
        for (unsigned i = 0; envp[i]; ++i)
          EnvVars.push_back(envp[i]);
        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
      }
    }
  }
  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
}

/// If possible, create a JIT, unless the caller specifically requests an
/// Interpreter or there's an error. If even an Interpreter cannot be created,
/// NULL is returned.
///
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
                                         bool ForceInterpreter,
                                         std::string *ErrorStr,
                                         bool Fast) {
  ExecutionEngine *EE = 0;

  // Make sure we can resolve symbols in the program as well. The zero arg
  // to the function tells DynamicLibrary to load the program, not a library.
  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
    return 0;

  // Unless the interpreter was explicitly selected, try making a JIT.
  if (!ForceInterpreter && JITCtor)
    EE = JITCtor(MP, ErrorStr, Fast);

  // If we can't make a JIT, make an interpreter instead.
  if (EE == 0 && InterpCtor)
    EE = InterpCtor(MP, ErrorStr, Fast);

  return EE;
}

ExecutionEngine *ExecutionEngine::create(Module *M) {
  return create(new ExistingModuleProvider(M));
}

/// getPointerToGlobal - This returns the address of the specified global
/// value.  This may involve code generation if it's a function.
///
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
    return getPointerToFunction(F);

  MutexGuard locked(lock);
  void *p = state.getGlobalAddressMap(locked)[GV];
  if (p)
    return p;

  // Global variable might have been added since interpreter started.
  if (GlobalVariable *GVar =
          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
    EmitGlobalVariable(GVar);
  else
    assert(0 && "Global hasn't had an address allocated yet!");
  return state.getGlobalAddressMap(locked)[GV];
}

/// This function converts a Constant* into a GenericValue. The interesting 
/// part is if C is a ConstantExpr.
/// @brief Get a GenericValue for a Constant*
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
  // If its undefined, return the garbage.
  if (isa<UndefValue>(C)) 
    return GenericValue();

  // If the value is a ConstantExpr
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    Constant *Op0 = CE->getOperand(0);
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr: {
      // Compute the index 
      GenericValue Result = getConstantValue(Op0);
      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
      uint64_t Offset =
        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());

      char* tmp = (char*) Result.PointerVal;
      Result = PTOGV(tmp + Offset);
      return Result;
    }
    case Instruction::Trunc: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      GV.IntVal = GV.IntVal.trunc(BitWidth);
      return GV;
    }
    case Instruction::ZExt: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      GV.IntVal = GV.IntVal.zext(BitWidth);
      return GV;
    }
    case Instruction::SExt: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      GV.IntVal = GV.IntVal.sext(BitWidth);
      return GV;
    }
    case Instruction::FPTrunc: {
      // FIXME long double
      GenericValue GV = getConstantValue(Op0);
      GV.FloatVal = float(GV.DoubleVal);
      return GV;
    }
    case Instruction::FPExt:{
      // FIXME long double
      GenericValue GV = getConstantValue(Op0);
      GV.DoubleVal = double(GV.FloatVal);
      return GV;
    }
    case Instruction::UIToFP: {
      GenericValue GV = getConstantValue(Op0);
      if (CE->getType() == Type::FloatTy)
        GV.FloatVal = float(GV.IntVal.roundToDouble());
      else if (CE->getType() == Type::DoubleTy)
        GV.DoubleVal = GV.IntVal.roundToDouble();
      else if (CE->getType() == Type::X86_FP80Ty) {
        const uint64_t zero[] = {0, 0};
        APFloat apf = APFloat(APInt(80, 2, zero));
        (void)apf.convertFromAPInt(GV.IntVal, 
                                   false,
                                   APFloat::rmNearestTiesToEven);
        GV.IntVal = apf.bitcastToAPInt();
      }
      return GV;
    }
    case Instruction::SIToFP: {
      GenericValue GV = getConstantValue(Op0);
      if (CE->getType() == Type::FloatTy)
        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
      else if (CE->getType() == Type::DoubleTy)
        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
      else if (CE->getType() == Type::X86_FP80Ty) {
        const uint64_t zero[] = { 0, 0};
        APFloat apf = APFloat(APInt(80, 2, zero));
        (void)apf.convertFromAPInt(GV.IntVal, 
                                   true,
                                   APFloat::rmNearestTiesToEven);
        GV.IntVal = apf.bitcastToAPInt();
      }
      return GV;
    }
    case Instruction::FPToUI: // double->APInt conversion handles sign
    case Instruction::FPToSI: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
      if (Op0->getType() == Type::FloatTy)
        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
      else if (Op0->getType() == Type::DoubleTy)
        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
      else if (Op0->getType() == Type::X86_FP80Ty) {
        APFloat apf = APFloat(GV.IntVal);
        uint64_t v;
        bool ignored;
        (void)apf.convertToInteger(&v, BitWidth,
                                   CE->getOpcode()==Instruction::FPToSI, 
                                   APFloat::rmTowardZero, &ignored);
        GV.IntVal = v; // endian?
      }
      return GV;
    }
    case Instruction::PtrToInt: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t PtrWidth = TD->getPointerSizeInBits();
      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
      return GV;
    }
    case Instruction::IntToPtr: {
      GenericValue GV = getConstantValue(Op0);
      uint32_t PtrWidth = TD->getPointerSizeInBits();
      if (PtrWidth != GV.IntVal.getBitWidth())
        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
      return GV;
    }
    case Instruction::BitCast: {
      GenericValue GV = getConstantValue(Op0);
      const Type* DestTy = CE->getType();
      switch (Op0->getType()->getTypeID()) {
        default: assert(0 && "Invalid bitcast operand");
        case Type::IntegerTyID:
          assert(DestTy->isFloatingPoint() && "invalid bitcast");
          if (DestTy == Type::FloatTy)
            GV.FloatVal = GV.IntVal.bitsToFloat();
          else if (DestTy == Type::DoubleTy)
            GV.DoubleVal = GV.IntVal.bitsToDouble();
          break;
        case Type::FloatTyID: 
          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
          GV.IntVal.floatToBits(GV.FloatVal);
          break;
        case Type::DoubleTyID:
          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
          GV.IntVal.doubleToBits(GV.DoubleVal);
          break;
        case Type::PointerTyID:
          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
          break; // getConstantValue(Op0)  above already converted it
      }
      return GV;
    }
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      GenericValue LHS = getConstantValue(Op0);
      GenericValue RHS = getConstantValue(CE->getOperand(1));
      GenericValue GV;
      switch (CE->getOperand(0)->getType()->getTypeID()) {
      default: assert(0 && "Bad add type!"); abort();
      case Type::IntegerTyID:
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid integer opcode");
          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
        }
        break;
      case Type::FloatTyID:
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid float opcode"); abort();
          case Instruction::Add:  
            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
          case Instruction::Sub:  
            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
          case Instruction::Mul:  
            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
          case Instruction::FDiv: 
            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
          case Instruction::FRem: 
            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
        }
        break;
      case Type::DoubleTyID:
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid double opcode"); abort();
          case Instruction::Add:  
            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
          case Instruction::Sub:  
            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
          case Instruction::Mul:  
            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
          case Instruction::FDiv: 
            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
          case Instruction::FRem: 
            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
        }
        break;
      case Type::X86_FP80TyID:
      case Type::PPC_FP128TyID:
      case Type::FP128TyID: {
        APFloat apfLHS = APFloat(LHS.IntVal);
        switch (CE->getOpcode()) {
          default: assert(0 && "Invalid long double opcode"); abort();
          case Instruction::Add:  
            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::Sub:  
            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::Mul:  
            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::FDiv: 
            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          case Instruction::FRem: 
            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
            GV.IntVal = apfLHS.bitcastToAPInt();
            break;
          }
        }
        break;
      }
      return GV;
    }
    default:
      break;
    }
    cerr << "ConstantExpr not handled: " << *CE << "\n";
    abort();
  }

  GenericValue Result;
  switch (C->getType()->getTypeID()) {
  case Type::FloatTyID: 
    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 
    break;
  case Type::DoubleTyID:
    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
    break;
  case Type::X86_FP80TyID:
  case Type::FP128TyID:
  case Type::PPC_FP128TyID:
    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
    break;
  case Type::IntegerTyID:
    Result.IntVal = cast<ConstantInt>(C)->getValue();
    break;
  case Type::PointerTyID:
    if (isa<ConstantPointerNull>(C))
      Result.PointerVal = 0;
    else if (const Function *F = dyn_cast<Function>(C))
      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
    else
      assert(0 && "Unknown constant pointer type!");
    break;
  default:
    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
    abort();
  }
  return Result;
}

/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
/// with the integer held in IntVal.
static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
                             unsigned StoreBytes) {
  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
  uint8_t *Src = (uint8_t *)IntVal.getRawData();

  if (sys::littleEndianHost())
    // Little-endian host - the source is ordered from LSB to MSB.  Order the
    // destination from LSB to MSB: Do a straight copy.
    memcpy(Dst, Src, StoreBytes);
  else {
    // Big-endian host - the source is an array of 64 bit words ordered from
    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
    while (StoreBytes > sizeof(uint64_t)) {
      StoreBytes -= sizeof(uint64_t);
      // May not be aligned so use memcpy.
      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
      Src += sizeof(uint64_t);
    }

    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
  }
}

/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
/// is the address of the memory at which to store Val, cast to GenericValue *.
/// It is not a pointer to a GenericValue containing the address at which to
/// store Val.
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
                                         const Type *Ty) {
  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);

  switch (Ty->getTypeID()) {
  case Type::IntegerTyID:
    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
    break;
  case Type::FloatTyID:
    *((float*)Ptr) = Val.FloatVal;
    break;
  case Type::DoubleTyID:
    *((double*)Ptr) = Val.DoubleVal;
    break;
  case Type::X86_FP80TyID: {
      uint16_t *Dest = (uint16_t*)Ptr;
      const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
      // This is endian dependent, but it will only work on x86 anyway.
      Dest[0] = Src[4];
      Dest[1] = Src[0];
      Dest[2] = Src[1];
      Dest[3] = Src[2];
      Dest[4] = Src[3];
      break;
    }
  case Type::PointerTyID:
    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
    if (StoreBytes != sizeof(PointerTy))
      memset(Ptr, 0, StoreBytes);

    *((PointerTy*)Ptr) = Val.PointerVal;
    break;
  default:
    cerr << "Cannot store value of type " << *Ty << "!\n";
  }

  if (sys::littleEndianHost() != getTargetData()->isLittleEndian())
    // Host and target are different endian - reverse the stored bytes.
    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
}

/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
  uint8_t *Dst = (uint8_t *)IntVal.getRawData();

  if (sys::littleEndianHost())
    // Little-endian host - the destination must be ordered from LSB to MSB.
    // The source is ordered from LSB to MSB: Do a straight copy.
    memcpy(Dst, Src, LoadBytes);
  else {
    // Big-endian - the destination is an array of 64 bit words ordered from
    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
    // a word.
    while (LoadBytes > sizeof(uint64_t)) {
      LoadBytes -= sizeof(uint64_t);
      // May not be aligned so use memcpy.
      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
      Dst += sizeof(uint64_t);
    }

    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
  }
}

/// FIXME: document
///
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
                                          GenericValue *Ptr,
                                          const Type *Ty) {
  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);

  if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) {
    // Host and target are different endian - reverse copy the stored
    // bytes into a buffer, and load from that.
    uint8_t *Src = (uint8_t*)Ptr;
    uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
    std::reverse_copy(Src, Src + LoadBytes, Buf);
    Ptr = (GenericValue*)Buf;
  }

  switch (Ty->getTypeID()) {
  case Type::IntegerTyID:
    // An APInt with all words initially zero.
    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
    break;
  case Type::FloatTyID:
    Result.FloatVal = *((float*)Ptr);
    break;
  case Type::DoubleTyID:
    Result.DoubleVal = *((double*)Ptr);
    break;
  case Type::PointerTyID:
    Result.PointerVal = *((PointerTy*)Ptr);
    break;
  case Type::X86_FP80TyID: {
    // This is endian dependent, but it will only work on x86 anyway.
    // FIXME: Will not trap if loading a signaling NaN.
    uint16_t *p = (uint16_t*)Ptr;
    union {
      uint16_t x[8];
      uint64_t y[2];
    };
    x[0] = p[1];
    x[1] = p[2];
    x[2] = p[3];
    x[3] = p[4];
    x[4] = p[0];
    Result.IntVal = APInt(80, 2, y);
    break;
  }
  default:
    cerr << "Cannot load value of type " << *Ty << "!\n";
    abort();
  }
}

// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
  DOUT << "Initializing " << Addr;
  DEBUG(Init->dump());
  if (isa<UndefValue>(Init)) {
    return;
  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
    unsigned ElementSize =
      getTargetData()->getABITypeSize(CP->getType()->getElementType());
    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
    return;
  } else if (isa<ConstantAggregateZero>(Init)) {
    memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType()));
    return;
  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
    unsigned ElementSize =
      getTargetData()->getABITypeSize(CPA->getType()->getElementType());
    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
    return;
  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
    const StructLayout *SL =
      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
    return;
  } else if (Init->getType()->isFirstClassType()) {
    GenericValue Val = getConstantValue(Init);
    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
    return;
  }

  cerr << "Bad Type: " << *Init->getType() << "\n";
  assert(0 && "Unknown constant type to initialize memory with!");
}

/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress.  This must make sure to copy the contents of
/// their initializers into the memory.
///
void ExecutionEngine::emitGlobals() {

  // Loop over all of the global variables in the program, allocating the memory
  // to hold them.  If there is more than one module, do a prepass over globals
  // to figure out how the different modules should link together.
  //
  std::map<std::pair<std::string, const Type*>,
           const GlobalValue*> LinkedGlobalsMap;

  if (Modules.size() != 1) {
    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
      Module &M = *Modules[m]->getModule();
      for (Module::const_global_iterator I = M.global_begin(),
           E = M.global_end(); I != E; ++I) {
        const GlobalValue *GV = I;
        if (GV->hasInternalLinkage() || GV->isDeclaration() ||
            GV->hasAppendingLinkage() || !GV->hasName())
          continue;// Ignore external globals and globals with internal linkage.
          
        const GlobalValue *&GVEntry = 
          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];

        // If this is the first time we've seen this global, it is the canonical
        // version.
        if (!GVEntry) {
          GVEntry = GV;
          continue;
        }
        
        // If the existing global is strong, never replace it.
        if (GVEntry->hasExternalLinkage() ||
            GVEntry->hasDLLImportLinkage() ||
            GVEntry->hasDLLExportLinkage())
          continue;
        
        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
        // symbol.  FIXME is this right for common?
        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
          GVEntry = GV;
      }
    }
  }
  
  std::vector<const GlobalValue*> NonCanonicalGlobals;
  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
    Module &M = *Modules[m]->getModule();
    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
         I != E; ++I) {
      // In the multi-module case, see what this global maps to.
      if (!LinkedGlobalsMap.empty()) {
        if (const GlobalValue *GVEntry = 
              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
          // If something else is the canonical global, ignore this one.
          if (GVEntry != &*I) {
            NonCanonicalGlobals.push_back(I);
            continue;
          }
        }
      }
      
      if (!I->isDeclaration()) {
        addGlobalMapping(I, getMemoryForGV(I));
      } else {
        // External variable reference. Try to use the dynamic loader to
        // get a pointer to it.
        if (void *SymAddr =
            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
          addGlobalMapping(I, SymAddr);
        else {
          cerr << "Could not resolve external global address: "
               << I->getName() << "\n";
          abort();
        }
      }
    }
    
    // If there are multiple modules, map the non-canonical globals to their
    // canonical location.
    if (!NonCanonicalGlobals.empty()) {
      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
        const GlobalValue *GV = NonCanonicalGlobals[i];
        const GlobalValue *CGV =
          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
        void *Ptr = getPointerToGlobalIfAvailable(CGV);
        assert(Ptr && "Canonical global wasn't codegen'd!");
        addGlobalMapping(GV, Ptr);
      }
    }
    
    // Now that all of the globals are set up in memory, loop through them all 
    // and initialize their contents.
    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
         I != E; ++I) {
      if (!I->isDeclaration()) {
        if (!LinkedGlobalsMap.empty()) {
          if (const GlobalValue *GVEntry = 
                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
            if (GVEntry != &*I)  // Not the canonical variable.
              continue;
        }
        EmitGlobalVariable(I);
      }
    }
  }
}

// EmitGlobalVariable - This method emits the specified global variable to the
// address specified in GlobalAddresses, or allocates new memory if it's not
// already in the map.
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
  void *GA = getPointerToGlobalIfAvailable(GV);
  DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";

  if (GA == 0) {
    // If it's not already specified, allocate memory for the global.
    GA = getMemoryForGV(GV);
    addGlobalMapping(GV, GA);
  }
  
  // Don't initialize if it's thread local, let the client do it.
  if (!GV->isThreadLocal())
    InitializeMemory(GV->getInitializer(), GA);
  
  const Type *ElTy = GV->getType()->getElementType();
  size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy);
  NumInitBytes += (unsigned)GVSize;
  ++NumGlobals;
}