llvm.org GIT mirror llvm / 2c69bbf include / llvm / Object / ELFTypes.h
2c69bbf

Tree @2c69bbf (Download .tar.gz)

ELFTypes.h @2c69bbfraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
//===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_OBJECT_ELFTYPES_H
#define LLVM_OBJECT_ELFTYPES_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <type_traits>

namespace llvm {
namespace object {

using support::endianness;

template <class ELFT> struct Elf_Ehdr_Impl;
template <class ELFT> struct Elf_Shdr_Impl;
template <class ELFT> struct Elf_Sym_Impl;
template <class ELFT> struct Elf_Dyn_Impl;
template <class ELFT> struct Elf_Phdr_Impl;
template <class ELFT, bool isRela> struct Elf_Rel_Impl;
template <class ELFT> struct Elf_Verdef_Impl;
template <class ELFT> struct Elf_Verdaux_Impl;
template <class ELFT> struct Elf_Verneed_Impl;
template <class ELFT> struct Elf_Vernaux_Impl;
template <class ELFT> struct Elf_Versym_Impl;
template <class ELFT> struct Elf_Hash_Impl;
template <class ELFT> struct Elf_GnuHash_Impl;
template <class ELFT> struct Elf_Chdr_Impl;
template <class ELFT> struct Elf_Nhdr_Impl;
template <class ELFT> class Elf_Note_Impl;
template <class ELFT> class Elf_Note_Iterator_Impl;
template <class ELFT> struct Elf_CGProfile_Impl;

template <endianness E, bool Is64> struct ELFType {
private:
  template <typename Ty>
  using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;

public:
  static const endianness TargetEndianness = E;
  static const bool Is64Bits = Is64;

  using uint = typename std::conditional<Is64, uint64_t, uint32_t>::type;
  using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
  using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
  using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
  using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
  using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
  using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
  using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
  using Relr = packed<uint>;
  using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
  using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
  using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
  using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
  using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
  using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
  using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
  using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
  using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
  using Note = Elf_Note_Impl<ELFType<E, Is64>>;
  using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
  using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
  using DynRange = ArrayRef<Dyn>;
  using ShdrRange = ArrayRef<Shdr>;
  using SymRange = ArrayRef<Sym>;
  using RelRange = ArrayRef<Rel>;
  using RelaRange = ArrayRef<Rela>;
  using RelrRange = ArrayRef<Relr>;
  using PhdrRange = ArrayRef<Phdr>;

  using Half = packed<uint16_t>;
  using Word = packed<uint32_t>;
  using Sword = packed<int32_t>;
  using Xword = packed<uint64_t>;
  using Sxword = packed<int64_t>;
  using Addr = packed<uint>;
  using Off = packed<uint>;
};

using ELF32LE = ELFType<support::little, false>;
using ELF32BE = ELFType<support::big, false>;
using ELF64LE = ELFType<support::little, true>;
using ELF64BE = ELFType<support::big, true>;

// Use an alignment of 2 for the typedefs since that is the worst case for
// ELF files in archives.

// I really don't like doing this, but the alternative is copypasta.
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
  using Elf_Addr = typename ELFT::Addr;                                        \
  using Elf_Off = typename ELFT::Off;                                          \
  using Elf_Half = typename ELFT::Half;                                        \
  using Elf_Word = typename ELFT::Word;                                        \
  using Elf_Sword = typename ELFT::Sword;                                      \
  using Elf_Xword = typename ELFT::Xword;                                      \
  using Elf_Sxword = typename ELFT::Sxword;

#define LLVM_ELF_COMMA ,
#define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)

// Section header.
template <class ELFT> struct Elf_Shdr_Base;

template <endianness TargetEndianness>
struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  Elf_Word sh_name;      // Section name (index into string table)
  Elf_Word sh_type;      // Section type (SHT_*)
  Elf_Word sh_flags;     // Section flags (SHF_*)
  Elf_Addr sh_addr;      // Address where section is to be loaded
  Elf_Off sh_offset;     // File offset of section data, in bytes
  Elf_Word sh_size;      // Size of section, in bytes
  Elf_Word sh_link;      // Section type-specific header table index link
  Elf_Word sh_info;      // Section type-specific extra information
  Elf_Word sh_addralign; // Section address alignment
  Elf_Word sh_entsize;   // Size of records contained within the section
};

template <endianness TargetEndianness>
struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  Elf_Word sh_name;       // Section name (index into string table)
  Elf_Word sh_type;       // Section type (SHT_*)
  Elf_Xword sh_flags;     // Section flags (SHF_*)
  Elf_Addr sh_addr;       // Address where section is to be loaded
  Elf_Off sh_offset;      // File offset of section data, in bytes
  Elf_Xword sh_size;      // Size of section, in bytes
  Elf_Word sh_link;       // Section type-specific header table index link
  Elf_Word sh_info;       // Section type-specific extra information
  Elf_Xword sh_addralign; // Section address alignment
  Elf_Xword sh_entsize;   // Size of records contained within the section
};

template <class ELFT>
struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
  using Elf_Shdr_Base<ELFT>::sh_entsize;
  using Elf_Shdr_Base<ELFT>::sh_size;

  /// Get the number of entities this section contains if it has any.
  unsigned getEntityCount() const {
    if (sh_entsize == 0)
      return 0;
    return sh_size / sh_entsize;
  }
};

template <class ELFT> struct Elf_Sym_Base;

template <endianness TargetEndianness>
struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  Elf_Word st_name;       // Symbol name (index into string table)
  Elf_Addr st_value;      // Value or address associated with the symbol
  Elf_Word st_size;       // Size of the symbol
  unsigned char st_info;  // Symbol's type and binding attributes
  unsigned char st_other; // Must be zero; reserved
  Elf_Half st_shndx;      // Which section (header table index) it's defined in
};

template <endianness TargetEndianness>
struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  Elf_Word st_name;       // Symbol name (index into string table)
  unsigned char st_info;  // Symbol's type and binding attributes
  unsigned char st_other; // Must be zero; reserved
  Elf_Half st_shndx;      // Which section (header table index) it's defined in
  Elf_Addr st_value;      // Value or address associated with the symbol
  Elf_Xword st_size;      // Size of the symbol
};

template <class ELFT>
struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
  using Elf_Sym_Base<ELFT>::st_info;
  using Elf_Sym_Base<ELFT>::st_shndx;
  using Elf_Sym_Base<ELFT>::st_other;
  using Elf_Sym_Base<ELFT>::st_value;

  // These accessors and mutators correspond to the ELF32_ST_BIND,
  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
  unsigned char getBinding() const { return st_info >> 4; }
  unsigned char getType() const { return st_info & 0x0f; }
  uint64_t getValue() const { return st_value; }
  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }

  void setBindingAndType(unsigned char b, unsigned char t) {
    st_info = (b << 4) + (t & 0x0f);
  }

  /// Access to the STV_xxx flag stored in the first two bits of st_other.
  /// STV_DEFAULT: 0
  /// STV_INTERNAL: 1
  /// STV_HIDDEN: 2
  /// STV_PROTECTED: 3
  unsigned char getVisibility() const { return st_other & 0x3; }
  void setVisibility(unsigned char v) {
    assert(v < 4 && "Invalid value for visibility");
    st_other = (st_other & ~0x3) | v;
  }

  bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }

  bool isCommon() const {
    return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
  }

  bool isDefined() const { return !isUndefined(); }

  bool isProcessorSpecific() const {
    return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
  }

  bool isOSSpecific() const {
    return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
  }

  bool isReserved() const {
    // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
    // true and some compilers warn about it.
    return st_shndx >= ELF::SHN_LORESERVE;
  }

  bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }

  bool isExternal() const {
    return getBinding() != ELF::STB_LOCAL;
  }

  Expected<StringRef> getName(StringRef StrTab) const;
};

template <class ELFT>
Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
  uint32_t Offset = this->st_name;
  if (Offset >= StrTab.size())
    return errorCodeToError(object_error::parse_failed);
  return StringRef(StrTab.data() + Offset);
}

/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
/// (.gnu.version). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Versym_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
};

/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdef_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  using Elf_Verdaux = Elf_Verdaux_Impl<ELFT>;
  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
  Elf_Half vd_cnt;     // Number of Verdaux entries
  Elf_Word vd_hash;    // Hash of name
  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)

  /// Get the first Verdaux entry for this Verdef.
  const Elf_Verdaux *getAux() const {
    return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
  }
};

/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdaux_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word vda_name; // Version name (offset in string table)
  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
};

/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verneed_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
  Elf_Half vn_cnt;     // Number of associated Vernaux entries
  Elf_Word vn_file;    // Library name (string table offset)
  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
};

/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Vernaux_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word vna_hash;  // Hash of dependency name
  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
  Elf_Half vna_other; // Version index, used in .gnu.version entries
  Elf_Word vna_name;  // Dependency name
  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
};

/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
///               table section (.dynamic) look like.
template <class ELFT> struct Elf_Dyn_Base;

template <endianness TargetEndianness>
struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  Elf_Sword d_tag;
  union {
    Elf_Word d_val;
    Elf_Addr d_ptr;
  } d_un;
};

template <endianness TargetEndianness>
struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  Elf_Sxword d_tag;
  union {
    Elf_Xword d_val;
    Elf_Addr d_ptr;
  } d_un;
};

/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
template <class ELFT>
struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
  using Elf_Dyn_Base<ELFT>::d_tag;
  using Elf_Dyn_Base<ELFT>::d_un;
  using intX_t = typename std::conditional<ELFT::Is64Bits,
                                           int64_t, int32_t>::type;
  using uintX_t = typename std::conditional<ELFT::Is64Bits,
                                            uint64_t, uint32_t>::type;
  intX_t getTag() const { return d_tag; }
  uintX_t getVal() const { return d_un.d_val; }
  uintX_t getPtr() const { return d_un.d_ptr; }
};

template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  static const bool IsRela = false;
  Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
  Elf_Word r_info;   // Symbol table index and type of relocation to apply

  uint32_t getRInfo(bool isMips64EL) const {
    assert(!isMips64EL);
    return r_info;
  }
  void setRInfo(uint32_t R, bool IsMips64EL) {
    assert(!IsMips64EL);
    r_info = R;
  }

  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
  // and ELF32_R_INFO macros defined in the ELF specification:
  uint32_t getSymbol(bool isMips64EL) const {
    return this->getRInfo(isMips64EL) >> 8;
  }
  unsigned char getType(bool isMips64EL) const {
    return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
  }
  void setSymbol(uint32_t s, bool IsMips64EL) {
    setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
  }
  void setType(unsigned char t, bool IsMips64EL) {
    setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
  }
  void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
    this->setRInfo((s << 8) + t, IsMips64EL);
  }
};

template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
    : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  static const bool IsRela = true;
  Elf_Sword r_addend; // Compute value for relocatable field by adding this
};

template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  static const bool IsRela = false;
  Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
  Elf_Xword r_info;  // Symbol table index and type of relocation to apply

  uint64_t getRInfo(bool isMips64EL) const {
    uint64_t t = r_info;
    if (!isMips64EL)
      return t;
    // Mips64 little endian has a "special" encoding of r_info. Instead of one
    // 64 bit little endian number, it is a little endian 32 bit number followed
    // by a 32 bit big endian number.
    return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
           ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
  }

  void setRInfo(uint64_t R, bool IsMips64EL) {
    if (IsMips64EL)
      r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
               ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
    else
      r_info = R;
  }

  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
  // and ELF64_R_INFO macros defined in the ELF specification:
  uint32_t getSymbol(bool isMips64EL) const {
    return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
  }
  uint32_t getType(bool isMips64EL) const {
    return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
  }
  void setSymbol(uint32_t s, bool IsMips64EL) {
    setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
  }
  void setType(uint32_t t, bool IsMips64EL) {
    setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
  }
  void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
    this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
  }
};

template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
    : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  static const bool IsRela = true;
  Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
};

template <class ELFT>
struct Elf_Ehdr_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
  Elf_Half e_type;                       // Type of file (see ET_*)
  Elf_Half e_machine;   // Required architecture for this file (see EM_*)
  Elf_Word e_version;   // Must be equal to 1
  Elf_Addr e_entry;     // Address to jump to in order to start program
  Elf_Off e_phoff;      // Program header table's file offset, in bytes
  Elf_Off e_shoff;      // Section header table's file offset, in bytes
  Elf_Word e_flags;     // Processor-specific flags
  Elf_Half e_ehsize;    // Size of ELF header, in bytes
  Elf_Half e_phentsize; // Size of an entry in the program header table
  Elf_Half e_phnum;     // Number of entries in the program header table
  Elf_Half e_shentsize; // Size of an entry in the section header table
  Elf_Half e_shnum;     // Number of entries in the section header table
  Elf_Half e_shstrndx;  // Section header table index of section name
                        // string table

  bool checkMagic() const {
    return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
  }

  unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
  unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};

template <endianness TargetEndianness>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  Elf_Word p_type;   // Type of segment
  Elf_Off p_offset;  // FileOffset where segment is located, in bytes
  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
  Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
  Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  Elf_Word p_flags;  // Segment flags
  Elf_Word p_align;  // Segment alignment constraint
};

template <endianness TargetEndianness>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  Elf_Word p_type;    // Type of segment
  Elf_Word p_flags;   // Segment flags
  Elf_Off p_offset;   // FileOffset where segment is located, in bytes
  Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
  Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
  Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
  Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
  Elf_Xword p_align;  // Segment alignment constraint
};

// ELFT needed for endianness.
template <class ELFT>
struct Elf_Hash_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word nbucket;
  Elf_Word nchain;

  ArrayRef<Elf_Word> buckets() const {
    return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
  }

  ArrayRef<Elf_Word> chains() const {
    return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
                              &nbucket + 2 + nbucket + nchain);
  }
};

// .gnu.hash section
template <class ELFT>
struct Elf_GnuHash_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word nbuckets;
  Elf_Word symndx;
  Elf_Word maskwords;
  Elf_Word shift2;

  ArrayRef<Elf_Off> filter() const {
    return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
                             maskwords);
  }

  ArrayRef<Elf_Word> buckets() const {
    return ArrayRef<Elf_Word>(
        reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
  }

  ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
    return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
  }
};

// Compressed section headers.
// http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
template <endianness TargetEndianness>
struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  Elf_Word ch_type;
  Elf_Word ch_size;
  Elf_Word ch_addralign;
};

template <endianness TargetEndianness>
struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  Elf_Word ch_type;
  Elf_Word ch_reserved;
  Elf_Xword ch_size;
  Elf_Xword ch_addralign;
};

/// Note header
template <class ELFT>
struct Elf_Nhdr_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word n_namesz;
  Elf_Word n_descsz;
  Elf_Word n_type;

  /// The alignment of the name and descriptor.
  ///
  /// Implementations differ from the specification here: in practice all
  /// variants align both the name and descriptor to 4-bytes.
  static const unsigned int Align = 4;

  /// Get the size of the note, including name, descriptor, and padding.
  size_t getSize() const {
    return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz);
  }
};

/// An ELF note.
///
/// Wraps a note header, providing methods for accessing the name and
/// descriptor safely.
template <class ELFT>
class Elf_Note_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)

  const Elf_Nhdr_Impl<ELFT> &Nhdr;

  template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;

  Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}

public:
  /// Get the note's name, excluding the terminating null byte.
  StringRef getName() const {
    if (!Nhdr.n_namesz)
      return StringRef();
    return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
                     Nhdr.n_namesz - 1);
  }

  /// Get the note's descriptor.
  ArrayRef<uint8_t> getDesc() const {
    if (!Nhdr.n_descsz)
      return ArrayRef<uint8_t>();
    return ArrayRef<uint8_t>(
        reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) +
          alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz),
        Nhdr.n_descsz);
  }

  /// Get the note's type.
  Elf_Word getType() const { return Nhdr.n_type; }
};

template <class ELFT>
class Elf_Note_Iterator_Impl
    : std::iterator<std::forward_iterator_tag, Elf_Note_Impl<ELFT>> {
  // Nhdr being a nullptr marks the end of iteration.
  const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
  size_t RemainingSize = 0u;
  Error *Err = nullptr;

  template <class ELFFileELFT> friend class ELFFile;

  // Stop iteration and indicate an overflow.
  void stopWithOverflowError() {
    Nhdr = nullptr;
    *Err = make_error<StringError>("ELF note overflows container",
                                   object_error::parse_failed);
  }

  // Advance Nhdr by NoteSize bytes, starting from NhdrPos.
  //
  // Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
  // upon returning. Handles stopping iteration when reaching the end of the
  // container, either cleanly or with an overflow error.
  void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
    RemainingSize -= NoteSize;
    if (RemainingSize == 0u) {
      // Ensure that if the iterator walks to the end, the error is checked
      // afterwards.
      *Err = Error::success();
      Nhdr = nullptr;
    } else if (sizeof(*Nhdr) > RemainingSize)
      stopWithOverflowError();
    else {
      Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
      if (Nhdr->getSize() > RemainingSize)
        stopWithOverflowError();
      else
        *Err = Error::success();
    }
  }

  Elf_Note_Iterator_Impl() {}
  explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
  Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err)
      : RemainingSize(Size), Err(&Err) {
    consumeError(std::move(Err));
    assert(Start && "ELF note iterator starting at NULL");
    advanceNhdr(Start, 0u);
  }

public:
  Elf_Note_Iterator_Impl &operator++() {
    assert(Nhdr && "incremented ELF note end iterator");
    const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
    size_t NoteSize = Nhdr->getSize();
    advanceNhdr(NhdrPos, NoteSize);
    return *this;
  }
  bool operator==(Elf_Note_Iterator_Impl Other) const {
    if (!Nhdr && Other.Err)
      (void)(bool)(*Other.Err);
    if (!Other.Nhdr && Err)
      (void)(bool)(*Err);
    return Nhdr == Other.Nhdr;
  }
  bool operator!=(Elf_Note_Iterator_Impl Other) const {
    return !(*this == Other);
  }
  Elf_Note_Impl<ELFT> operator*() const {
    assert(Nhdr && "dereferenced ELF note end iterator");
    return Elf_Note_Impl<ELFT>(*Nhdr);
  }
};

template <class ELFT> struct Elf_CGProfile_Impl {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Word cgp_from;
  Elf_Word cgp_to;
  Elf_Xword cgp_weight;
};

// MIPS .reginfo section
template <class ELFT>
struct Elf_Mips_RegInfo;

template <support::endianness TargetEndianness>
struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
  Elf_Word ri_gprmask;     // bit-mask of used general registers
  Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
  Elf_Addr ri_gp_value;    // gp register value
};

template <support::endianness TargetEndianness>
struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
  LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
  Elf_Word ri_gprmask;     // bit-mask of used general registers
  Elf_Word ri_pad;         // unused padding field
  Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
  Elf_Addr ri_gp_value;    // gp register value
};

// .MIPS.options section
template <class ELFT> struct Elf_Mips_Options {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  uint8_t kind;     // Determines interpretation of variable part of descriptor
  uint8_t size;     // Byte size of descriptor, including this header
  Elf_Half section; // Section header index of section affected,
                    // or 0 for global options
  Elf_Word info;    // Kind-specific information

  Elf_Mips_RegInfo<ELFT> &getRegInfo() {
    assert(kind == ELF::ODK_REGINFO);
    return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
        (uint8_t *)this + sizeof(Elf_Mips_Options));
  }
  const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
    return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
  }
};

// .MIPS.abiflags section content
template <class ELFT> struct Elf_Mips_ABIFlags {
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
  Elf_Half version;  // Version of the structure
  uint8_t isa_level; // ISA level: 1-5, 32, and 64
  uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
  uint8_t gpr_size;  // General purpose registers size
  uint8_t cpr1_size; // Co-processor 1 registers size
  uint8_t cpr2_size; // Co-processor 2 registers size
  uint8_t fp_abi;    // Floating-point ABI flag
  Elf_Word isa_ext;  // Processor-specific extension
  Elf_Word ases;     // ASEs flags
  Elf_Word flags1;   // General flags
  Elf_Word flags2;   // General flags
};

} // end namespace object.
} // end namespace llvm.

#endif // LLVM_OBJECT_ELFTYPES_H