llvm.org GIT mirror llvm / 43ad6b3 lib / VMCore / Verifier.cpp
43ad6b3

Tree @43ad6b3 (Download .tar.gz)

Verifier.cpp @43ad6b3raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <sstream>
#include <cstdarg>
using namespace llvm;

namespace {  // Anonymous namespace for class
  struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
    static char ID; // Pass ID, replacement for typeid

    PreVerifier() : FunctionPass((intptr_t)&ID) { }

    // Check that the prerequisites for successful DominatorTree construction
    // are satisfied.
    bool runOnFunction(Function &F) {
      bool Broken = false;

      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
        if (I->empty() || !I->back().isTerminator()) {
          cerr << "Basic Block does not have terminator!\n";
          WriteAsOperand(*cerr, I, true);
          cerr << "\n";
          Broken = true;
        }
      }

      if (Broken)
        abort();

      return false;
    }
  };

  char PreVerifier::ID = 0;
  RegisterPass<PreVerifier> PreVer("preverify", "Preliminary module verification");
  const PassInfo *PreVerifyID = PreVer.getPassInfo();

  struct VISIBILITY_HIDDEN
     Verifier : public FunctionPass, InstVisitor<Verifier> {
    static char ID; // Pass ID, replacement for typeid
    bool Broken;          // Is this module found to be broken?
    bool RealPass;        // Are we not being run by a PassManager?
    VerifierFailureAction action;
                          // What to do if verification fails.
    Module *Mod;          // Module we are verifying right now
    DominatorTree *DT; // Dominator Tree, caution can be null!
    std::stringstream msgs;  // A stringstream to collect messages

    /// InstInThisBlock - when verifying a basic block, keep track of all of the
    /// instructions we have seen so far.  This allows us to do efficient
    /// dominance checks for the case when an instruction has an operand that is
    /// an instruction in the same block.
    SmallPtrSet<Instruction*, 16> InstsInThisBlock;

    Verifier()
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(true), action(AbortProcessAction),
      DT(0), msgs( std::ios::app | std::ios::out ) {}
    Verifier( VerifierFailureAction ctn )
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(true), action(ctn), DT(0),
      msgs( std::ios::app | std::ios::out ) {}
    Verifier(bool AB )
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(true),
      action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
      msgs( std::ios::app | std::ios::out ) {}
    Verifier(DominatorTree &dt)
      : FunctionPass((intptr_t)&ID), 
      Broken(false), RealPass(false), action(PrintMessageAction),
      DT(&dt), msgs( std::ios::app | std::ios::out ) {}


    bool doInitialization(Module &M) {
      Mod = &M;
      verifyTypeSymbolTable(M.getTypeSymbolTable());

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();
      return false;
    }

    bool runOnFunction(Function &F) {
      // Get dominator information if we are being run by PassManager
      if (RealPass) DT = &getAnalysis<DominatorTree>();

      Mod = F.getParent();

      visit(F);
      InstsInThisBlock.clear();

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();

      return false;
    }

    bool doFinalization(Module &M) {
      // Scan through, checking all of the external function's linkage now...
      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
        visitGlobalValue(*I);

        // Check to make sure function prototypes are okay.
        if (I->isDeclaration()) visitFunction(*I);
      }

      for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
           I != E; ++I)
        visitGlobalVariable(*I);

      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 
           I != E; ++I)
        visitGlobalAlias(*I);

      // If the module is broken, abort at this time.
      return abortIfBroken();
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      AU.addRequiredID(PreVerifyID);
      if (RealPass)
        AU.addRequired<DominatorTree>();
    }

    /// abortIfBroken - If the module is broken and we are supposed to abort on
    /// this condition, do so.
    ///
    bool abortIfBroken() {
      if (Broken) {
        msgs << "Broken module found, ";
        switch (action) {
          case AbortProcessAction:
            msgs << "compilation aborted!\n";
            cerr << msgs.str();
            abort();
          case PrintMessageAction:
            msgs << "verification continues.\n";
            cerr << msgs.str();
            return false;
          case ReturnStatusAction:
            msgs << "compilation terminated.\n";
            return Broken;
        }
      }
      return false;
    }


    // Verification methods...
    void verifyTypeSymbolTable(TypeSymbolTable &ST);
    void visitGlobalValue(GlobalValue &GV);
    void visitGlobalVariable(GlobalVariable &GV);
    void visitGlobalAlias(GlobalAlias &GA);
    void visitFunction(Function &F);
    void visitBasicBlock(BasicBlock &BB);
    void visitTruncInst(TruncInst &I);
    void visitZExtInst(ZExtInst &I);
    void visitSExtInst(SExtInst &I);
    void visitFPTruncInst(FPTruncInst &I);
    void visitFPExtInst(FPExtInst &I);
    void visitFPToUIInst(FPToUIInst &I);
    void visitFPToSIInst(FPToSIInst &I);
    void visitUIToFPInst(UIToFPInst &I);
    void visitSIToFPInst(SIToFPInst &I);
    void visitIntToPtrInst(IntToPtrInst &I);
    void visitPtrToIntInst(PtrToIntInst &I);
    void visitBitCastInst(BitCastInst &I);
    void visitPHINode(PHINode &PN);
    void visitBinaryOperator(BinaryOperator &B);
    void visitICmpInst(ICmpInst &IC);
    void visitFCmpInst(FCmpInst &FC);
    void visitExtractElementInst(ExtractElementInst &EI);
    void visitInsertElementInst(InsertElementInst &EI);
    void visitShuffleVectorInst(ShuffleVectorInst &EI);
    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    void visitCallInst(CallInst &CI);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitInstruction(Instruction &I);
    void visitTerminatorInst(TerminatorInst &I);
    void visitReturnInst(ReturnInst &RI);
    void visitSwitchInst(SwitchInst &SI);
    void visitSelectInst(SelectInst &SI);
    void visitUserOp1(Instruction &I);
    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    void visitAllocationInst(AllocationInst &AI);

    void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
                                  unsigned Count, ...);

    void WriteValue(const Value *V) {
      if (!V) return;
      if (isa<Instruction>(V)) {
        msgs << *V;
      } else {
        WriteAsOperand(msgs, V, true, Mod);
        msgs << "\n";
      }
    }

    void WriteType(const Type* T ) {
      if ( !T ) return;
      WriteTypeSymbolic(msgs, T, Mod );
    }


    // CheckFailed - A check failed, so print out the condition and the message
    // that failed.  This provides a nice place to put a breakpoint if you want
    // to see why something is not correct.
    void CheckFailed(const std::string &Message,
                     const Value *V1 = 0, const Value *V2 = 0,
                     const Value *V3 = 0, const Value *V4 = 0) {
      msgs << Message << "\n";
      WriteValue(V1);
      WriteValue(V2);
      WriteValue(V3);
      WriteValue(V4);
      Broken = true;
    }

    void CheckFailed( const std::string& Message, const Value* V1,
                      const Type* T2, const Value* V3 = 0 ) {
      msgs << Message << "\n";
      WriteValue(V1);
      WriteType(T2);
      WriteValue(V3);
      Broken = true;
    }
  };

  char Verifier::ID = 0;
  RegisterPass<Verifier> X("verify", "Module Verifier");
} // End anonymous namespace


// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
  do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)


void Verifier::visitGlobalValue(GlobalValue &GV) {
  Assert1(!GV.isDeclaration() ||
          GV.hasExternalLinkage() ||
          GV.hasDLLImportLinkage() ||
          GV.hasExternalWeakLinkage() ||
          (isa<GlobalAlias>(GV) &&
           (GV.hasInternalLinkage() || GV.hasWeakLinkage())),
  "Global is external, but doesn't have external or dllimport or weak linkage!",
          &GV);

  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
          "Global is marked as dllimport, but not external", &GV);
  
  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
          "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    GlobalVariable &GVar = cast<GlobalVariable>(GV);
    Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
            "Only global arrays can have appending linkage!", &GV);
  }
}

void Verifier::visitGlobalVariable(GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
            "Global variable initializer type does not match global "
            "variable type!", &GV);
  } else {
    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
            GV.hasExternalWeakLinkage(),
            "invalid linkage type for global declaration", &GV);
  }

  visitGlobalValue(GV);
}

void Verifier::visitGlobalAlias(GlobalAlias &GA) {
  Assert1(!GA.getName().empty(),
          "Alias name cannot be empty!", &GA);
  Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() ||
          GA.hasWeakLinkage(),
          "Alias should have external or external weak linkage!", &GA);
  Assert1(GA.getType() == GA.getAliasee()->getType(),
          "Alias and aliasee types should match!", &GA);
  
  if (!isa<GlobalValue>(GA.getAliasee())) {
    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    Assert1(CE && CE->getOpcode() == Instruction::BitCast &&
            isa<GlobalValue>(CE->getOperand(0)),
            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
            &GA);
  }
  
  visitGlobalValue(GA);
}

void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
  // Check function arguments.
  const FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Assert2(FT->getNumParams() == NumArgs,
          "# formal arguments must match # of arguments for function type!",
          &F, FT);
  Assert1(F.getReturnType()->isFirstClassType() ||
          F.getReturnType() == Type::VoidTy,
          "Functions cannot return aggregate values!", &F);

  Assert1(!F.isStructReturn() || FT->getReturnType() == Type::VoidTy,
          "Invalid struct-return function!", &F);

  bool SawSRet = false;

  if (const ParamAttrsList *Attrs = F.getParamAttrs()) {
    Assert1(Attrs->size() &&
            Attrs->getParamIndex(Attrs->size()-1) <= FT->getNumParams(),
            "Function has excess attributes!", &F);

    bool SawNest = false;

    for (unsigned Idx = 0; Idx <= FT->getNumParams(); ++Idx) {
      uint16_t Attr = Attrs->getParamAttrs(Idx);

      if (!Idx) {
        uint16_t RetI = Attr & ParamAttr::ParameterOnly;
        Assert1(!RetI, "Attribute " + Attrs->getParamAttrsText(RetI) +
                "should not apply to functions!", &F);
      } else {
        uint16_t ParmI = Attr & ParamAttr::ReturnOnly;
        Assert1(!ParmI, "Attribute " + Attrs->getParamAttrsText(ParmI) +
                "should only be applied to function!", &F);

      }

      for (unsigned i = 0;
           i < array_lengthof(ParamAttr::MutuallyIncompatible); ++i) {
        uint16_t MutI = Attr & ParamAttr::MutuallyIncompatible[i];
        Assert1(!(MutI & (MutI - 1)), "Attributes " +
                Attrs->getParamAttrsText(MutI) + "are incompatible!", &F);
      }

      uint16_t IType = Attr & ParamAttr::IntegerTypeOnly;
      Assert1(!IType || FT->getParamType(Idx-1)->isInteger(),
              "Attribute " + Attrs->getParamAttrsText(IType) +
              "should only apply to Integer type!", &F);

      uint16_t PType = Attr & ParamAttr::PointerTypeOnly;
      Assert1(!PType || isa<PointerType>(FT->getParamType(Idx-1)),
              "Attribute " + Attrs->getParamAttrsText(PType) +
              "should only apply to Pointer type!", &F);

      if (Attr & ParamAttr::ByVal) {
        const PointerType *Ty =
            dyn_cast<PointerType>(FT->getParamType(Idx-1));
        Assert1(!Ty || isa<StructType>(Ty->getElementType()),
                "Attribute byval should only apply to pointer to structs!", &F);
      }

      if (Attr & ParamAttr::Nest) {
        Assert1(!SawNest, "More than one parameter has attribute nest!", &F);
        SawNest = true;
      }

      if (Attr & ParamAttr::StructRet) {
        SawSRet = true;
        Assert1(Idx == 1, "Attribute sret not on first parameter!", &F);
      }
    }
  }

  Assert1(SawSRet == F.isStructReturn(),
          "StructReturn function with no sret attribute!", &F);

  // Check that this function meets the restrictions on this calling convention.
  switch (F.getCallingConv()) {
  default:
    break;
  case CallingConv::C:
    break;
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::X86_FastCall:
    Assert1(!F.isVarArg(),
            "Varargs functions must have C calling conventions!", &F);
    break;
  }
  
  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
       I != E; ++I, ++i) {
    Assert2(I->getType() == FT->getParamType(i),
            "Argument value does not match function argument type!",
            I, FT->getParamType(i));
    // Make sure no aggregates are passed by value.
    Assert1(I->getType()->isFirstClassType(),
            "Functions cannot take aggregates as arguments by value!", I);
   }

  if (F.isDeclaration()) {
    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
            F.hasExternalWeakLinkage(),
            "invalid linkage type for function declaration", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    if (F.getName().size() >= 5)
      Assert1(F.getName().substr(0, 5) != "llvm.",
              "llvm intrinsics cannot be defined!", &F);
    
    // Check the entry node
    BasicBlock *Entry = &F.getEntryBlock();
    Assert1(pred_begin(Entry) == pred_end(Entry),
            "Entry block to function must not have predecessors!", Entry);
  }
}


// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();

  // Ensure that basic blocks have terminators!
  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    std::sort(Preds.begin(), Preds.end());
    PHINode *PN;
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {

      // Ensure that PHI nodes have at least one entry!
      Assert1(PN->getNumIncomingValues() != 0,
              "PHI nodes must have at least one entry.  If the block is dead, "
              "the PHI should be removed!", PN);
      Assert1(PN->getNumIncomingValues() == Preds.size(),
              "PHINode should have one entry for each predecessor of its "
              "parent basic block!", PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN->getNumIncomingValues());
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
                                        PN->getIncomingValue(i)));
      std::sort(Values.begin(), Values.end());

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
                Values[i].second == Values[i-1].second,
                "PHI node has multiple entries for the same basic block with "
                "different incoming values!", PN, Values[i].first,
                Values[i].second, Values[i-1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert3(Values[i].first == Preds[i],
                "PHI node entries do not match predecessors!", PN,
                Values[i].first, Preds[i]);
      }
    }
  }
}

void Verifier::visitTerminatorInst(TerminatorInst &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert1(&I == I.getParent()->getTerminator(),
          "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  if (RI.getNumOperands() == 0)
    Assert2(F->getReturnType() == Type::VoidTy,
            "Found return instr that returns void in Function of non-void "
            "return type!", &RI, F->getReturnType());
  else
    Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
            "Function return type does not match operand "
            "type of return inst!", &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminatorInst(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  const Type *SwitchTy = SI.getCondition()->getType();
  for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
    Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
            "Switch constants must all be same type as switch value!", &SI);

  visitTerminatorInst(SI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert1(SI.getCondition()->getType() == Type::Int1Ty,
          "Select condition type must be bool!", &SI);
  Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
          "Select values must have identical types!", &SI);
  Assert1(SI.getTrueValue()->getType() == SI.getType(),
          "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}


/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I);
  Assert1(DestTy->isInteger(), "Trunc only produces integer", &I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I);
  Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I);
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I);
  Assert1(DestTy->isInteger(), "SExt only produces an integer", &I);
  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
  Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
  Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
  bool DstVec = DestTy->getTypeID() == Type::VectorTyID;

  Assert1(SrcVec == DstVec,"UIToFP source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isIntOrIntVector(),"UIToFP source must be integer or integer vector", &I);
  Assert1(DestTy->isFPOrFPVector(),"UIToFP result must be FP or FP vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
            "UIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
  bool DstVec = DestTy->getTypeID() == Type::VectorTyID;

  Assert1(SrcVec == DstVec,"SIToFP source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isIntOrIntVector(),"SIToFP source must be integer or integer vector", &I);
  Assert1(DestTy->isFPOrFPVector(),"SIToFP result must be FP or FP vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
            "SIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
  bool DstVec = DestTy->getTypeID() == Type::VectorTyID;

  Assert1(SrcVec == DstVec,"FPToUI source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isFPOrFPVector(),"FPToUI source must be FP or FP vector", &I);
  Assert1(DestTy->isIntOrIntVector(),"FPToUI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
            "FPToUI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
  bool DstVec = DestTy->getTypeID() == Type::VectorTyID;

  Assert1(SrcVec == DstVec,"FPToSI source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isFPOrFPVector(),"FPToSI source must be FP or FP vector", &I);
  Assert1(DestTy->isIntOrIntVector(),"FPToSI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() == cast<VectorType>(DestTy)->getNumElements(),
            "FPToSI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
  Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
  Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);

  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  // BitCast implies a no-op cast of type only. No bits change.
  // However, you can't cast pointers to anything but pointers.
  Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
          "Bitcast requires both operands to be pointer or neither", &I);
  Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);

  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert2(&PN == &PN.getParent()->front() || 
          isa<PHINode>(--BasicBlock::iterator(&PN)),
          "PHI nodes not grouped at top of basic block!",
          &PN, PN.getParent());

  // Check that all of the operands of the PHI node have the same type as the
  // result.
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
            "PHI node operands are not the same type as the result!", &PN);

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::visitCallInst(CallInst &CI) {
  Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
          "Called function must be a pointer!", &CI);
  const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
  Assert1(isa<FunctionType>(FPTy->getElementType()),
          "Called function is not pointer to function type!", &CI);

  const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
            "Called function requires more parameters than were provided!",&CI);
  else
    Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
            "Incorrect number of arguments passed to called function!", &CI);

  // Verify that all arguments to the call match the function type...
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
            "Call parameter type does not match function signature!",
            CI.getOperand(i+1), FTy->getParamType(i), &CI);

  if (Function *F = CI.getCalledFunction()) {
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicFunctionCall(ID, CI);
  }
  
  visitInstruction(CI);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
          "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Assert1(B.getType()->isInteger() ||
            (isa<VectorType>(B.getType()) && 
             cast<VectorType>(B.getType())->getElementType()->isInteger()),
            "Logical operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Logical operators must have same type for operands and result!",
            &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Assert1(B.getType()->isInteger(),
            "Shift must return an integer result!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Shift return type must be same as operands!", &B);
    /* FALL THROUGH */
  default:
    // Arithmetic operators only work on integer or fp values
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Arithmetic operators must have same type for operands and result!",
            &B);
    Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
            isa<VectorType>(B.getType()),
            "Arithmetic operators must have integer, fp, or vector type!", &B);
    break;
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst& IC) {
  // Check that the operands are the same type
  const Type* Op0Ty = IC.getOperand(0)->getType();
  const Type* Op1Ty = IC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
          "Invalid operand types for ICmp instruction", &IC);
  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst& FC) {
  // Check that the operands are the same type
  const Type* Op0Ty = FC.getOperand(0)->getType();
  const Type* Op1Ty = FC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isFloatingPoint(),
          "Invalid operand types for FCmp instruction", &FC);
  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
                                              EI.getOperand(1)),
          "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
                                             IE.getOperand(1),
                                             IE.getOperand(2)),
          "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                             SV.getOperand(2)),
          "Invalid shufflevector operands!", &SV);
  Assert1(SV.getType() == SV.getOperand(0)->getType(),
          "Result of shufflevector must match first operand type!", &SV);
  
  // Check to see if Mask is valid.
  if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
      Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
              isa<UndefValue>(MV->getOperand(i)),
              "Invalid shufflevector shuffle mask!", &SV);
    }
  } else {
    Assert1(isa<UndefValue>(SV.getOperand(2)) || 
            isa<ConstantAggregateZero>(SV.getOperand(2)),
            "Invalid shufflevector shuffle mask!", &SV);
  }
  
  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
  const Type *ElTy =
    GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
                                      Idxs.begin(), Idxs.end(), true);
  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
  Assert2(isa<PointerType>(GEP.getType()) &&
          cast<PointerType>(GEP.getType())->getElementType() == ElTy,
          "GEP is not of right type for indices!", &GEP, ElTy);
  visitInstruction(GEP);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  const Type *ElTy =
    cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
  Assert2(ElTy == LI.getType(),
          "Load result type does not match pointer operand type!", &LI, ElTy);
  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  const Type *ElTy =
    cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
  Assert2(ElTy == SI.getOperand(0)->getType(),
          "Stored value type does not match pointer operand type!", &SI, ElTy);
  visitInstruction(SI);
}

void Verifier::visitAllocationInst(AllocationInst &AI) {
  const PointerType *Ptr = AI.getType();
  Assert(Ptr->getAddressSpace() == 0, 
    "Allocation instruction pointer not in the generic address space!");
  visitInstruction(AI);
}


/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Assert1(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
         UI != UE; ++UI)
      Assert1(*UI != (User*)&I ||
              !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
              "Only PHI nodes may reference their own value!", &I);
  }

  // Check that void typed values don't have names
  Assert1(I.getType() != Type::VoidTy || !I.hasName(),
          "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
          "Instruction returns a non-scalar type!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
       UI != UE; ++UI) {
    Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
            *UI);
    Instruction *Used = cast<Instruction>(*UI);
    Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
            " embeded in a basic block!", &I, Used);
  }

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    Assert1(I.getOperand(i)->getType()->isFirstClassType(),
            "Instruction operands must be first-class values!", &I);
  
    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // Check to make sure that the "address of" an intrinsic function is never
      // taken.
      Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
              "Cannot take the address of an intrinsic!", &I);
      Assert1(F->getParent() == Mod, "Referencing function in another module!",
              &I);
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert1(OpBB->getParent() == BB->getParent(),
              "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert1(OpArg->getParent() == BB->getParent(),
              "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
              &I);
    } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
      BasicBlock *OpBlock = Op->getParent();

      // Check that a definition dominates all of its uses.
      if (!isa<PHINode>(I)) {
        // Invoke results are only usable in the normal destination, not in the
        // exceptional destination.
        if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
          OpBlock = II->getNormalDest();
          
          Assert2(OpBlock != II->getUnwindDest(),
                  "No uses of invoke possible due to dominance structure!",
                  Op, II);
          
          // If the normal successor of an invoke instruction has multiple
          // predecessors, then the normal edge from the invoke is critical, so
          // the invoke value can only be live if the destination block
          // dominates all of it's predecessors (other than the invoke) or if
          // the invoke value is only used by a phi in the successor.
          if (!OpBlock->getSinglePredecessor() &&
              DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
            // The first case we allow is if the use is a PHI operand in the
            // normal block, and if that PHI operand corresponds to the invoke's
            // block.
            bool Bad = true;
            if (PHINode *PN = dyn_cast<PHINode>(&I))
              if (PN->getParent() == OpBlock &&
                  PN->getIncomingBlock(i/2) == Op->getParent())
                Bad = false;
            
            // If it is used by something non-phi, then the other case is that
            // 'OpBlock' dominates all of its predecessors other than the
            // invoke.  In this case, the invoke value can still be used.
            if (Bad) {
              Bad = false;
              for (pred_iterator PI = pred_begin(OpBlock),
                   E = pred_end(OpBlock); PI != E; ++PI) {
                if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
                  Bad = true;
                  break;
                }
              }
            }
            Assert2(!Bad,
                    "Invoke value defined on critical edge but not dead!", &I,
                    Op);
          }
        } else if (OpBlock == BB) {
          // If they are in the same basic block, make sure that the definition
          // comes before the use.
          Assert2(InstsInThisBlock.count(Op) ||
                  !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
                  "Instruction does not dominate all uses!", Op, &I);
        }

        // Definition must dominate use unless use is unreachable!
        Assert2(DT->dominates(OpBlock, BB) ||
                !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
                "Instruction does not dominate all uses!", Op, &I);
      } else {
        // PHI nodes are more difficult than other nodes because they actually
        // "use" the value in the predecessor basic blocks they correspond to.
        BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
        Assert2(DT->dominates(OpBlock, PredBB) ||
                !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
                "Instruction does not dominate all uses!", Op, &I);
      }
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Assert1(i == 0 && isa<CallInst>(I),
              "Cannot take the address of an inline asm!", &I);
    }
  }
  InstsInThisBlock.insert(&I);
}

static bool HasPtrPtrType(Value *Val) {
  if (const PointerType *PtrTy = dyn_cast<PointerType>(Val->getType()))
    return isa<PointerType>(PtrTy->getElementType());
  return false;
}

/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
  Function *IF = CI.getCalledFunction();
  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
          IF);
  
#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER
  
  switch (ID) {
  default:
    break;
  case Intrinsic::gcroot:
    Assert1(HasPtrPtrType(CI.getOperand(1)),
            "llvm.gcroot parameter #1 must be a pointer to a pointer.", &CI);
    Assert1(isa<AllocaInst>(IntrinsicInst::StripPointerCasts(CI.getOperand(1))),
            "llvm.gcroot parameter #1 must be an alloca (or a bitcast of one).",
            &CI);
    Assert1(isa<Constant>(CI.getOperand(2)),
            "llvm.gcroot parameter #2 must be a constant.", &CI);
    break;
  case Intrinsic::gcwrite:
    Assert1(CI.getOperand(3)->getType()
            == PointerType::getUnqual(CI.getOperand(1)->getType()),
            "Call to llvm.gcwrite must be with type 'void (%ty*, %ty2*, %ty**)'.",
            &CI);
    break;
  case Intrinsic::gcread:
    Assert1(CI.getOperand(2)->getType() == PointerType::getUnqual(CI.getType()),
            "Call to llvm.gcread must be with type '%ty* (%ty2*, %ty**).'",
            &CI);
    break;
  case Intrinsic::init_trampoline:
    Assert1(isa<Function>(IntrinsicInst::StripPointerCasts(CI.getOperand(2))),
            "llvm.init_trampoline parameter #2 must resolve to a function.",
            &CI);
  }
}

/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
/// Intrinsics.gen.  This implements a little state machine that verifies the
/// prototype of intrinsics.
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID,
                                        Function *F,
                                        unsigned Count, ...) {
  va_list VA;
  va_start(VA, Count);
  
  const FunctionType *FTy = F->getFunctionType();
  
  // For overloaded intrinsics, the Suffix of the function name must match the
  // types of the arguments. This variable keeps track of the expected
  // suffix, to be checked at the end.
  std::string Suffix;

  if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) {
    CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
    return;
  }

  // Note that "arg#0" is the return type.
  for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) {
    MVT::ValueType VT = va_arg(VA, MVT::ValueType);

    if (VT == MVT::isVoid && ArgNo > 0) {
      if (!FTy->isVarArg())
        CheckFailed("Intrinsic prototype has no '...'!", F);
      break;
    }

    const Type *Ty;
    if (ArgNo == 0)
      Ty = FTy->getReturnType();
    else
      Ty = FTy->getParamType(ArgNo-1);

    unsigned NumElts = 0;
    const Type *EltTy = Ty;
    if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
      EltTy = VTy->getElementType();
      NumElts = VTy->getNumElements();
    }
    
    if ((int)VT < 0) {
      int Match = ~VT;
      if (Match == 0) {
        if (Ty != FTy->getReturnType()) {
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
                      "match return type.", F);
          break;
        }
      } else {
        if (Ty != FTy->getParamType(Match-1)) {
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
                      "match parameter %" + utostr(Match-1) + ".", F);
          break;
        }
      }
    } else if (VT == MVT::iAny) {
      if (!EltTy->isInteger()) {
        if (ArgNo == 0)
          CheckFailed("Intrinsic result type is not "
                      "an integer type.", F);
        else
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
                      "an integer type.", F);
        break;
      }
      unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
      Suffix += ".";
      if (EltTy != Ty)
        Suffix += "v" + utostr(NumElts);
      Suffix += "i" + utostr(GotBits);;
      // Check some constraints on various intrinsics.
      switch (ID) {
        default: break; // Not everything needs to be checked.
        case Intrinsic::bswap:
          if (GotBits < 16 || GotBits % 16 != 0)
            CheckFailed("Intrinsic requires even byte width argument", F);
          break;
      }
    } else if (VT == MVT::fAny) {
      if (!EltTy->isFloatingPoint()) {
        if (ArgNo == 0)
          CheckFailed("Intrinsic result type is not "
                      "a floating-point type.", F);
        else
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
                      "a floating-point type.", F);
        break;
      }
      Suffix += ".";
      if (EltTy != Ty)
        Suffix += "v" + utostr(NumElts);
      Suffix += MVT::getValueTypeString(MVT::getValueType(EltTy));
    } else if (VT == MVT::iPTR) {
      if (!isa<PointerType>(Ty)) {
        if (ArgNo == 0)
          CheckFailed("Intrinsic result type is not a "
                      "pointer and a pointer is required.", F);
        else
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a "
                      "pointer and a pointer is required.", F);
        break;
      }
    } else if (MVT::isVector(VT)) {
      // If this is a vector argument, verify the number and type of elements.
      if (MVT::getVectorElementType(VT) != MVT::getValueType(EltTy)) {
        CheckFailed("Intrinsic prototype has incorrect vector element type!",
                    F);
        break;
      }
      if (MVT::getVectorNumElements(VT) != NumElts) {
        CheckFailed("Intrinsic prototype has incorrect number of "
                    "vector elements!",F);
        break;
      }
    } else if (MVT::getTypeForValueType(VT) != EltTy) {
      if (ArgNo == 0)
        CheckFailed("Intrinsic prototype has incorrect result type!", F);
      else
        CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
      break;
    } else if (EltTy != Ty) {
      if (ArgNo == 0)
        CheckFailed("Intrinsic result type is vector "
                    "and a scalar is required.", F);
      else
        CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector "
                    "and a scalar is required.", F);
    }
  }

  va_end(VA);

  // If we computed a Suffix then the intrinsic is overloaded and we need to 
  // make sure that the name of the function is correct. We add the suffix to
  // the name of the intrinsic and compare against the given function name. If
  // they are not the same, the function name is invalid. This ensures that
  // overloading of intrinsics uses a sane and consistent naming convention.
  if (!Suffix.empty()) {
    std::string Name(Intrinsic::getName(ID));
    if (Name + Suffix != F->getName())
      CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
                  F->getName().substr(Name.length()) + "'. It should be '" +
                  Suffix + "'", F);
  }
}


//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
  return new Verifier(action);
}


// verifyFunction - Create
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot verify external functions");

  FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
  Verifier *V = new Verifier(action);
  FPM.add(V);
  FPM.run(F);
  return V->Broken;
}

/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
                        std::string *ErrorInfo) {
  PassManager PM;
  Verifier *V = new Verifier(action);
  PM.add(V);
  PM.run((Module&)M);
  
  if (ErrorInfo && V->Broken)
    *ErrorInfo = V->msgs.str();
  return V->Broken;
}

// vim: sw=2