llvm.org GIT mirror llvm / 28fe7a0 lib / Target / AMDGPU / AMDGPUTargetTransformInfo.cpp

Tree @28fe7a0 (Download .tar.gz)

AMDGPUTargetTransformInfo.cpp @28fe7a0raw · history · blame

//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===//
//                     The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.

#include "AMDGPUTargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

#define DEBUG_TYPE "AMDGPUtti"

void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L,
                                            TTI::UnrollingPreferences &UP) {
  UP.Threshold = 300; // Twice the default.
  UP.MaxCount = UINT_MAX;
  UP.Partial = true;

  // TODO: Do we want runtime unrolling?

  for (const BasicBlock *BB : L->getBlocks()) {
    const DataLayout &DL = BB->getModule()->getDataLayout();
    for (const Instruction &I : *BB) {
      const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
      if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)

      const Value *Ptr = GEP->getPointerOperand();
      const AllocaInst *Alloca =
          dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
      if (Alloca) {
        // We want to do whatever we can to limit the number of alloca
        // instructions that make it through to the code generator.  allocas
        // require us to use indirect addressing, which is slow and prone to
        // compiler bugs.  If this loop does an address calculation on an
        // alloca ptr, then we want to use a higher than normal loop unroll
        // threshold. This will give SROA a better chance to eliminate these
        // allocas.
        // Don't use the maximum allowed value here as it will make some
        // programs way too big.
        UP.Threshold = 800;

unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) {
  if (Vec)
    return 0;

  // Number of VGPRs on SI.
  if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
    return 256;

  return 4 * 128; // XXX - 4 channels. Should these count as vector instead?

unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) {
  return Vector ? 0 : 32;

unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
  // Semi-arbitrary large amount.
  return 64;

unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
  // XXX - For some reason this isn't called for switch.
  switch (Opcode) {
  case Instruction::Br:
  case Instruction::Ret:
    return 10;
    return BaseT::getCFInstrCost(Opcode);

int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
                                      unsigned Index) {
  switch (Opcode) {
  case Instruction::ExtractElement:
    // Dynamic indexing isn't free and is best avoided.
    return Index == ~0u ? 2 : 0;
    return BaseT::getVectorInstrCost(Opcode, ValTy, Index);

static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII,
                                          const IntrinsicInst *I) {
  switch (I->getIntrinsicID()) {
    return false;
  case Intrinsic::not_intrinsic:
    // This means we have an intrinsic that isn't defined in
    // IntrinsicsAMDGPU.td

  case Intrinsic::amdgcn_interp_p1:
  case Intrinsic::amdgcn_interp_p2:
  case Intrinsic::amdgcn_mbcnt_hi:
  case Intrinsic::amdgcn_mbcnt_lo:
  case Intrinsic::r600_read_tidig_x:
  case Intrinsic::r600_read_tidig_y:
  case Intrinsic::r600_read_tidig_z:
    return true;

  StringRef Name = I->getCalledFunction()->getName();
  switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) {
    return false;
  case AMDGPUIntrinsic::SI_tid:
  case AMDGPUIntrinsic::SI_fs_interp:
  case AMDGPUIntrinsic::SI_fs_constant:
    return true;

static bool isArgPassedInSGPR(const Argument *A) {
  const Function *F = A->getParent();
  unsigned ShaderType = AMDGPU::getShaderType(*F);

  // Arguments to compute shaders are never a source of divergence.
  if (ShaderType == ShaderType::COMPUTE)
    return true;

  // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
  if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) ||
      F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal))
    return true;

  // Everything else is in VGPRs.
  return false;

/// \returns true if the result of the value could potentially be
/// different across workitems in a wavefront.
bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {

  if (const Argument *A = dyn_cast<Argument>(V))
    return !isArgPassedInSGPR(A);

  // Loads from the private address space are divergent, because threads
  // can execute the load instruction with the same inputs and get different
  // results.
  // All other loads are not divergent, because if threads issue loads with the
  // same arguments, they will always get the same result.
  if (const LoadInst *Load = dyn_cast<LoadInst>(V))
    return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;

  if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
    const TargetMachine &TM = getTLI()->getTargetMachine();
    return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic);

  // Assume all function calls are a source of divergence.
  if (isa<CallInst>(V) || isa<InvokeInst>(V))
    return true;

  return false;