llvm.org GIT mirror llvm / 4334dd9 include / llvm / ADT / BitVector.h
4334dd9

Tree @4334dd9 (Download .tar.gz)

BitVector.h @4334dd9raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BitVector class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_BITVECTOR_H
#define LLVM_ADT_BITVECTOR_H

#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdlib>

namespace llvm {

class BitVector {
  typedef unsigned long BitWord;

  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };

  BitWord  *Bits;        // Actual bits.
  unsigned Size;         // Size of bitvector in bits.
  unsigned Capacity;     // Size of allocated memory in BitWord.

public:
  // Encapsulation of a single bit.
  class reference {
    friend class BitVector;

    BitWord *WordRef;
    unsigned BitPos;

    reference();  // Undefined

  public:
    reference(BitVector &b, unsigned Idx) {
      WordRef = &b.Bits[Idx / BITWORD_SIZE];
      BitPos = Idx % BITWORD_SIZE;
    }

    ~reference() {}

    reference &operator=(reference t) {
      *this = bool(t);
      return *this;
    }

    reference& operator=(bool t) {
      if (t)
        *WordRef |= 1L << BitPos;
      else
        *WordRef &= ~(1L << BitPos);
      return *this;
    }

    operator bool() const {
      return ((*WordRef) & (1L << BitPos)) ? true : false;
    }
  };


  /// BitVector default ctor - Creates an empty bitvector.
  BitVector() : Size(0), Capacity(0) {
    Bits = 0;
  }

  /// BitVector ctor - Creates a bitvector of specified number of bits. All
  /// bits are initialized to the specified value.
  explicit BitVector(unsigned s, bool t = false) : Size(s) {
    Capacity = NumBitWords(s);
    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
    init_words(Bits, Capacity, t);
    if (t)
      clear_unused_bits();
  }

  /// BitVector copy ctor.
  BitVector(const BitVector &RHS) : Size(RHS.size()) {
    if (Size == 0) {
      Bits = 0;
      Capacity = 0;
      return;
    }

    Capacity = NumBitWords(RHS.size());
    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
    std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
  }

#if LLVM_HAS_RVALUE_REFERENCES
  BitVector(BitVector &&RHS)
    : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
    RHS.Bits = 0;
  }
#endif

  ~BitVector() {
    std::free(Bits);
  }

  /// empty - Tests whether there are no bits in this bitvector.
  bool empty() const { return Size == 0; }

  /// size - Returns the number of bits in this bitvector.
  unsigned size() const { return Size; }

  /// count - Returns the number of bits which are set.
  unsigned count() const {
    unsigned NumBits = 0;
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      if (sizeof(BitWord) == 4)
        NumBits += CountPopulation_32((uint32_t)Bits[i]);
      else if (sizeof(BitWord) == 8)
        NumBits += CountPopulation_64(Bits[i]);
      else
        llvm_unreachable("Unsupported!");
    return NumBits;
  }

  /// any - Returns true if any bit is set.
  bool any() const {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      if (Bits[i] != 0)
        return true;
    return false;
  }

  /// all - Returns true if all bits are set.
  bool all() const {
    // TODO: Optimize this.
    return count() == size();
  }

  /// none - Returns true if none of the bits are set.
  bool none() const {
    return !any();
  }

  /// find_first - Returns the index of the first set bit, -1 if none
  /// of the bits are set.
  int find_first() const {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      if (Bits[i] != 0) {
        if (sizeof(BitWord) == 4)
          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
        if (sizeof(BitWord) == 8)
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
        llvm_unreachable("Unsupported!");
      }
    return -1;
  }

  /// find_next - Returns the index of the next set bit following the
  /// "Prev" bit. Returns -1 if the next set bit is not found.
  int find_next(unsigned Prev) const {
    ++Prev;
    if (Prev >= Size)
      return -1;

    unsigned WordPos = Prev / BITWORD_SIZE;
    unsigned BitPos = Prev % BITWORD_SIZE;
    BitWord Copy = Bits[WordPos];
    // Mask off previous bits.
    Copy &= ~0UL << BitPos;

    if (Copy != 0) {
      if (sizeof(BitWord) == 4)
        return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy);
      if (sizeof(BitWord) == 8)
        return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
      llvm_unreachable("Unsupported!");
    }

    // Check subsequent words.
    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
      if (Bits[i] != 0) {
        if (sizeof(BitWord) == 4)
          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
        if (sizeof(BitWord) == 8)
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
        llvm_unreachable("Unsupported!");
      }
    return -1;
  }

  /// clear - Clear all bits.
  void clear() {
    Size = 0;
  }

  /// resize - Grow or shrink the bitvector.
  void resize(unsigned N, bool t = false) {
    if (N > Capacity * BITWORD_SIZE) {
      unsigned OldCapacity = Capacity;
      grow(N);
      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
    }

    // Set any old unused bits that are now included in the BitVector. This
    // may set bits that are not included in the new vector, but we will clear
    // them back out below.
    if (N > Size)
      set_unused_bits(t);

    // Update the size, and clear out any bits that are now unused
    unsigned OldSize = Size;
    Size = N;
    if (t || N < OldSize)
      clear_unused_bits();
  }

  void reserve(unsigned N) {
    if (N > Capacity * BITWORD_SIZE)
      grow(N);
  }

  // Set, reset, flip
  BitVector &set() {
    init_words(Bits, Capacity, true);
    clear_unused_bits();
    return *this;
  }

  BitVector &set(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
    return *this;
  }

  /// set - Efficiently set a range of bits in [I, E)
  BitVector &set(unsigned I, unsigned E) {
    assert(I <= E && "Attempted to set backwards range!");
    assert(E <= size() && "Attempted to set out-of-bounds range!");

    if (I == E) return *this;

    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
      BitWord EMask = 1UL << (E % BITWORD_SIZE);
      BitWord IMask = 1UL << (I % BITWORD_SIZE);
      BitWord Mask = EMask - IMask;
      Bits[I / BITWORD_SIZE] |= Mask;
      return *this;
    }

    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
    Bits[I / BITWORD_SIZE] |= PrefixMask;
    I = RoundUpToAlignment(I, BITWORD_SIZE);

    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
      Bits[I / BITWORD_SIZE] = ~0UL;

    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
    Bits[I / BITWORD_SIZE] |= PostfixMask;

    return *this;
  }

  BitVector &reset() {
    init_words(Bits, Capacity, false);
    return *this;
  }

  BitVector &reset(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
    return *this;
  }

  /// reset - Efficiently reset a range of bits in [I, E)
  BitVector &reset(unsigned I, unsigned E) {
    assert(I <= E && "Attempted to reset backwards range!");
    assert(E <= size() && "Attempted to reset out-of-bounds range!");

    if (I == E) return *this;

    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
      BitWord EMask = 1UL << (E % BITWORD_SIZE);
      BitWord IMask = 1UL << (I % BITWORD_SIZE);
      BitWord Mask = EMask - IMask;
      Bits[I / BITWORD_SIZE] &= ~Mask;
      return *this;
    }

    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
    I = RoundUpToAlignment(I, BITWORD_SIZE);

    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
      Bits[I / BITWORD_SIZE] = 0UL;

    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
    Bits[I / BITWORD_SIZE] &= ~PostfixMask;

    return *this;
  }

  BitVector &flip() {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      Bits[i] = ~Bits[i];
    clear_unused_bits();
    return *this;
  }

  BitVector &flip(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
    return *this;
  }

  // Indexing.
  reference operator[](unsigned Idx) {
    assert (Idx < Size && "Out-of-bounds Bit access.");
    return reference(*this, Idx);
  }

  bool operator[](unsigned Idx) const {
    assert (Idx < Size && "Out-of-bounds Bit access.");
    BitWord Mask = 1L << (Idx % BITWORD_SIZE);
    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
  }

  bool test(unsigned Idx) const {
    return (*this)[Idx];
  }

  /// Test if any common bits are set.
  bool anyCommon(const BitVector &RHS) const {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
      if (Bits[i] & RHS.Bits[i])
        return true;
    return false;
  }

  // Comparison operators.
  bool operator==(const BitVector &RHS) const {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      if (Bits[i] != RHS.Bits[i])
        return false;

    // Verify that any extra words are all zeros.
    if (i != ThisWords) {
      for (; i != ThisWords; ++i)
        if (Bits[i])
          return false;
    } else if (i != RHSWords) {
      for (; i != RHSWords; ++i)
        if (RHS.Bits[i])
          return false;
    }
    return true;
  }

  bool operator!=(const BitVector &RHS) const {
    return !(*this == RHS);
  }

  /// Intersection, union, disjoint union.
  BitVector &operator&=(const BitVector &RHS) {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      Bits[i] &= RHS.Bits[i];

    // Any bits that are just in this bitvector become zero, because they aren't
    // in the RHS bit vector.  Any words only in RHS are ignored because they
    // are already zero in the LHS.
    for (; i != ThisWords; ++i)
      Bits[i] = 0;

    return *this;
  }

  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
  BitVector &reset(const BitVector &RHS) {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      Bits[i] &= ~RHS.Bits[i];
    return *this;
  }

  /// test - Check if (This - RHS) is zero.
  /// This is the same as reset(RHS) and any().
  bool test(const BitVector &RHS) const {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      if ((Bits[i] & ~RHS.Bits[i]) != 0)
        return true;

    for (; i != ThisWords ; ++i)
      if (Bits[i] != 0)
        return true;

    return false;
  }

  BitVector &operator|=(const BitVector &RHS) {
    if (size() < RHS.size())
      resize(RHS.size());
    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
      Bits[i] |= RHS.Bits[i];
    return *this;
  }

  BitVector &operator^=(const BitVector &RHS) {
    if (size() < RHS.size())
      resize(RHS.size());
    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
      Bits[i] ^= RHS.Bits[i];
    return *this;
  }

  // Assignment operator.
  const BitVector &operator=(const BitVector &RHS) {
    if (this == &RHS) return *this;

    Size = RHS.size();
    unsigned RHSWords = NumBitWords(Size);
    if (Size <= Capacity * BITWORD_SIZE) {
      if (Size)
        std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
      clear_unused_bits();
      return *this;
    }

    // Grow the bitvector to have enough elements.
    Capacity = RHSWords;
    BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
    std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));

    // Destroy the old bits.
    std::free(Bits);
    Bits = NewBits;

    return *this;
  }

#if LLVM_HAS_RVALUE_REFERENCES
  const BitVector &operator=(BitVector &&RHS) {
    if (this == &RHS) return *this;

    std::free(Bits);
    Bits = RHS.Bits;
    Size = RHS.Size;
    Capacity = RHS.Capacity;

    RHS.Bits = 0;

    return *this;
  }
#endif

  void swap(BitVector &RHS) {
    std::swap(Bits, RHS.Bits);
    std::swap(Size, RHS.Size);
    std::swap(Capacity, RHS.Capacity);
  }

  //===--------------------------------------------------------------------===//
  // Portable bit mask operations.
  //===--------------------------------------------------------------------===//
  //
  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
  // fixed word size makes it easier to work with literal bit vector constants
  // in portable code.
  //
  // The LSB in each word is the lowest numbered bit.  The size of a portable
  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
  // given, the bit mask is assumed to cover the entire BitVector.

  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
  /// This computes "*this |= Mask".
  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<true, false>(Mask, MaskWords);
  }

  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
  /// Don't resize. This computes "*this &= ~Mask".
  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<false, false>(Mask, MaskWords);
  }

  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
  /// Don't resize.  This computes "*this |= ~Mask".
  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<true, true>(Mask, MaskWords);
  }

  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
  /// Don't resize.  This computes "*this &= Mask".
  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<false, true>(Mask, MaskWords);
  }

private:
  unsigned NumBitWords(unsigned S) const {
    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
  }

  // Set the unused bits in the high words.
  void set_unused_bits(bool t = true) {
    //  Set high words first.
    unsigned UsedWords = NumBitWords(Size);
    if (Capacity > UsedWords)
      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);

    //  Then set any stray high bits of the last used word.
    unsigned ExtraBits = Size % BITWORD_SIZE;
    if (ExtraBits) {
      BitWord ExtraBitMask = ~0UL << ExtraBits;
      if (t)
        Bits[UsedWords-1] |= ExtraBitMask;
      else
        Bits[UsedWords-1] &= ~ExtraBitMask;
    }
  }

  // Clear the unused bits in the high words.
  void clear_unused_bits() {
    set_unused_bits(false);
  }

  void grow(unsigned NewSize) {
    Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
    Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));

    clear_unused_bits();
  }

  void init_words(BitWord *B, unsigned NumWords, bool t) {
    memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
  }

  template<bool AddBits, bool InvertMask>
  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
    assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
    MaskWords = std::min(MaskWords, (size() + 31) / 32);
    const unsigned Scale = BITWORD_SIZE / 32;
    unsigned i;
    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
      BitWord BW = Bits[i];
      // This inner loop should unroll completely when BITWORD_SIZE > 32.
      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
        uint32_t M = *Mask++;
        if (InvertMask) M = ~M;
        if (AddBits) BW |=   BitWord(M) << b;
        else         BW &= ~(BitWord(M) << b);
      }
      Bits[i] = BW;
    }
    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
      uint32_t M = *Mask++;
      if (InvertMask) M = ~M;
      if (AddBits) Bits[i] |=   BitWord(M) << b;
      else         Bits[i] &= ~(BitWord(M) << b);
    }
    if (AddBits)
      clear_unused_bits();
  }
};

} // End llvm namespace

namespace std {
  /// Implement std::swap in terms of BitVector swap.
  inline void
  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
    LHS.swap(RHS);
  }
}

#endif