llvm.org GIT mirror llvm / 43ad6b3 lib / Transforms / IPO / GlobalOpt.cpp
43ad6b3

Tree @43ad6b3 (Download .tar.gz)

GlobalOpt.cpp @43ad6b3raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms simple global variables that never have their address
// taken.  If obviously true, it marks read/write globals as constant, deletes
// variables only stored to, etc.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "globalopt"
#include "llvm/Transforms/IPO.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <set>
using namespace llvm;

STATISTIC(NumMarked    , "Number of globals marked constant");
STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
STATISTIC(NumDeleted   , "Number of globals deleted");
STATISTIC(NumFnDeleted , "Number of functions deleted");
STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
STATISTIC(NumLocalized , "Number of globals localized");
STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");

namespace {
  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<TargetData>();
    }
    static char ID; // Pass identification, replacement for typeid
    GlobalOpt() : ModulePass((intptr_t)&ID) {}

    bool runOnModule(Module &M);

  private:
    GlobalVariable *FindGlobalCtors(Module &M);
    bool OptimizeFunctions(Module &M);
    bool OptimizeGlobalVars(Module &M);
    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
  };

  char GlobalOpt::ID = 0;
  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
}

ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }

/// GlobalStatus - As we analyze each global, keep track of some information
/// about it.  If we find out that the address of the global is taken, none of
/// this info will be accurate.
struct VISIBILITY_HIDDEN GlobalStatus {
  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
  /// loaded it can be deleted.
  bool isLoaded;

  /// StoredType - Keep track of what stores to the global look like.
  ///
  enum StoredType {
    /// NotStored - There is no store to this global.  It can thus be marked
    /// constant.
    NotStored,

    /// isInitializerStored - This global is stored to, but the only thing
    /// stored is the constant it was initialized with.  This is only tracked
    /// for scalar globals.
    isInitializerStored,

    /// isStoredOnce - This global is stored to, but only its initializer and
    /// one other value is ever stored to it.  If this global isStoredOnce, we
    /// track the value stored to it in StoredOnceValue below.  This is only
    /// tracked for scalar globals.
    isStoredOnce,

    /// isStored - This global is stored to by multiple values or something else
    /// that we cannot track.
    isStored
  } StoredType;

  /// StoredOnceValue - If only one value (besides the initializer constant) is
  /// ever stored to this global, keep track of what value it is.
  Value *StoredOnceValue;

  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
  /// null/false.  When the first accessing function is noticed, it is recorded.
  /// When a second different accessing function is noticed,
  /// HasMultipleAccessingFunctions is set to true.
  Function *AccessingFunction;
  bool HasMultipleAccessingFunctions;

  /// HasNonInstructionUser - Set to true if this global has a user that is not
  /// an instruction (e.g. a constant expr or GV initializer).
  bool HasNonInstructionUser;

  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
  bool HasPHIUser;
  
  /// isNotSuitableForSRA - Keep track of whether any SRA preventing users of
  /// the global exist.  Such users include GEP instruction with variable
  /// indexes, and non-gep/load/store users like constant expr casts.
  bool isNotSuitableForSRA;

  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
                   HasNonInstructionUser(false), HasPHIUser(false),
                   isNotSuitableForSRA(false) {}
};



/// ConstantIsDead - Return true if the specified constant is (transitively)
/// dead.  The constant may be used by other constants (e.g. constant arrays and
/// constant exprs) as long as they are dead, but it cannot be used by anything
/// else.
static bool ConstantIsDead(Constant *C) {
  if (isa<GlobalValue>(C)) return false;

  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
    if (Constant *CU = dyn_cast<Constant>(*UI)) {
      if (!ConstantIsDead(CU)) return false;
    } else
      return false;
  return true;
}


/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
/// structure.  If the global has its address taken, return true to indicate we
/// can't do anything with it.
///
static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
                          std::set<PHINode*> &PHIUsers) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
      GS.HasNonInstructionUser = true;

      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
      if (CE->getOpcode() != Instruction::GetElementPtr)
        GS.isNotSuitableForSRA = true;
      else if (!GS.isNotSuitableForSRA) {
        // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
        // don't like < 3 operand CE's, and we don't like non-constant integer
        // indices.
        if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue())
          GS.isNotSuitableForSRA = true;
        else {
          for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
            if (!isa<ConstantInt>(CE->getOperand(i))) {
              GS.isNotSuitableForSRA = true;
              break;
            }
        }
      }

    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
      if (!GS.HasMultipleAccessingFunctions) {
        Function *F = I->getParent()->getParent();
        if (GS.AccessingFunction == 0)
          GS.AccessingFunction = F;
        else if (GS.AccessingFunction != F)
          GS.HasMultipleAccessingFunctions = true;
      }
      if (isa<LoadInst>(I)) {
        GS.isLoaded = true;
      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
        // Don't allow a store OF the address, only stores TO the address.
        if (SI->getOperand(0) == V) return true;

        // If this is a direct store to the global (i.e., the global is a scalar
        // value, not an aggregate), keep more specific information about
        // stores.
        if (GS.StoredType != GlobalStatus::isStored)
          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
            Value *StoredVal = SI->getOperand(0);
            if (StoredVal == GV->getInitializer()) {
              if (GS.StoredType < GlobalStatus::isInitializerStored)
                GS.StoredType = GlobalStatus::isInitializerStored;
            } else if (isa<LoadInst>(StoredVal) &&
                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
              // G = G
              if (GS.StoredType < GlobalStatus::isInitializerStored)
                GS.StoredType = GlobalStatus::isInitializerStored;
            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
              GS.StoredType = GlobalStatus::isStoredOnce;
              GS.StoredOnceValue = StoredVal;
            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
                       GS.StoredOnceValue == StoredVal) {
              // noop.
            } else {
              GS.StoredType = GlobalStatus::isStored;
            }
          } else {
            GS.StoredType = GlobalStatus::isStored;
          }
      } else if (isa<GetElementPtrInst>(I)) {
        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;

        // If the first two indices are constants, this can be SRA'd.
        if (isa<GlobalVariable>(I->getOperand(0))) {
          if (I->getNumOperands() < 3 || !isa<Constant>(I->getOperand(1)) ||
              !cast<Constant>(I->getOperand(1))->isNullValue() ||
              !isa<ConstantInt>(I->getOperand(2)))
            GS.isNotSuitableForSRA = true;
        } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0))){
          if (CE->getOpcode() != Instruction::GetElementPtr ||
              CE->getNumOperands() < 3 || I->getNumOperands() < 2 ||
              !isa<Constant>(I->getOperand(0)) ||
              !cast<Constant>(I->getOperand(0))->isNullValue())
            GS.isNotSuitableForSRA = true;
        } else {
          GS.isNotSuitableForSRA = true;
        }
      } else if (isa<SelectInst>(I)) {
        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
        GS.isNotSuitableForSRA = true;
      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
        // PHI nodes we can check just like select or GEP instructions, but we
        // have to be careful about infinite recursion.
        if (PHIUsers.insert(PN).second)  // Not already visited.
          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
        GS.isNotSuitableForSRA = true;
        GS.HasPHIUser = true;
      } else if (isa<CmpInst>(I)) {
        GS.isNotSuitableForSRA = true;
      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
        if (I->getOperand(1) == V)
          GS.StoredType = GlobalStatus::isStored;
        if (I->getOperand(2) == V)
          GS.isLoaded = true;
        GS.isNotSuitableForSRA = true;
      } else if (isa<MemSetInst>(I)) {
        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
        GS.StoredType = GlobalStatus::isStored;
        GS.isNotSuitableForSRA = true;
      } else {
        return true;  // Any other non-load instruction might take address!
      }
    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
      GS.HasNonInstructionUser = true;
      // We might have a dead and dangling constant hanging off of here.
      if (!ConstantIsDead(C))
        return true;
    } else {
      GS.HasNonInstructionUser = true;
      // Otherwise must be some other user.
      return true;
    }

  return false;
}

static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
  if (!CI) return 0;
  unsigned IdxV = CI->getZExtValue();

  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
  } else if (isa<ConstantAggregateZero>(Agg)) {
    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
      if (IdxV < STy->getNumElements())
        return Constant::getNullValue(STy->getElementType(IdxV));
    } else if (const SequentialType *STy =
               dyn_cast<SequentialType>(Agg->getType())) {
      return Constant::getNullValue(STy->getElementType());
    }
  } else if (isa<UndefValue>(Agg)) {
    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
      if (IdxV < STy->getNumElements())
        return UndefValue::get(STy->getElementType(IdxV));
    } else if (const SequentialType *STy =
               dyn_cast<SequentialType>(Agg->getType())) {
      return UndefValue::get(STy->getElementType());
    }
  }
  return 0;
}


/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
/// users of the global, cleaning up the obvious ones.  This is largely just a
/// quick scan over the use list to clean up the easy and obvious cruft.  This
/// returns true if it made a change.
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
  bool Changed = false;
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
    User *U = *UI++;

    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
      if (Init) {
        // Replace the load with the initializer.
        LI->replaceAllUsesWith(Init);
        LI->eraseFromParent();
        Changed = true;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // Store must be unreachable or storing Init into the global.
      SI->eraseFromParent();
      Changed = true;
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
      if (CE->getOpcode() == Instruction::GetElementPtr) {
        Constant *SubInit = 0;
        if (Init)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
      } else if (CE->getOpcode() == Instruction::BitCast && 
                 isa<PointerType>(CE->getType())) {
        // Pointer cast, delete any stores and memsets to the global.
        Changed |= CleanupConstantGlobalUsers(CE, 0);
      }

      if (CE->use_empty()) {
        CE->destroyConstant();
        Changed = true;
      }
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
      // and will invalidate our notion of what Init is.
      Constant *SubInit = 0;
      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
        ConstantExpr *CE = 
          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
      }
      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);

      if (GEP->use_empty()) {
        GEP->eraseFromParent();
        Changed = true;
      }
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
      if (MI->getRawDest() == V) {
        MI->eraseFromParent();
        Changed = true;
      }

    } else if (Constant *C = dyn_cast<Constant>(U)) {
      // If we have a chain of dead constantexprs or other things dangling from
      // us, and if they are all dead, nuke them without remorse.
      if (ConstantIsDead(C)) {
        C->destroyConstant();
        // This could have invalidated UI, start over from scratch.
        CleanupConstantGlobalUsers(V, Init);
        return true;
      }
    }
  }
  return Changed;
}

/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
/// variable.  This opens the door for other optimizations by exposing the
/// behavior of the program in a more fine-grained way.  We have determined that
/// this transformation is safe already.  We return the first global variable we
/// insert so that the caller can reprocess it.
static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
  assert(GV->hasInternalLinkage() && !GV->isConstant());
  Constant *Init = GV->getInitializer();
  const Type *Ty = Init->getType();

  std::vector<GlobalVariable*> NewGlobals;
  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();

  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    NewGlobals.reserve(STy->getNumElements());
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      Constant *In = getAggregateConstantElement(Init,
                                            ConstantInt::get(Type::Int32Ty, i));
      assert(In && "Couldn't get element of initializer?");
      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
                                               GlobalVariable::InternalLinkage,
                                               In, GV->getName()+"."+utostr(i),
                                               (Module *)NULL,
                                               GV->isThreadLocal());
      Globals.insert(GV, NGV);
      NewGlobals.push_back(NGV);
    }
  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    unsigned NumElements = 0;
    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
      NumElements = ATy->getNumElements();
    else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
      NumElements = PTy->getNumElements();
    else
      assert(0 && "Unknown aggregate sequential type!");

    if (NumElements > 16 && GV->hasNUsesOrMore(16))
      return 0; // It's not worth it.
    NewGlobals.reserve(NumElements);
    for (unsigned i = 0, e = NumElements; i != e; ++i) {
      Constant *In = getAggregateConstantElement(Init,
                                            ConstantInt::get(Type::Int32Ty, i));
      assert(In && "Couldn't get element of initializer?");

      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
                                               GlobalVariable::InternalLinkage,
                                               In, GV->getName()+"."+utostr(i),
                                               (Module *)NULL,
                                               GV->isThreadLocal());
      Globals.insert(GV, NGV);
      NewGlobals.push_back(NGV);
    }
  }

  if (NewGlobals.empty())
    return 0;

  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;

  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);

  // Loop over all of the uses of the global, replacing the constantexpr geps,
  // with smaller constantexpr geps or direct references.
  while (!GV->use_empty()) {
    User *GEP = GV->use_back();
    assert(((isa<ConstantExpr>(GEP) &&
             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");

    // Ignore the 1th operand, which has to be zero or else the program is quite
    // broken (undefined).  Get the 2nd operand, which is the structure or array
    // index.
    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.

    Value *NewPtr = NewGlobals[Val];

    // Form a shorter GEP if needed.
    if (GEP->getNumOperands() > 3)
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
        SmallVector<Constant*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
          Idxs.push_back(CE->getOperand(i));
        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
                                                &Idxs[0], Idxs.size());
      } else {
        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
        SmallVector<Value*, 8> Idxs;
        Idxs.push_back(NullInt);
        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
          Idxs.push_back(GEPI->getOperand(i));
        NewPtr = new GetElementPtrInst(NewPtr, Idxs.begin(), Idxs.end(),
                                       GEPI->getName()+"."+utostr(Val), GEPI);
      }
    GEP->replaceAllUsesWith(NewPtr);

    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
      GEPI->eraseFromParent();
    else
      cast<ConstantExpr>(GEP)->destroyConstant();
  }

  // Delete the old global, now that it is dead.
  Globals.erase(GV);
  ++NumSRA;

  // Loop over the new globals array deleting any globals that are obviously
  // dead.  This can arise due to scalarization of a structure or an array that
  // has elements that are dead.
  unsigned FirstGlobal = 0;
  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    if (NewGlobals[i]->use_empty()) {
      Globals.erase(NewGlobals[i]);
      if (FirstGlobal == i) ++FirstGlobal;
    }

  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
}

/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
/// value will trap if the value is dynamically null.  PHIs keeps track of any 
/// phi nodes we've seen to avoid reprocessing them.
static bool AllUsesOfValueWillTrapIfNull(Value *V,
                                         SmallPtrSet<PHINode*, 8> &PHIs) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
    if (isa<LoadInst>(*UI)) {
      // Will trap.
    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
      if (SI->getOperand(0) == V) {
        //cerr << "NONTRAPPING USE: " << **UI;
        return false;  // Storing the value.
      }
    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
      if (CI->getOperand(0) != V) {
        //cerr << "NONTRAPPING USE: " << **UI;
        return false;  // Not calling the ptr
      }
    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
      if (II->getOperand(0) != V) {
        //cerr << "NONTRAPPING USE: " << **UI;
        return false;  // Not calling the ptr
      }
    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
      // If we've already seen this phi node, ignore it, it has already been
      // checked.
      if (PHIs.insert(PN))
        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
    } else if (isa<ICmpInst>(*UI) &&
               isa<ConstantPointerNull>(UI->getOperand(1))) {
      // Ignore setcc X, null
    } else {
      //cerr << "NONTRAPPING USE: " << **UI;
      return false;
    }
  return true;
}

/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
/// from GV will trap if the loaded value is null.  Note that this also permits
/// comparisons of the loaded value against null, as a special case.
static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
      SmallPtrSet<PHINode*, 8> PHIs;
      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
        return false;
    } else if (isa<StoreInst>(*UI)) {
      // Ignore stores to the global.
    } else {
      // We don't know or understand this user, bail out.
      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
      return false;
    }

  return true;
}

static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
  bool Changed = false;
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
    Instruction *I = cast<Instruction>(*UI++);
    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      LI->setOperand(0, NewV);
      Changed = true;
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      if (SI->getOperand(1) == V) {
        SI->setOperand(1, NewV);
        Changed = true;
      }
    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
      if (I->getOperand(0) == V) {
        // Calling through the pointer!  Turn into a direct call, but be careful
        // that the pointer is not also being passed as an argument.
        I->setOperand(0, NewV);
        Changed = true;
        bool PassedAsArg = false;
        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
          if (I->getOperand(i) == V) {
            PassedAsArg = true;
            I->setOperand(i, NewV);
          }

        if (PassedAsArg) {
          // Being passed as an argument also.  Be careful to not invalidate UI!
          UI = V->use_begin();
        }
      }
    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
                                ConstantExpr::getCast(CI->getOpcode(),
                                                      NewV, CI->getType()));
      if (CI->use_empty()) {
        Changed = true;
        CI->eraseFromParent();
      }
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
      // Should handle GEP here.
      SmallVector<Constant*, 8> Idxs;
      Idxs.reserve(GEPI->getNumOperands()-1);
      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
          Idxs.push_back(C);
        else
          break;
      if (Idxs.size() == GEPI->getNumOperands()-1)
        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
                                                               Idxs.size()));
      if (GEPI->use_empty()) {
        Changed = true;
        GEPI->eraseFromParent();
      }
    }
  }

  return Changed;
}


/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
/// value stored into it.  If there are uses of the loaded value that would trap
/// if the loaded value is dynamically null, then we know that they cannot be
/// reachable with a null optimize away the load.
static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
  std::vector<LoadInst*> Loads;
  bool Changed = false;

  // Replace all uses of loads with uses of uses of the stored value.
  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
       GUI != E; ++GUI)
    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
      Loads.push_back(LI);
      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
    } else {
      // If we get here we could have stores, selects, or phi nodes whose values
      // are loaded.
      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
              isa<SelectInst>(*GUI)) &&
             "Only expect load and stores!");
    }

  if (Changed) {
    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
    ++NumGlobUses;
  }

  // Delete all of the loads we can, keeping track of whether we nuked them all!
  bool AllLoadsGone = true;
  while (!Loads.empty()) {
    LoadInst *L = Loads.back();
    if (L->use_empty()) {
      L->eraseFromParent();
      Changed = true;
    } else {
      AllLoadsGone = false;
    }
    Loads.pop_back();
  }

  // If we nuked all of the loads, then none of the stores are needed either,
  // nor is the global.
  if (AllLoadsGone) {
    DOUT << "  *** GLOBAL NOW DEAD!\n";
    CleanupConstantGlobalUsers(GV, 0);
    if (GV->use_empty()) {
      GV->eraseFromParent();
      ++NumDeleted;
    }
    Changed = true;
  }
  return Changed;
}

/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
/// instructions that are foldable.
static void ConstantPropUsersOf(Value *V) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
    if (Instruction *I = dyn_cast<Instruction>(*UI++))
      if (Constant *NewC = ConstantFoldInstruction(I)) {
        I->replaceAllUsesWith(NewC);

        // Advance UI to the next non-I use to avoid invalidating it!
        // Instructions could multiply use V.
        while (UI != E && *UI == I)
          ++UI;
        I->eraseFromParent();
      }
}

/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
/// variable, and transforms the program as if it always contained the result of
/// the specified malloc.  Because it is always the result of the specified
/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
/// malloc into a global, and any loads of GV as uses of the new global.
static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
                                                     MallocInst *MI) {
  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());

  if (NElements->getZExtValue() != 1) {
    // If we have an array allocation, transform it to a single element
    // allocation to make the code below simpler.
    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
                                 NElements->getZExtValue());
    MallocInst *NewMI =
      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
                     MI->getAlignment(), MI->getName(), MI);
    Value* Indices[2];
    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
    Value *NewGEP = new GetElementPtrInst(NewMI, Indices, Indices + 2,
                                          NewMI->getName()+".el0", MI);
    MI->replaceAllUsesWith(NewGEP);
    MI->eraseFromParent();
    MI = NewMI;
  }

  // Create the new global variable.  The contents of the malloc'd memory is
  // undefined, so initialize with an undef value.
  Constant *Init = UndefValue::get(MI->getAllocatedType());
  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
                                             GlobalValue::InternalLinkage, Init,
                                             GV->getName()+".body",
                                             (Module *)NULL,
                                             GV->isThreadLocal());
  GV->getParent()->getGlobalList().insert(GV, NewGV);

  // Anything that used the malloc now uses the global directly.
  MI->replaceAllUsesWith(NewGV);

  Constant *RepValue = NewGV;
  if (NewGV->getType() != GV->getType()->getElementType())
    RepValue = ConstantExpr::getBitCast(RepValue, 
                                        GV->getType()->getElementType());

  // If there is a comparison against null, we will insert a global bool to
  // keep track of whether the global was initialized yet or not.
  GlobalVariable *InitBool =
    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
                       ConstantInt::getFalse(), GV->getName()+".init",
                       (Module *)NULL, GV->isThreadLocal());
  bool InitBoolUsed = false;

  // Loop over all uses of GV, processing them in turn.
  std::vector<StoreInst*> Stores;
  while (!GV->use_empty())
    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
      while (!LI->use_empty()) {
        Use &LoadUse = LI->use_begin().getUse();
        if (!isa<ICmpInst>(LoadUse.getUser()))
          LoadUse = RepValue;
        else {
          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
          // Replace the cmp X, 0 with a use of the bool value.
          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
          InitBoolUsed = true;
          switch (CI->getPredicate()) {
          default: assert(0 && "Unknown ICmp Predicate!");
          case ICmpInst::ICMP_ULT:
          case ICmpInst::ICMP_SLT:
            LV = ConstantInt::getFalse();   // X < null -> always false
            break;
          case ICmpInst::ICMP_ULE:
          case ICmpInst::ICMP_SLE:
          case ICmpInst::ICMP_EQ:
            LV = BinaryOperator::createNot(LV, "notinit", CI);
            break;
          case ICmpInst::ICMP_NE:
          case ICmpInst::ICMP_UGE:
          case ICmpInst::ICMP_SGE:
          case ICmpInst::ICMP_UGT:
          case ICmpInst::ICMP_SGT:
            break;  // no change.
          }
          CI->replaceAllUsesWith(LV);
          CI->eraseFromParent();
        }
      }
      LI->eraseFromParent();
    } else {
      StoreInst *SI = cast<StoreInst>(GV->use_back());
      // The global is initialized when the store to it occurs.
      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
      SI->eraseFromParent();
    }

  // If the initialization boolean was used, insert it, otherwise delete it.
  if (!InitBoolUsed) {
    while (!InitBool->use_empty())  // Delete initializations
      cast<Instruction>(InitBool->use_back())->eraseFromParent();
    delete InitBool;
  } else
    GV->getParent()->getGlobalList().insert(GV, InitBool);


  // Now the GV is dead, nuke it and the malloc.
  GV->eraseFromParent();
  MI->eraseFromParent();

  // To further other optimizations, loop over all users of NewGV and try to
  // constant prop them.  This will promote GEP instructions with constant
  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
  ConstantPropUsersOf(NewGV);
  if (RepValue != NewGV)
    ConstantPropUsersOf(RepValue);

  return NewGV;
}

/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
/// to make sure that there are no complex uses of V.  We permit simple things
/// like dereferencing the pointer, but not storing through the address, unless
/// it is to the specified global.
static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
                                                      GlobalVariable *GV,
                                              SmallPtrSet<PHINode*, 8> &PHIs) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
      // Fine, ignore.
    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
        return false;  // Storing the pointer itself... bad.
      // Otherwise, storing through it, or storing into GV... fine.
    } else if (isa<GetElementPtrInst>(*UI)) {
      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
                                                     GV, PHIs))
        return false;
    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
      // cycles.
      if (PHIs.insert(PN))
        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
          return false;
    } else {
      return false;
    }
  return true;
}

/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
/// somewhere.  Transform all uses of the allocation into loads from the
/// global and uses of the resultant pointer.  Further, delete the store into
/// GV.  This assumes that these value pass the 
/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 
                                          GlobalVariable *GV) {
  while (!Alloc->use_empty()) {
    Instruction *U = cast<Instruction>(*Alloc->use_begin());
    Instruction *InsertPt = U;
    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
      // If this is the store of the allocation into the global, remove it.
      if (SI->getOperand(1) == GV) {
        SI->eraseFromParent();
        continue;
      }
    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
      // Insert the load in the corresponding predecessor, not right before the
      // PHI.
      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
    }
    
    // Insert a load from the global, and use it instead of the malloc.
    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
    U->replaceUsesOfWith(Alloc, NL);
  }
}

/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
/// GV are simple enough to perform HeapSRA, return true.
static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
                                                 MallocInst *MI) {
  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; 
       ++UI)
    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
      // We permit two users of the load: setcc comparing against the null
      // pointer, and a getelementptr of a specific form.
      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E; 
           ++UI) {
        // Comparison against null is ok.
        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
            return false;
          continue;
        }
        
        // getelementptr is also ok, but only a simple form.
        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
          // Must index into the array and into the struct.
          if (GEPI->getNumOperands() < 3)
            return false;
          
          // Otherwise the GEP is ok.
          continue;
        }
        
        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
          // We have a phi of a load from the global.  We can only handle this
          // if the other PHI'd values are actually the same.  In this case,
          // the rewriter will just drop the phi entirely.
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
            Value *IV = PN->getIncomingValue(i);
            if (IV == LI) continue;  // Trivial the same.
            
            // If the phi'd value is from the malloc that initializes the value,
            // we can xform it.
            if (IV == MI) continue;
            
            // Otherwise, we don't know what it is.
            return false;
          }
          return true;
        }
        
        // Otherwise we don't know what this is, not ok.
        return false;
      }
    }
  return true;
}

/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
/// value, lazily creating it on demand.
static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
                              const std::vector<GlobalVariable*> &FieldGlobals,
                              std::vector<Value *> &InsertedLoadsForPtr) {
  if (InsertedLoadsForPtr.size() <= FieldNo)
    InsertedLoadsForPtr.resize(FieldNo+1);
  if (InsertedLoadsForPtr[FieldNo] == 0)
    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
                                                Load->getName()+".f" + 
                                                utostr(FieldNo), Load);
  return InsertedLoadsForPtr[FieldNo];
}

/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
/// the load, rewrite the derived value to use the HeapSRoA'd load.
static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser, 
                               const std::vector<GlobalVariable*> &FieldGlobals,
                                    std::vector<Value *> &InsertedLoadsForPtr) {
  // If this is a comparison against null, handle it.
  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
    // If we have a setcc of the loaded pointer, we can use a setcc of any
    // field.
    Value *NPtr;
    if (InsertedLoadsForPtr.empty()) {
      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
    } else {
      NPtr = InsertedLoadsForPtr.back();
    }
    
    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
                              Constant::getNullValue(NPtr->getType()),
                              SCI->getName(), SCI);
    SCI->replaceAllUsesWith(New);
    SCI->eraseFromParent();
    return;
  }
  
  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
           && "Unexpected GEPI!");
  
    // Load the pointer for this field.
    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
                                    FieldGlobals, InsertedLoadsForPtr);
    
    // Create the new GEP idx vector.
    SmallVector<Value*, 8> GEPIdx;
    GEPIdx.push_back(GEPI->getOperand(1));
    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
    
    Value *NGEPI = new GetElementPtrInst(NewPtr, GEPIdx.begin(), GEPIdx.end(),
                                         GEPI->getName(), GEPI);
    GEPI->replaceAllUsesWith(NGEPI);
    GEPI->eraseFromParent();
    return;
  }
  
  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
  // potentially the original malloc.  Insert phi nodes for each field, then
  // process uses of the PHI.
  PHINode *PN = cast<PHINode>(LoadUser);
  std::vector<Value *> PHIsForField;
  PHIsForField.resize(FieldGlobals.size());
  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);

    PHINode *FieldPN = new PHINode(LoadV->getType(),
                                   PN->getName()+"."+utostr(i), PN);
    // Fill in the predecessor values.
    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
      // Each predecessor either uses the load or the original malloc.
      Value *InVal = PN->getIncomingValue(pred);
      BasicBlock *BB = PN->getIncomingBlock(pred);
      Value *NewVal;
      if (isa<MallocInst>(InVal)) {
        // Insert a reload from the global in the predecessor.
        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
                                 PHIsForField);
      } else {
        NewVal = InsertedLoadsForPtr[i];
      }
      FieldPN->addIncoming(NewVal, BB);
    }
    PHIsForField[i] = FieldPN;
  }
  
  // Since PHIsForField specifies a phi for every input value, the lazy inserter
  // will never insert a load.
  while (!PN->use_empty())
    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
  PN->eraseFromParent();
}

/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
/// use FieldGlobals instead.  All uses of loaded values satisfy
/// GlobalLoadUsesSimpleEnoughForHeapSRA.
static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 
                             const std::vector<GlobalVariable*> &FieldGlobals) {
  std::vector<Value *> InsertedLoadsForPtr;
  //InsertedLoadsForPtr.resize(FieldGlobals.size());
  while (!Load->use_empty())
    RewriteHeapSROALoadUser(Load, Load->use_back(), 
                            FieldGlobals, InsertedLoadsForPtr);
}

/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
/// it up into multiple allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
  const StructType *STy = cast<StructType>(MI->getAllocatedType());

  // There is guaranteed to be at least one use of the malloc (storing
  // it into GV).  If there are other uses, change them to be uses of
  // the global to simplify later code.  This also deletes the store
  // into GV.
  ReplaceUsesOfMallocWithGlobal(MI, GV);
  
  // Okay, at this point, there are no users of the malloc.  Insert N
  // new mallocs at the same place as MI, and N globals.
  std::vector<GlobalVariable*> FieldGlobals;
  std::vector<MallocInst*> FieldMallocs;
  
  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
    const Type *FieldTy = STy->getElementType(FieldNo);
    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
    
    GlobalVariable *NGV =
      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
                         Constant::getNullValue(PFieldTy),
                         GV->getName() + ".f" + utostr(FieldNo), GV,
                         GV->isThreadLocal());
    FieldGlobals.push_back(NGV);
    
    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
                                     MI->getName() + ".f" + utostr(FieldNo),MI);
    FieldMallocs.push_back(NMI);
    new StoreInst(NMI, NGV, MI);
  }
  
  // The tricky aspect of this transformation is handling the case when malloc
  // fails.  In the original code, malloc failing would set the result pointer
  // of malloc to null.  In this case, some mallocs could succeed and others
  // could fail.  As such, we emit code that looks like this:
  //    F0 = malloc(field0)
  //    F1 = malloc(field1)
  //    F2 = malloc(field2)
  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
  //      if (F0) { free(F0); F0 = 0; }
  //      if (F1) { free(F1); F1 = 0; }
  //      if (F2) { free(F2); F2 = 0; }
  //    }
  Value *RunningOr = 0;
  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
                             Constant::getNullValue(FieldMallocs[i]->getType()),
                                  "isnull", MI);
    if (!RunningOr)
      RunningOr = Cond;   // First seteq
    else
      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
  }

  // Split the basic block at the old malloc.
  BasicBlock *OrigBB = MI->getParent();
  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
  
  // Create the block to check the first condition.  Put all these blocks at the
  // end of the function as they are unlikely to be executed.
  BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
                                            OrigBB->getParent());
  
  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
  // branch on RunningOr.
  OrigBB->getTerminator()->eraseFromParent();
  new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
  
  // Within the NullPtrBlock, we need to emit a comparison and branch for each
  // pointer, because some may be null while others are not.
  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal, 
                              Constant::getNullValue(GVVal->getType()),
                              "tmp", NullPtrBlock);
    BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
    BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
    new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);

    // Fill in FreeBlock.
    new FreeInst(GVVal, FreeBlock);
    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
                  FreeBlock);
    new BranchInst(NextBlock, FreeBlock);
    
    NullPtrBlock = NextBlock;
  }
  
  new BranchInst(ContBB, NullPtrBlock);
  
  
  // MI is no longer needed, remove it.
  MI->eraseFromParent();

  
  // Okay, the malloc site is completely handled.  All of the uses of GV are now
  // loads, and all uses of those loads are simple.  Rewrite them to use loads
  // of the per-field globals instead.
  while (!GV->use_empty()) {
    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
      LI->eraseFromParent();
    } else {
      // Must be a store of null.
      StoreInst *SI = cast<StoreInst>(GV->use_back());
      assert(isa<Constant>(SI->getOperand(0)) &&
             cast<Constant>(SI->getOperand(0))->isNullValue() &&
             "Unexpected heap-sra user!");
      
      // Insert a store of null into each global.
      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
        Constant *Null = 
          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
        new StoreInst(Null, FieldGlobals[i], SI);
      }
      // Erase the original store.
      SI->eraseFromParent();
    }
  }

  // The old global is now dead, remove it.
  GV->eraseFromParent();

  ++NumHeapSRA;
  return FieldGlobals[0];
}


// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
// that only one value (besides its initializer) is ever stored to the global.
static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
                                     Module::global_iterator &GVI,
                                     TargetData &TD) {
  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
    StoredOnceVal = CI->getOperand(0);
  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
    bool IsJustACast = true;
    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
      if (!isa<Constant>(GEPI->getOperand(i)) ||
          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
        IsJustACast = false;
        break;
      }
    if (IsJustACast)
      StoredOnceVal = GEPI->getOperand(0);
  }

  // If we are dealing with a pointer global that is initialized to null and
  // only has one (non-null) value stored into it, then we can optimize any
  // users of the loaded value (often calls and loads) that would trap if the
  // value was null.
  if (isa<PointerType>(GV->getInitializer()->getType()) &&
      GV->getInitializer()->isNullValue()) {
    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
      if (GV->getInitializer()->getType() != SOVC->getType())
        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());

      // Optimize away any trapping uses of the loaded value.
      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
        return true;
    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
      // If this is a malloc of an abstract type, don't touch it.
      if (!MI->getAllocatedType()->isSized())
        return false;
      
      // We can't optimize this global unless all uses of it are *known* to be
      // of the malloc value, not of the null initializer value (consider a use
      // that compares the global's value against zero to see if the malloc has
      // been reached).  To do this, we check to see if all uses of the global
      // would trap if the global were null: this proves that they must all
      // happen after the malloc.
      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
        return false;

      // We can't optimize this if the malloc itself is used in a complex way,
      // for example, being stored into multiple globals.  This allows the
      // malloc to be stored into the specified global, loaded setcc'd, and
      // GEP'd.  These are all things we could transform to using the global
      // for.
      {
        SmallPtrSet<PHINode*, 8> PHIs;
        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
          return false;
      }

      
      // If we have a global that is only initialized with a fixed size malloc,
      // transform the program to use global memory instead of malloc'd memory.
      // This eliminates dynamic allocation, avoids an indirection accessing the
      // data, and exposes the resultant global to further GlobalOpt.
      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
        // Restrict this transformation to only working on small allocations
        // (2048 bytes currently), as we don't want to introduce a 16M global or
        // something.
        if (NElements->getZExtValue()*
                     TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
          return true;
        }
      }

      // If the allocation is an array of structures, consider transforming this
      // into multiple malloc'd arrays, one for each field.  This is basically
      // SRoA for malloc'd memory.
      if (const StructType *AllocTy = 
                  dyn_cast<StructType>(MI->getAllocatedType())) {
        // This the structure has an unreasonable number of fields, leave it
        // alone.
        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
          GVI = PerformHeapAllocSRoA(GV, MI);
          return true;
        }
      }
    }
  }

  return false;
}

/// ShrinkGlobalToBoolean - At this point, we have learned that the only two
/// values ever stored into GV are its initializer and OtherVal.
static void ShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
  // Create the new global, initializing it to false.
  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
                                             GV->getName()+".b",
                                             (Module *)NULL,
                                             GV->isThreadLocal());
  GV->getParent()->getGlobalList().insert(GV, NewGV);

  Constant *InitVal = GV->getInitializer();
  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");

  // If initialized to zero and storing one into the global, we can use a cast
  // instead of a select to synthesize the desired value.
  bool IsOneZero = false;
  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
    IsOneZero = InitVal->isNullValue() && CI->isOne();

  while (!GV->use_empty()) {
    Instruction *UI = cast<Instruction>(GV->use_back());
    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
      // Change the store into a boolean store.
      bool StoringOther = SI->getOperand(0) == OtherVal;
      // Only do this if we weren't storing a loaded value.
      Value *StoreVal;
      if (StoringOther || SI->getOperand(0) == InitVal)
        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
      else {
        // Otherwise, we are storing a previously loaded copy.  To do this,
        // change the copy from copying the original value to just copying the
        // bool.
        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));

        // If we're already replaced the input, StoredVal will be a cast or
        // select instruction.  If not, it will be a load of the original
        // global.
        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
          assert(LI->getOperand(0) == GV && "Not a copy!");
          // Insert a new load, to preserve the saved value.
          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
        } else {
          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
                 "This is not a form that we understand!");
          StoreVal = StoredVal->getOperand(0);
          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
        }
      }
      new StoreInst(StoreVal, NewGV, SI);
    } else if (!UI->use_empty()) {
      // Change the load into a load of bool then a select.
      LoadInst *LI = cast<LoadInst>(UI);
      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
      Value *NSI;
      if (IsOneZero)
        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
      else
        NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
      NSI->takeName(LI);
      LI->replaceAllUsesWith(NSI);
    }
    UI->eraseFromParent();
  }

  GV->eraseFromParent();
}


/// ProcessInternalGlobal - Analyze the specified global variable and optimize
/// it if possible.  If we make a change, return true.
bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
                                      Module::global_iterator &GVI) {
  std::set<PHINode*> PHIUsers;
  GlobalStatus GS;
  GV->removeDeadConstantUsers();

  if (GV->use_empty()) {
    DOUT << "GLOBAL DEAD: " << *GV;
    GV->eraseFromParent();
    ++NumDeleted;
    return true;
  }

  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
#if 0
    cerr << "Global: " << *GV;
    cerr << "  isLoaded = " << GS.isLoaded << "\n";
    cerr << "  StoredType = ";
    switch (GS.StoredType) {
    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
    case GlobalStatus::isStored: cerr << "stored\n"; break;
    }
    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
                << "\n";
    cerr << "  HasMultipleAccessingFunctions =  "
              << GS.HasMultipleAccessingFunctions << "\n";
    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
    cerr << "  isNotSuitableForSRA = " << GS.isNotSuitableForSRA << "\n";
    cerr << "\n";
#endif
    
    // If this is a first class global and has only one accessing function
    // and this function is main (which we know is not recursive we can make
    // this global a local variable) we replace the global with a local alloca
    // in this function.
    //
    // NOTE: It doesn't make sense to promote non first class types since we
    // are just replacing static memory to stack memory.
    if (!GS.HasMultipleAccessingFunctions &&
        GS.AccessingFunction && !GS.HasNonInstructionUser &&
        GV->getType()->getElementType()->isFirstClassType() &&
        GS.AccessingFunction->getName() == "main" &&
        GS.AccessingFunction->hasExternalLinkage()) {
      DOUT << "LOCALIZING GLOBAL: " << *GV;
      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
      const Type* ElemTy = GV->getType()->getElementType();
      // FIXME: Pass Global's alignment when globals have alignment
      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
      if (!isa<UndefValue>(GV->getInitializer()))
        new StoreInst(GV->getInitializer(), Alloca, FirstI);

      GV->replaceAllUsesWith(Alloca);
      GV->eraseFromParent();
      ++NumLocalized;
      return true;
    }
    
    // If the global is never loaded (but may be stored to), it is dead.
    // Delete it now.
    if (!GS.isLoaded) {
      DOUT << "GLOBAL NEVER LOADED: " << *GV;

      // Delete any stores we can find to the global.  We may not be able to
      // make it completely dead though.
      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());

      // If the global is dead now, delete it.
      if (GV->use_empty()) {
        GV->eraseFromParent();
        ++NumDeleted;
        Changed = true;
      }
      return Changed;

    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
      DOUT << "MARKING CONSTANT: " << *GV;
      GV->setConstant(true);

      // Clean up any obviously simplifiable users now.
      CleanupConstantGlobalUsers(GV, GV->getInitializer());

      // If the global is dead now, just nuke it.
      if (GV->use_empty()) {
        DOUT << "   *** Marking constant allowed us to simplify "
             << "all users and delete global!\n";
        GV->eraseFromParent();
        ++NumDeleted;
      }

      ++NumMarked;
      return true;
    } else if (!GS.isNotSuitableForSRA &&
               !GV->getInitializer()->getType()->isFirstClassType()) {
      if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
        GVI = FirstNewGV;  // Don't skip the newly produced globals!
        return true;
      }
    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
      // If the initial value for the global was an undef value, and if only
      // one other value was stored into it, we can just change the
      // initializer to be an undef value, then delete all stores to the
      // global.  This allows us to mark it constant.
      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
        if (isa<UndefValue>(GV->getInitializer())) {
          // Change the initial value here.
          GV->setInitializer(SOVConstant);

          // Clean up any obviously simplifiable users now.
          CleanupConstantGlobalUsers(GV, GV->getInitializer());

          if (GV->use_empty()) {
            DOUT << "   *** Substituting initializer allowed us to "
                 << "simplify all users and delete global!\n";
            GV->eraseFromParent();
            ++NumDeleted;
          } else {
            GVI = GV;
          }
          ++NumSubstitute;
          return true;
        }

      // Try to optimize globals based on the knowledge that only one value
      // (besides its initializer) is ever stored to the global.
      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
                                   getAnalysis<TargetData>()))
        return true;

      // Otherwise, if the global was not a boolean, we can shrink it to be a
      // boolean.
      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
        if (GV->getType()->getElementType() != Type::Int1Ty &&
            !GV->getType()->getElementType()->isFloatingPoint() &&
            !isa<VectorType>(GV->getType()->getElementType()) &&
            !GS.HasPHIUser && !GS.isNotSuitableForSRA) {
          DOUT << "   *** SHRINKING TO BOOL: " << *GV;
          ShrinkGlobalToBoolean(GV, SOVConstant);
          ++NumShrunkToBool;
          return true;
        }
    }
  }
  return false;
}

/// OnlyCalledDirectly - Return true if the specified function is only called
/// directly.  In other words, its address is never taken.
static bool OnlyCalledDirectly(Function *F) {
  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
    Instruction *User = dyn_cast<Instruction>(*UI);
    if (!User) return false;
    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;

    // See if the function address is passed as an argument.
    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
      if (User->getOperand(i) == F) return false;
  }
  return true;
}

/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
/// function, changing them to FastCC.
static void ChangeCalleesToFastCall(Function *F) {
  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
    Instruction *User = cast<Instruction>(*UI);
    if (CallInst *CI = dyn_cast<CallInst>(User))
      CI->setCallingConv(CallingConv::Fast);
    else
      cast<InvokeInst>(User)->setCallingConv(CallingConv::Fast);
  }
}

bool GlobalOpt::OptimizeFunctions(Module &M) {
  bool Changed = false;
  // Optimize functions.
  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
    Function *F = FI++;
    F->removeDeadConstantUsers();
    if (F->use_empty() && (F->hasInternalLinkage() ||
                           F->hasLinkOnceLinkage())) {
      M.getFunctionList().erase(F);
      Changed = true;
      ++NumFnDeleted;
    } else if (F->hasInternalLinkage() &&
               F->getCallingConv() == CallingConv::C &&  !F->isVarArg() &&
               OnlyCalledDirectly(F)) {
      // If this function has C calling conventions, is not a varargs
      // function, and is only called directly, promote it to use the Fast
      // calling convention.
      F->setCallingConv(CallingConv::Fast);
      ChangeCalleesToFastCall(F);
      ++NumFastCallFns;
      Changed = true;
    }
  }
  return Changed;
}

bool GlobalOpt::OptimizeGlobalVars(Module &M) {
  bool Changed = false;
  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
       GVI != E; ) {
    GlobalVariable *GV = GVI++;
    if (!GV->isConstant() && GV->hasInternalLinkage() &&
        GV->hasInitializer())
      Changed |= ProcessInternalGlobal(GV, GVI);
  }
  return Changed;
}

/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
/// initializers have an init priority of 65535.
GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I)
    if (I->getName() == "llvm.global_ctors") {
      // Found it, verify it's an array of { int, void()* }.
      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
      if (!ATy) return 0;
      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
      if (!STy || STy->getNumElements() != 2 ||
          STy->getElementType(0) != Type::Int32Ty) return 0;
      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
      if (!PFTy) return 0;
      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
          FTy->getNumParams() != 0)
        return 0;
      
      // Verify that the initializer is simple enough for us to handle.
      if (!I->hasInitializer()) return 0;
      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
      if (!CA) return 0;
      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
          if (isa<ConstantPointerNull>(CS->getOperand(1)))
            continue;

          // Must have a function or null ptr.
          if (!isa<Function>(CS->getOperand(1)))
            return 0;
          
          // Init priority must be standard.
          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
          if (!CI || CI->getZExtValue() != 65535)
            return 0;
        } else {
          return 0;
        }
      
      return I;
    }
  return 0;
}

/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
/// return a list of the functions and null terminator as a vector.
static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
  std::vector<Function*> Result;
  Result.reserve(CA->getNumOperands());
  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
  }
  return Result;
}

/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
/// specified array, returning the new global to use.
static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 
                                          const std::vector<Function*> &Ctors) {
  // If we made a change, reassemble the initializer list.
  std::vector<Constant*> CSVals;
  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
  CSVals.push_back(0);
  
  // Create the new init list.
  std::vector<Constant*> CAList;
  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
    if (Ctors[i]) {
      CSVals[1] = Ctors[i];
    } else {
      const Type *FTy = FunctionType::get(Type::VoidTy,
                                          std::vector<const Type*>(), false);
      const PointerType *PFTy = PointerType::getUnqual(FTy);
      CSVals[1] = Constant::getNullValue(PFTy);
      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
    }
    CAList.push_back(ConstantStruct::get(CSVals));
  }
  
  // Create the array initializer.
  const Type *StructTy =
    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
                                    CAList);
  
  // If we didn't change the number of elements, don't create a new GV.
  if (CA->getType() == GCL->getInitializer()->getType()) {
    GCL->setInitializer(CA);
    return GCL;
  }
  
  // Create the new global and insert it next to the existing list.
  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
                                           GCL->getLinkage(), CA, "",
                                           (Module *)NULL,
                                           GCL->isThreadLocal());
  GCL->getParent()->getGlobalList().insert(GCL, NGV);
  NGV->takeName(GCL);
  
  // Nuke the old list, replacing any uses with the new one.
  if (!GCL->use_empty()) {
    Constant *V = NGV;
    if (V->getType() != GCL->getType())
      V = ConstantExpr::getBitCast(V, GCL->getType());
    GCL->replaceAllUsesWith(V);
  }
  GCL->eraseFromParent();
  
  if (Ctors.size())
    return NGV;
  else
    return 0;
}


static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
                        Value *V) {
  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
  Constant *R = ComputedValues[V];
  assert(R && "Reference to an uncomputed value!");
  return R;
}

/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
/// enough for us to understand.  In particular, if it is a cast of something,
/// we punt.  We basically just support direct accesses to globals and GEP's of
/// globals.  This should be kept up to date with CommitValueTo.
static bool isSimpleEnoughPointerToCommit(Constant *C) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
    return !GV->isDeclaration();  // reject external globals.
  }
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    // Handle a constantexpr gep.
    if (CE->getOpcode() == Instruction::GetElementPtr &&
        isa<GlobalVariable>(CE->getOperand(0))) {
      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
      return GV->hasInitializer() &&
             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
    }
  return false;
}

/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
                                   ConstantExpr *Addr, unsigned OpNo) {
  // Base case of the recursion.
  if (OpNo == Addr->getNumOperands()) {
    assert(Val->getType() == Init->getType() && "Type mismatch!");
    return Val;
  }
  
  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
    std::vector<Constant*> Elts;

    // Break up the constant into its elements.
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
        Elts.push_back(CS->getOperand(i));
    } else if (isa<ConstantAggregateZero>(Init)) {
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
    } else if (isa<UndefValue>(Init)) {
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        Elts.push_back(UndefValue::get(STy->getElementType(i)));
    } else {
      assert(0 && "This code is out of sync with "
             " ConstantFoldLoadThroughGEPConstantExpr");
    }
    
    // Replace the element that we are supposed to.
    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
    unsigned Idx = CU->getZExtValue();
    assert(Idx < STy->getNumElements() && "Struct index out of range!");
    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
    
    // Return the modified struct.
    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
  } else {
    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
    const ArrayType *ATy = cast<ArrayType>(Init->getType());

    // Break up the array into elements.
    std::vector<Constant*> Elts;
    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
        Elts.push_back(CA->getOperand(i));
    } else if (isa<ConstantAggregateZero>(Init)) {
      Constant *Elt = Constant::getNullValue(ATy->getElementType());
      Elts.assign(ATy->getNumElements(), Elt);
    } else if (isa<UndefValue>(Init)) {
      Constant *Elt = UndefValue::get(ATy->getElementType());
      Elts.assign(ATy->getNumElements(), Elt);
    } else {
      assert(0 && "This code is out of sync with "
             " ConstantFoldLoadThroughGEPConstantExpr");
    }
    
    assert(CI->getZExtValue() < ATy->getNumElements());
    Elts[CI->getZExtValue()] =
      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
    return ConstantArray::get(ATy, Elts);
  }    
}

/// CommitValueTo - We have decided that Addr (which satisfies the predicate
/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
static void CommitValueTo(Constant *Val, Constant *Addr) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
    assert(GV->hasInitializer());
    GV->setInitializer(Val);
    return;
  }
  
  ConstantExpr *CE = cast<ConstantExpr>(Addr);
  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
  
  Constant *Init = GV->getInitializer();
  Init = EvaluateStoreInto(Init, Val, CE, 2);
  GV->setInitializer(Init);
}

/// ComputeLoadResult - Return the value that would be computed by a load from
/// P after the stores reflected by 'memory' have been performed.  If we can't
/// decide, return null.
static Constant *ComputeLoadResult(Constant *P,
                                const std::map<Constant*, Constant*> &Memory) {
  // If this memory location has been recently stored, use the stored value: it
  // is the most up-to-date.
  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
  if (I != Memory.end()) return I->second;
 
  // Access it.
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
    if (GV->hasInitializer())
      return GV->getInitializer();
    return 0;
  }
  
  // Handle a constantexpr getelementptr.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
    if (CE->getOpcode() == Instruction::GetElementPtr &&
        isa<GlobalVariable>(CE->getOperand(0))) {
      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
      if (GV->hasInitializer())
        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
    }

  return 0;  // don't know how to evaluate.
}

/// EvaluateFunction - Evaluate a call to function F, returning true if
/// successful, false if we can't evaluate it.  ActualArgs contains the formal
/// arguments for the function.
static bool EvaluateFunction(Function *F, Constant *&RetVal,
                             const std::vector<Constant*> &ActualArgs,
                             std::vector<Function*> &CallStack,
                             std::map<Constant*, Constant*> &MutatedMemory,
                             std::vector<GlobalVariable*> &AllocaTmps) {
  // Check to see if this function is already executing (recursion).  If so,
  // bail out.  TODO: we might want to accept limited recursion.
  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
    return false;
  
  CallStack.push_back(F);
  
  /// Values - As we compute SSA register values, we store their contents here.
  std::map<Value*, Constant*> Values;
  
  // Initialize arguments to the incoming values specified.
  unsigned ArgNo = 0;
  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
       ++AI, ++ArgNo)
    Values[AI] = ActualArgs[ArgNo];

  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
  /// we can only evaluate any one basic block at most once.  This set keeps
  /// track of what we have executed so we can detect recursive cases etc.
  std::set<BasicBlock*> ExecutedBlocks;
  
  // CurInst - The current instruction we're evaluating.
  BasicBlock::iterator CurInst = F->begin()->begin();
  
  // This is the main evaluation loop.
  while (1) {
    Constant *InstResult = 0;
    
    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
      if (SI->isVolatile()) return false;  // no volatile accesses.
      Constant *Ptr = getVal(Values, SI->getOperand(1));
      if (!isSimpleEnoughPointerToCommit(Ptr))
        // If this is too complex for us to commit, reject it.
        return false;
      Constant *Val = getVal(Values, SI->getOperand(0));
      MutatedMemory[Ptr] = Val;
    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
      InstResult = ConstantExpr::get(BO->getOpcode(),
                                     getVal(Values, BO->getOperand(0)),
                                     getVal(Values, BO->getOperand(1)));
    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
                                            getVal(Values, CI->getOperand(0)),
                                            getVal(Values, CI->getOperand(1)));
    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
      InstResult = ConstantExpr::getCast(CI->getOpcode(),
                                         getVal(Values, CI->getOperand(0)),
                                         CI->getType());
    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
                                           getVal(Values, SI->getOperand(1)),
                                           getVal(Values, SI->getOperand(2)));
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
      Constant *P = getVal(Values, GEP->getOperand(0));
      SmallVector<Constant*, 8> GEPOps;
      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
      if (LI->isVolatile()) return false;  // no volatile accesses.
      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
                                     MutatedMemory);
      if (InstResult == 0) return false; // Could not evaluate load.
    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
      const Type *Ty = AI->getType()->getElementType();
      AllocaTmps.push_back(new GlobalVariable(Ty, false,
                                              GlobalValue::InternalLinkage,
                                              UndefValue::get(Ty),
                                              AI->getName()));
      InstResult = AllocaTmps.back();     
    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
      // Cannot handle inline asm.
      if (isa<InlineAsm>(CI->getOperand(0))) return false;

      // Resolve function pointers.
      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
      if (!Callee) return false;  // Cannot resolve.

      std::vector<Constant*> Formals;
      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
        Formals.push_back(getVal(Values, CI->getOperand(i)));
      
      if (Callee->isDeclaration()) {
        // If this is a function we can constant fold, do it.
        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
                                           Formals.size())) {
          InstResult = C;
        } else {
          return false;
        }
      } else {
        if (Callee->getFunctionType()->isVarArg())
          return false;
        
        Constant *RetVal;
        
        // Execute the call, if successful, use the return value.
        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
                              MutatedMemory, AllocaTmps))
          return false;
        InstResult = RetVal;
      }
    } else if (isa<TerminatorInst>(CurInst)) {
      BasicBlock *NewBB = 0;
      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
        if (BI->isUnconditional()) {
          NewBB = BI->getSuccessor(0);
        } else {
          ConstantInt *Cond =
            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
          if (!Cond) return false;  // Cannot determine.

          NewBB = BI->getSuccessor(!Cond->getZExtValue());          
        }
      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
        ConstantInt *Val =
          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
        if (!Val) return false;  // Cannot determine.
        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
        if (RI->getNumOperands())
          RetVal = getVal(Values, RI->getOperand(0));
        
        CallStack.pop_back();  // return from fn.
        return true;  // We succeeded at evaluating this ctor!
      } else {
        // invoke, unwind, unreachable.
        return false;  // Cannot handle this terminator.
      }
      
      // Okay, we succeeded in evaluating this control flow.  See if we have
      // executed the new block before.  If so, we have a looping function,
      // which we cannot evaluate in reasonable time.
      if (!ExecutedBlocks.insert(NewBB).second)
        return false;  // looped!
      
      // Okay, we have never been in this block before.  Check to see if there
      // are any PHI nodes.  If so, evaluate them with information about where
      // we came from.
      BasicBlock *OldBB = CurInst->getParent();
      CurInst = NewBB->begin();
      PHINode *PN;
      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));

      // Do NOT increment CurInst.  We know that the terminator had no value.
      continue;
    } else {
      // Did not know how to evaluate this!
      return false;
    }
    
    if (!CurInst->use_empty())
      Values[CurInst] = InstResult;
    
    // Advance program counter.
    ++CurInst;
  }
}

/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
/// we can.  Return true if we can, false otherwise.
static bool EvaluateStaticConstructor(Function *F) {
  /// MutatedMemory - For each store we execute, we update this map.  Loads
  /// check this to get the most up-to-date value.  If evaluation is successful,
  /// this state is committed to the process.
  std::map<Constant*, Constant*> MutatedMemory;

  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
  /// to represent its body.  This vector is needed so we can delete the
  /// temporary globals when we are done.
  std::vector<GlobalVariable*> AllocaTmps;
  
  /// CallStack - This is used to detect recursion.  In pathological situations
  /// we could hit exponential behavior, but at least there is nothing
  /// unbounded.
  std::vector<Function*> CallStack;

  // Call the function.
  Constant *RetValDummy;
  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
                                       CallStack, MutatedMemory, AllocaTmps);
  if (EvalSuccess) {
    // We succeeded at evaluation: commit the result.
    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
         << F->getName() << "' to " << MutatedMemory.size()
         << " stores.\n";
    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
         E = MutatedMemory.end(); I != E; ++I)
      CommitValueTo(I->second, I->first);
  }
  
  // At this point, we are done interpreting.  If we created any 'alloca'
  // temporaries, release them now.
  while (!AllocaTmps.empty()) {
    GlobalVariable *Tmp = AllocaTmps.back();
    AllocaTmps.pop_back();
    
    // If there are still users of the alloca, the program is doing something
    // silly, e.g. storing the address of the alloca somewhere and using it
    // later.  Since this is undefined, we'll just make it be null.
    if (!Tmp->use_empty())
      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
    delete Tmp;
  }
  
  return EvalSuccess;
}



/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
/// Return true if anything changed.
bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
  bool MadeChange = false;
  if (Ctors.empty()) return false;
  
  // Loop over global ctors, optimizing them when we can.
  for (unsigned i = 0; i != Ctors.size(); ++i) {
    Function *F = Ctors[i];
    // Found a null terminator in the middle of the list, prune off the rest of
    // the list.
    if (F == 0) {
      if (i != Ctors.size()-1) {
        Ctors.resize(i+1);
        MadeChange = true;
      }
      break;
    }
    
    // We cannot simplify external ctor functions.
    if (F->empty()) continue;
    
    // If we can evaluate the ctor at compile time, do.
    if (EvaluateStaticConstructor(F)) {
      Ctors.erase(Ctors.begin()+i);
      MadeChange = true;
      --i;
      ++NumCtorsEvaluated;
      continue;
    }
  }
  
  if (!MadeChange) return false;
  
  GCL = InstallGlobalCtors(GCL, Ctors);
  return true;
}


bool GlobalOpt::runOnModule(Module &M) {
  bool Changed = false;
  
  // Try to find the llvm.globalctors list.
  GlobalVariable *GlobalCtors = FindGlobalCtors(M);

  bool LocalChange = true;
  while (LocalChange) {
    LocalChange = false;
    
    // Delete functions that are trivially dead, ccc -> fastcc
    LocalChange |= OptimizeFunctions(M);
    
    // Optimize global_ctors list.
    if (GlobalCtors)
      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
    
    // Optimize non-address-taken globals.
    LocalChange |= OptimizeGlobalVars(M);
    Changed |= LocalChange;
  }
  
  // TODO: Move all global ctors functions to the end of the module for code
  // layout.
  
  return Changed;
}