llvm.org GIT mirror llvm / 1f7a1b6 lib / Target / X86 / X86ISelDAGToDAG.cpp
1f7a1b6

Tree @1f7a1b6 (Download .tar.gz)

X86ISelDAGToDAG.cpp @1f7a1b6raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a DAG pattern matching instruction selector for X86,
// converting from a legalized dag to a X86 dag.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86-isel"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");

//===----------------------------------------------------------------------===//
//                      Pattern Matcher Implementation
//===----------------------------------------------------------------------===//

namespace {
  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
  /// SDValue's instead of register numbers for the leaves of the matched
  /// tree.
  struct X86ISelAddressMode {
    enum {
      RegBase,
      FrameIndexBase
    } BaseType;

    // This is really a union, discriminated by BaseType!
    SDValue Base_Reg;
    int Base_FrameIndex;

    unsigned Scale;
    SDValue IndexReg; 
    int32_t Disp;
    SDValue Segment;
    const GlobalValue *GV;
    const Constant *CP;
    const BlockAddress *BlockAddr;
    const char *ES;
    int JT;
    unsigned Align;    // CP alignment.
    unsigned char SymbolFlags;  // X86II::MO_*

    X86ISelAddressMode()
      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
        SymbolFlags(X86II::MO_NO_FLAG) {
    }

    bool hasSymbolicDisplacement() const {
      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
    }
    
    bool hasBaseOrIndexReg() const {
      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
    }
    
    /// isRIPRelative - Return true if this addressing mode is already RIP
    /// relative.
    bool isRIPRelative() const {
      if (BaseType != RegBase) return false;
      if (RegisterSDNode *RegNode =
            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
        return RegNode->getReg() == X86::RIP;
      return false;
    }
    
    void setBaseReg(SDValue Reg) {
      BaseType = RegBase;
      Base_Reg = Reg;
    }

    void dump() {
      dbgs() << "X86ISelAddressMode " << this << '\n';
      dbgs() << "Base_Reg ";
      if (Base_Reg.getNode() != 0)
        Base_Reg.getNode()->dump(); 
      else
        dbgs() << "nul";
      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
             << " Scale" << Scale << '\n'
             << "IndexReg ";
      if (IndexReg.getNode() != 0)
        IndexReg.getNode()->dump();
      else
        dbgs() << "nul"; 
      dbgs() << " Disp " << Disp << '\n'
             << "GV ";
      if (GV)
        GV->dump();
      else
        dbgs() << "nul";
      dbgs() << " CP ";
      if (CP)
        CP->dump();
      else
        dbgs() << "nul";
      dbgs() << '\n'
             << "ES ";
      if (ES)
        dbgs() << ES;
      else
        dbgs() << "nul";
      dbgs() << " JT" << JT << " Align" << Align << '\n';
    }
  };
}

namespace {
  //===--------------------------------------------------------------------===//
  /// ISel - X86 specific code to select X86 machine instructions for
  /// SelectionDAG operations.
  ///
  class X86DAGToDAGISel : public SelectionDAGISel {
    /// X86Lowering - This object fully describes how to lower LLVM code to an
    /// X86-specific SelectionDAG.
    const X86TargetLowering &X86Lowering;

    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;

    /// OptForSize - If true, selector should try to optimize for code size
    /// instead of performance.
    bool OptForSize;

  public:
    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(tm, OptLevel),
        X86Lowering(*tm.getTargetLowering()),
        Subtarget(&tm.getSubtarget<X86Subtarget>()),
        OptForSize(false) {}

    virtual const char *getPassName() const {
      return "X86 DAG->DAG Instruction Selection";
    }

    virtual void EmitFunctionEntryCode();

    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;

    virtual void PreprocessISelDAG();

    inline bool immSext8(SDNode *N) const {
      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
    }

    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
    // sign extended field.
    inline bool i64immSExt32(SDNode *N) const {
      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
      return (int64_t)v == (int32_t)v;
    }

// Include the pieces autogenerated from the target description.
#include "X86GenDAGISel.inc"

  private:
    SDNode *Select(SDNode *N);
    SDNode *SelectGather(SDNode *N, unsigned Opc);
    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);

    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
                                 unsigned Depth);
    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
                    SDValue &Scale, SDValue &Index, SDValue &Disp,
                    SDValue &Segment);
    bool SelectLEAAddr(SDValue N, SDValue &Base,
                       SDValue &Scale, SDValue &Index, SDValue &Disp,
                       SDValue &Segment);
    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
                           SDValue &Scale, SDValue &Index, SDValue &Disp,
                           SDValue &Segment);
    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
                             SDValue &Base, SDValue &Scale,
                             SDValue &Index, SDValue &Disp,
                             SDValue &Segment,
                             SDValue &NodeWithChain);
    
    bool TryFoldLoad(SDNode *P, SDValue N,
                     SDValue &Base, SDValue &Scale,
                     SDValue &Index, SDValue &Disp,
                     SDValue &Segment);
    
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    /// inline asm expressions.
    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
                                              char ConstraintCode,
                                              std::vector<SDValue> &OutOps);
    
    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);

    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 
                                   SDValue &Scale, SDValue &Index,
                                   SDValue &Disp, SDValue &Segment) {
      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
        AM.Base_Reg;
      Scale = getI8Imm(AM.Scale);
      Index = AM.IndexReg;
      // These are 32-bit even in 64-bit mode since RIP relative offset
      // is 32-bit.
      if (AM.GV)
        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
                                              MVT::i32, AM.Disp,
                                              AM.SymbolFlags);
      else if (AM.CP)
        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
                                             AM.Align, AM.Disp, AM.SymbolFlags);
      else if (AM.ES)
        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
      else if (AM.JT != -1)
        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
      else if (AM.BlockAddr)
        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
                                       true, AM.SymbolFlags);
      else
        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);

      if (AM.Segment.getNode())
        Segment = AM.Segment;
      else
        Segment = CurDAG->getRegister(0, MVT::i32);
    }

    /// getI8Imm - Return a target constant with the specified value, of type
    /// i8.
    inline SDValue getI8Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i8);
    }

    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDValue getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    /// getGlobalBaseReg - Return an SDNode that returns the value of
    /// the global base register. Output instructions required to
    /// initialize the global base register, if necessary.
    ///
    SDNode *getGlobalBaseReg();

    /// getTargetMachine - Return a reference to the TargetMachine, casted
    /// to the target-specific type.
    const X86TargetMachine &getTargetMachine() {
      return static_cast<const X86TargetMachine &>(TM);
    }

    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
    /// to the target-specific type.
    const X86InstrInfo *getInstrInfo() {
      return getTargetMachine().getInstrInfo();
    }
  };
}


bool
X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
  if (OptLevel == CodeGenOpt::None) return false;

  if (!N.hasOneUse())
    return false;

  if (N.getOpcode() != ISD::LOAD)
    return true;

  // If N is a load, do additional profitability checks.
  if (U == Root) {
    switch (U->getOpcode()) {
    default: break;
    case X86ISD::ADD:
    case X86ISD::SUB:
    case X86ISD::AND:
    case X86ISD::XOR:
    case X86ISD::OR:
    case ISD::ADD:
    case ISD::ADDC:
    case ISD::ADDE:
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR: {
      SDValue Op1 = U->getOperand(1);

      // If the other operand is a 8-bit immediate we should fold the immediate
      // instead. This reduces code size.
      // e.g.
      // movl 4(%esp), %eax
      // addl $4, %eax
      // vs.
      // movl $4, %eax
      // addl 4(%esp), %eax
      // The former is 2 bytes shorter. In case where the increment is 1, then
      // the saving can be 4 bytes (by using incl %eax).
      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
        if (Imm->getAPIntValue().isSignedIntN(8))
          return false;

      // If the other operand is a TLS address, we should fold it instead.
      // This produces
      // movl    %gs:0, %eax
      // leal    i@NTPOFF(%eax), %eax
      // instead of
      // movl    $i@NTPOFF, %eax
      // addl    %gs:0, %eax
      // if the block also has an access to a second TLS address this will save
      // a load.
      // FIXME: This is probably also true for non TLS addresses.
      if (Op1.getOpcode() == X86ISD::Wrapper) {
        SDValue Val = Op1.getOperand(0);
        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
          return false;
      }
    }
    }
  }

  return true;
}

/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
/// load's chain operand and move load below the call's chain operand.
static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
                                  SDValue Call, SDValue OrigChain) {
  SmallVector<SDValue, 8> Ops;
  SDValue Chain = OrigChain.getOperand(0);
  if (Chain.getNode() == Load.getNode())
    Ops.push_back(Load.getOperand(0));
  else {
    assert(Chain.getOpcode() == ISD::TokenFactor &&
           "Unexpected chain operand");
    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
      if (Chain.getOperand(i).getNode() == Load.getNode())
        Ops.push_back(Load.getOperand(0));
      else
        Ops.push_back(Chain.getOperand(i));
    SDValue NewChain =
      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
                      MVT::Other, &Ops[0], Ops.size());
    Ops.clear();
    Ops.push_back(NewChain);
  }
  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
    Ops.push_back(OrigChain.getOperand(i));
  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
                             Load.getOperand(1), Load.getOperand(2));
  Ops.clear();
  Ops.push_back(SDValue(Load.getNode(), 1));
  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
    Ops.push_back(Call.getOperand(i));
  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
}

/// isCalleeLoad - Return true if call address is a load and it can be
/// moved below CALLSEQ_START and the chains leading up to the call.
/// Return the CALLSEQ_START by reference as a second output.
/// In the case of a tail call, there isn't a callseq node between the call
/// chain and the load.
static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
    return false;
  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
  if (!LD ||
      LD->isVolatile() ||
      LD->getAddressingMode() != ISD::UNINDEXED ||
      LD->getExtensionType() != ISD::NON_EXTLOAD)
    return false;

  // Now let's find the callseq_start.
  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
    if (!Chain.hasOneUse())
      return false;
    Chain = Chain.getOperand(0);
  }

  if (!Chain.getNumOperands())
    return false;
  if (Chain.getOperand(0).getNode() == Callee.getNode())
    return true;
  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
      Callee.getValue(1).hasOneUse())
    return true;
  return false;
}

void X86DAGToDAGISel::PreprocessISelDAG() {
  // OptForSize is used in pattern predicates that isel is matching.
  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
  
  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
       E = CurDAG->allnodes_end(); I != E; ) {
    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.

    if (OptLevel != CodeGenOpt::None &&
        (N->getOpcode() == X86ISD::CALL ||
         N->getOpcode() == X86ISD::TC_RETURN)) {
      /// Also try moving call address load from outside callseq_start to just
      /// before the call to allow it to be folded.
      ///
      ///     [Load chain]
      ///         ^
      ///         |
      ///       [Load]
      ///       ^    ^
      ///       |    |
      ///      /      \--
      ///     /          |
      ///[CALLSEQ_START] |
      ///     ^          |
      ///     |          |
      /// [LOAD/C2Reg]   |
      ///     |          |
      ///      \        /
      ///       \      /
      ///       [CALL]
      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
      SDValue Chain = N->getOperand(0);
      SDValue Load  = N->getOperand(1);
      if (!isCalleeLoad(Load, Chain, HasCallSeq))
        continue;
      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
      ++NumLoadMoved;
      continue;
    }
    
    // Lower fpround and fpextend nodes that target the FP stack to be store and
    // load to the stack.  This is a gross hack.  We would like to simply mark
    // these as being illegal, but when we do that, legalize produces these when
    // it expands calls, then expands these in the same legalize pass.  We would
    // like dag combine to be able to hack on these between the call expansion
    // and the node legalization.  As such this pass basically does "really
    // late" legalization of these inline with the X86 isel pass.
    // FIXME: This should only happen when not compiled with -O0.
    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
      continue;
    
    EVT SrcVT = N->getOperand(0).getValueType();
    EVT DstVT = N->getValueType(0);

    // If any of the sources are vectors, no fp stack involved.
    if (SrcVT.isVector() || DstVT.isVector())
      continue;

    // If the source and destination are SSE registers, then this is a legal
    // conversion that should not be lowered.
    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
    if (SrcIsSSE && DstIsSSE)
      continue;

    if (!SrcIsSSE && !DstIsSSE) {
      // If this is an FPStack extension, it is a noop.
      if (N->getOpcode() == ISD::FP_EXTEND)
        continue;
      // If this is a value-preserving FPStack truncation, it is a noop.
      if (N->getConstantOperandVal(1))
        continue;
    }
   
    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
    // FPStack has extload and truncstore.  SSE can fold direct loads into other
    // operations.  Based on this, decide what we want to do.
    EVT MemVT;
    if (N->getOpcode() == ISD::FP_ROUND)
      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
    else
      MemVT = SrcIsSSE ? SrcVT : DstVT;
    
    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
    DebugLoc dl = N->getDebugLoc();
    
    // FIXME: optimize the case where the src/dest is a load or store?
    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
                                          N->getOperand(0),
                                          MemTmp, MachinePointerInfo(), MemVT,
                                          false, false, 0);
    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
                                        MachinePointerInfo(),
                                        MemVT, false, false, 0);

    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
    // extload we created.  This will cause general havok on the dag because
    // anything below the conversion could be folded into other existing nodes.
    // To avoid invalidating 'I', back it up to the convert node.
    --I;
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
    
    // Now that we did that, the node is dead.  Increment the iterator to the
    // next node to process, then delete N.
    ++I;
    CurDAG->DeleteNode(N);
  }  
}


/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
/// the main function.
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
                                             MachineFrameInfo *MFI) {
  const TargetInstrInfo *TII = TM.getInstrInfo();
  if (Subtarget->isTargetCygMing()) {
    unsigned CallOp =
      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
    BuildMI(BB, DebugLoc(),
            TII->get(CallOp)).addExternalSymbol("__main");
  }
}

void X86DAGToDAGISel::EmitFunctionEntryCode() {
  // If this is main, emit special code for main.
  if (const Function *Fn = MF->getFunction())
    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
}

static bool isDispSafeForFrameIndex(int64_t Val) {
  // On 64-bit platforms, we can run into an issue where a frame index
  // includes a displacement that, when added to the explicit displacement,
  // will overflow the displacement field. Assuming that the frame index
  // displacement fits into a 31-bit integer  (which is only slightly more
  // aggressive than the current fundamental assumption that it fits into
  // a 32-bit integer), a 31-bit disp should always be safe.
  return isInt<31>(Val);
}

bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
                                            X86ISelAddressMode &AM) {
  int64_t Val = AM.Disp + Offset;
  CodeModel::Model M = TM.getCodeModel();
  if (Subtarget->is64Bit()) {
    if (!X86::isOffsetSuitableForCodeModel(Val, M,
                                           AM.hasSymbolicDisplacement()))
      return true;
    // In addition to the checks required for a register base, check that
    // we do not try to use an unsafe Disp with a frame index.
    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
        !isDispSafeForFrameIndex(Val))
      return true;
  }
  AM.Disp = Val;
  return false;

}

bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
  SDValue Address = N->getOperand(1);
  
  // load gs:0 -> GS segment register.
  // load fs:0 -> FS segment register.
  //
  // This optimization is valid because the GNU TLS model defines that
  // gs:0 (or fs:0 on X86-64) contains its own address.
  // For more information see http://people.redhat.com/drepper/tls.pdf
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
        Subtarget->isTargetELF())
      switch (N->getPointerInfo().getAddrSpace()) {
      case 256:
        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
        return false;
      case 257:
        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
        return false;
      }
  
  return true;
}

/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
/// into an addressing mode.  These wrap things that will resolve down into a
/// symbol reference.  If no match is possible, this returns true, otherwise it
/// returns false.
bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
  // If the addressing mode already has a symbol as the displacement, we can
  // never match another symbol.
  if (AM.hasSymbolicDisplacement())
    return true;

  SDValue N0 = N.getOperand(0);
  CodeModel::Model M = TM.getCodeModel();

  // Handle X86-64 rip-relative addresses.  We check this before checking direct
  // folding because RIP is preferable to non-RIP accesses.
  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
      // they cannot be folded into immediate fields.
      // FIXME: This can be improved for kernel and other models?
      (M == CodeModel::Small || M == CodeModel::Kernel)) {
    // Base and index reg must be 0 in order to use %rip as base.
    if (AM.hasBaseOrIndexReg())
      return true;
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
      X86ISelAddressMode Backup = AM;
      AM.GV = G->getGlobal();
      AM.SymbolFlags = G->getTargetFlags();
      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
        AM = Backup;
        return true;
      }
    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
      X86ISelAddressMode Backup = AM;
      AM.CP = CP->getConstVal();
      AM.Align = CP->getAlignment();
      AM.SymbolFlags = CP->getTargetFlags();
      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
        AM = Backup;
        return true;
      }
    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
      AM.ES = S->getSymbol();
      AM.SymbolFlags = S->getTargetFlags();
    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
      AM.JT = J->getIndex();
      AM.SymbolFlags = J->getTargetFlags();
    } else {
      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    }

    if (N.getOpcode() == X86ISD::WrapperRIP)
      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
    return false;
  }

  // Handle the case when globals fit in our immediate field: This is true for
  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
  // mode, this only applies to a non-RIP-relative computation.
  if (!Subtarget->is64Bit() ||
      M == CodeModel::Small || M == CodeModel::Kernel) {
    assert(N.getOpcode() != X86ISD::WrapperRIP &&
           "RIP-relative addressing already handled");
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
      AM.GV = G->getGlobal();
      AM.Disp += G->getOffset();
      AM.SymbolFlags = G->getTargetFlags();
    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
      AM.CP = CP->getConstVal();
      AM.Align = CP->getAlignment();
      AM.Disp += CP->getOffset();
      AM.SymbolFlags = CP->getTargetFlags();
    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
      AM.ES = S->getSymbol();
      AM.SymbolFlags = S->getTargetFlags();
    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
      AM.JT = J->getIndex();
      AM.SymbolFlags = J->getTargetFlags();
    } else {
      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    }
    return false;
  }

  return true;
}

/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done.  This just pattern matches for the
/// addressing mode.
bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
  if (MatchAddressRecursively(N, AM, 0))
    return true;

  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
  // a smaller encoding and avoids a scaled-index.
  if (AM.Scale == 2 &&
      AM.BaseType == X86ISelAddressMode::RegBase &&
      AM.Base_Reg.getNode() == 0) {
    AM.Base_Reg = AM.IndexReg;
    AM.Scale = 1;
  }

  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
  // because it has a smaller encoding.
  // TODO: Which other code models can use this?
  if (TM.getCodeModel() == CodeModel::Small &&
      Subtarget->is64Bit() &&
      AM.Scale == 1 &&
      AM.BaseType == X86ISelAddressMode::RegBase &&
      AM.Base_Reg.getNode() == 0 &&
      AM.IndexReg.getNode() == 0 &&
      AM.SymbolFlags == X86II::MO_NO_FLAG &&
      AM.hasSymbolicDisplacement())
    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);

  return false;
}

// Insert a node into the DAG at least before the Pos node's position. This
// will reposition the node as needed, and will assign it a node ID that is <=
// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
// IDs! The selection DAG must no longer depend on their uniqueness when this
// is used.
static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
  if (N.getNode()->getNodeId() == -1 ||
      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
    DAG.RepositionNode(Pos.getNode(), N.getNode());
    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
  }
}

// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
// allows us to convert the shift and and into an h-register extract and
// a scaled index. Returns false if the simplification is performed.
static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
                                      uint64_t Mask,
                                      SDValue Shift, SDValue X,
                                      X86ISelAddressMode &AM) {
  if (Shift.getOpcode() != ISD::SRL ||
      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
      !Shift.hasOneUse())
    return true;

  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
  if (ScaleLog <= 0 || ScaleLog >= 4 ||
      Mask != (0xffu << ScaleLog))
    return true;

  EVT VT = N.getValueType();
  DebugLoc DL = N.getDebugLoc();
  SDValue Eight = DAG.getConstant(8, MVT::i8);
  SDValue NewMask = DAG.getConstant(0xff, VT);
  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);

  // Insert the new nodes into the topological ordering. We must do this in
  // a valid topological ordering as nothing is going to go back and re-sort
  // these nodes. We continually insert before 'N' in sequence as this is
  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
  // hierarchy left to express.
  InsertDAGNode(DAG, N, Eight);
  InsertDAGNode(DAG, N, Srl);
  InsertDAGNode(DAG, N, NewMask);
  InsertDAGNode(DAG, N, And);
  InsertDAGNode(DAG, N, ShlCount);
  InsertDAGNode(DAG, N, Shl);
  DAG.ReplaceAllUsesWith(N, Shl);
  AM.IndexReg = And;
  AM.Scale = (1 << ScaleLog);
  return false;
}

// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
// allows us to fold the shift into this addressing mode. Returns false if the
// transform succeeded.
static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
                                        uint64_t Mask,
                                        SDValue Shift, SDValue X,
                                        X86ISelAddressMode &AM) {
  if (Shift.getOpcode() != ISD::SHL ||
      !isa<ConstantSDNode>(Shift.getOperand(1)))
    return true;

  // Not likely to be profitable if either the AND or SHIFT node has more
  // than one use (unless all uses are for address computation). Besides,
  // isel mechanism requires their node ids to be reused.
  if (!N.hasOneUse() || !Shift.hasOneUse())
    return true;

  // Verify that the shift amount is something we can fold.
  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
    return true;

  EVT VT = N.getValueType();
  DebugLoc DL = N.getDebugLoc();
  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));

  // Insert the new nodes into the topological ordering. We must do this in
  // a valid topological ordering as nothing is going to go back and re-sort
  // these nodes. We continually insert before 'N' in sequence as this is
  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
  // hierarchy left to express.
  InsertDAGNode(DAG, N, NewMask);
  InsertDAGNode(DAG, N, NewAnd);
  InsertDAGNode(DAG, N, NewShift);
  DAG.ReplaceAllUsesWith(N, NewShift);

  AM.Scale = 1 << ShiftAmt;
  AM.IndexReg = NewAnd;
  return false;
}

// Implement some heroics to detect shifts of masked values where the mask can
// be replaced by extending the shift and undoing that in the addressing mode
// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
// the addressing mode. This results in code such as:
//
//   int f(short *y, int *lookup_table) {
//     ...
//     return *y + lookup_table[*y >> 11];
//   }
//
// Turning into:
//   movzwl (%rdi), %eax
//   movl %eax, %ecx
//   shrl $11, %ecx
//   addl (%rsi,%rcx,4), %eax
//
// Instead of:
//   movzwl (%rdi), %eax
//   movl %eax, %ecx
//   shrl $9, %ecx
//   andl $124, %rcx
//   addl (%rsi,%rcx), %eax
//
// Note that this function assumes the mask is provided as a mask *after* the
// value is shifted. The input chain may or may not match that, but computing
// such a mask is trivial.
static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
                                    uint64_t Mask,
                                    SDValue Shift, SDValue X,
                                    X86ISelAddressMode &AM) {
  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
      !isa<ConstantSDNode>(Shift.getOperand(1)))
    return true;

  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
  unsigned MaskLZ = CountLeadingZeros_64(Mask);
  unsigned MaskTZ = CountTrailingZeros_64(Mask);

  // The amount of shift we're trying to fit into the addressing mode is taken
  // from the trailing zeros of the mask.
  unsigned AMShiftAmt = MaskTZ;

  // There is nothing we can do here unless the mask is removing some bits.
  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;

  // We also need to ensure that mask is a continuous run of bits.
  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;

  // Scale the leading zero count down based on the actual size of the value.
  // Also scale it down based on the size of the shift.
  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;

  // The final check is to ensure that any masked out high bits of X are
  // already known to be zero. Otherwise, the mask has a semantic impact
  // other than masking out a couple of low bits. Unfortunately, because of
  // the mask, zero extensions will be removed from operands in some cases.
  // This code works extra hard to look through extensions because we can
  // replace them with zero extensions cheaply if necessary.
  bool ReplacingAnyExtend = false;
  if (X.getOpcode() == ISD::ANY_EXTEND) {
    unsigned ExtendBits =
      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
    // Assume that we'll replace the any-extend with a zero-extend, and
    // narrow the search to the extended value.
    X = X.getOperand(0);
    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
    ReplacingAnyExtend = true;
  }
  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
                                               MaskLZ);
  APInt KnownZero, KnownOne;
  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
  if (MaskedHighBits != KnownZero) return true;

  // We've identified a pattern that can be transformed into a single shift
  // and an addressing mode. Make it so.
  EVT VT = N.getValueType();
  if (ReplacingAnyExtend) {
    assert(X.getValueType() != VT);
    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
    InsertDAGNode(DAG, N, NewX);
    X = NewX;
  }
  DebugLoc DL = N.getDebugLoc();
  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);

  // Insert the new nodes into the topological ordering. We must do this in
  // a valid topological ordering as nothing is going to go back and re-sort
  // these nodes. We continually insert before 'N' in sequence as this is
  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
  // hierarchy left to express.
  InsertDAGNode(DAG, N, NewSRLAmt);
  InsertDAGNode(DAG, N, NewSRL);
  InsertDAGNode(DAG, N, NewSHLAmt);
  InsertDAGNode(DAG, N, NewSHL);
  DAG.ReplaceAllUsesWith(N, NewSHL);

  AM.Scale = 1 << AMShiftAmt;
  AM.IndexReg = NewSRL;
  return false;
}

bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
                                              unsigned Depth) {
  DebugLoc dl = N.getDebugLoc();
  DEBUG({
      dbgs() << "MatchAddress: ";
      AM.dump();
    });
  // Limit recursion.
  if (Depth > 5)
    return MatchAddressBase(N, AM);

  // If this is already a %rip relative address, we can only merge immediates
  // into it.  Instead of handling this in every case, we handle it here.
  // RIP relative addressing: %rip + 32-bit displacement!
  if (AM.isRIPRelative()) {
    // FIXME: JumpTable and ExternalSymbol address currently don't like
    // displacements.  It isn't very important, but this should be fixed for
    // consistency.
    if (!AM.ES && AM.JT != -1) return true;

    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
        return false;
    return true;
  }

  switch (N.getOpcode()) {
  default: break;
  case ISD::Constant: {
    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    if (!FoldOffsetIntoAddress(Val, AM))
      return false;
    break;
  }

  case X86ISD::Wrapper:
  case X86ISD::WrapperRIP:
    if (!MatchWrapper(N, AM))
      return false;
    break;

  case ISD::LOAD:
    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
      return false;
    break;

  case ISD::FrameIndex:
    if (AM.BaseType == X86ISelAddressMode::RegBase &&
        AM.Base_Reg.getNode() == 0 &&
        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
      return false;
    }
    break;

  case ISD::SHL:
    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
      break;
      
    if (ConstantSDNode
          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
      unsigned Val = CN->getZExtValue();
      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
      // that the base operand remains free for further matching. If
      // the base doesn't end up getting used, a post-processing step
      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
      if (Val == 1 || Val == 2 || Val == 3) {
        AM.Scale = 1 << Val;
        SDValue ShVal = N.getNode()->getOperand(0);

        // Okay, we know that we have a scale by now.  However, if the scaled
        // value is an add of something and a constant, we can fold the
        // constant into the disp field here.
        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
          AM.IndexReg = ShVal.getNode()->getOperand(0);
          ConstantSDNode *AddVal =
            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
          uint64_t Disp = AddVal->getSExtValue() << Val;
          if (!FoldOffsetIntoAddress(Disp, AM))
            return false;
        }

        AM.IndexReg = ShVal;
        return false;
      }
    break;
    }

  case ISD::SRL: {
    // Scale must not be used already.
    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;

    SDValue And = N.getOperand(0);
    if (And.getOpcode() != ISD::AND) break;
    SDValue X = And.getOperand(0);

    // We only handle up to 64-bit values here as those are what matter for
    // addressing mode optimizations.
    if (X.getValueSizeInBits() > 64) break;

    // The mask used for the transform is expected to be post-shift, but we
    // found the shift first so just apply the shift to the mask before passing
    // it down.
    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
        !isa<ConstantSDNode>(And.getOperand(1)))
      break;
    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);

    // Try to fold the mask and shift into the scale, and return false if we
    // succeed.
    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
      return false;
    break;
  }

  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI:
    // A mul_lohi where we need the low part can be folded as a plain multiply.
    if (N.getResNo() != 0) break;
    // FALL THROUGH
  case ISD::MUL:
  case X86ISD::MUL_IMM:
    // X*[3,5,9] -> X+X*[2,4,8]
    if (AM.BaseType == X86ISelAddressMode::RegBase &&
        AM.Base_Reg.getNode() == 0 &&
        AM.IndexReg.getNode() == 0) {
      if (ConstantSDNode
            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
            CN->getZExtValue() == 9) {
          AM.Scale = unsigned(CN->getZExtValue())-1;

          SDValue MulVal = N.getNode()->getOperand(0);
          SDValue Reg;

          // Okay, we know that we have a scale by now.  However, if the scaled
          // value is an add of something and a constant, we can fold the
          // constant into the disp field here.
          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
            Reg = MulVal.getNode()->getOperand(0);
            ConstantSDNode *AddVal =
              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
            if (FoldOffsetIntoAddress(Disp, AM))
              Reg = N.getNode()->getOperand(0);
          } else {
            Reg = N.getNode()->getOperand(0);
          }

          AM.IndexReg = AM.Base_Reg = Reg;
          return false;
        }
    }
    break;

  case ISD::SUB: {
    // Given A-B, if A can be completely folded into the address and
    // the index field with the index field unused, use -B as the index.
    // This is a win if a has multiple parts that can be folded into
    // the address. Also, this saves a mov if the base register has
    // other uses, since it avoids a two-address sub instruction, however
    // it costs an additional mov if the index register has other uses.

    // Add an artificial use to this node so that we can keep track of
    // it if it gets CSE'd with a different node.
    HandleSDNode Handle(N);

    // Test if the LHS of the sub can be folded.
    X86ISelAddressMode Backup = AM;
    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
      AM = Backup;
      break;
    }
    // Test if the index field is free for use.
    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
      AM = Backup;
      break;
    }

    int Cost = 0;
    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
    // If the RHS involves a register with multiple uses, this
    // transformation incurs an extra mov, due to the neg instruction
    // clobbering its operand.
    if (!RHS.getNode()->hasOneUse() ||
        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
      ++Cost;
    // If the base is a register with multiple uses, this
    // transformation may save a mov.
    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
         AM.Base_Reg.getNode() &&
         !AM.Base_Reg.getNode()->hasOneUse()) ||
        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
      --Cost;
    // If the folded LHS was interesting, this transformation saves
    // address arithmetic.
    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
        ((AM.Disp != 0) && (Backup.Disp == 0)) +
        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
      --Cost;
    // If it doesn't look like it may be an overall win, don't do it.
    if (Cost >= 0) {
      AM = Backup;
      break;
    }

    // Ok, the transformation is legal and appears profitable. Go for it.
    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
    AM.IndexReg = Neg;
    AM.Scale = 1;

    // Insert the new nodes into the topological ordering.
    InsertDAGNode(*CurDAG, N, Zero);
    InsertDAGNode(*CurDAG, N, Neg);
    return false;
  }

  case ISD::ADD: {
    // Add an artificial use to this node so that we can keep track of
    // it if it gets CSE'd with a different node.
    HandleSDNode Handle(N);

    X86ISelAddressMode Backup = AM;
    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
      return false;
    AM = Backup;
    
    // Try again after commuting the operands.
    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
      return false;
    AM = Backup;

    // If we couldn't fold both operands into the address at the same time,
    // see if we can just put each operand into a register and fold at least
    // the add.
    if (AM.BaseType == X86ISelAddressMode::RegBase &&
        !AM.Base_Reg.getNode() &&
        !AM.IndexReg.getNode()) {
      N = Handle.getValue();
      AM.Base_Reg = N.getOperand(0);
      AM.IndexReg = N.getOperand(1);
      AM.Scale = 1;
      return false;
    }
    N = Handle.getValue();
    break;
  }

  case ISD::OR:
    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
    if (CurDAG->isBaseWithConstantOffset(N)) {
      X86ISelAddressMode Backup = AM;
      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));

      // Start with the LHS as an addr mode.
      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
        return false;
      AM = Backup;
    }
    break;
      
  case ISD::AND: {
    // Perform some heroic transforms on an and of a constant-count shift
    // with a constant to enable use of the scaled offset field.

    // Scale must not be used already.
    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;

    SDValue Shift = N.getOperand(0);
    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
    SDValue X = Shift.getOperand(0);

    // We only handle up to 64-bit values here as those are what matter for
    // addressing mode optimizations.
    if (X.getValueSizeInBits() > 64) break;

    if (!isa<ConstantSDNode>(N.getOperand(1)))
      break;
    uint64_t Mask = N.getConstantOperandVal(1);

    // Try to fold the mask and shift into an extract and scale.
    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
      return false;

    // Try to fold the mask and shift directly into the scale.
    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
      return false;

    // Try to swap the mask and shift to place shifts which can be done as
    // a scale on the outside of the mask.
    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
      return false;
    break;
  }
  }

  return MatchAddressBase(N, AM);
}

/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
  // Is the base register already occupied?
  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
    // If so, check to see if the scale index register is set.
    if (AM.IndexReg.getNode() == 0) {
      AM.IndexReg = N;
      AM.Scale = 1;
      return false;
    }

    // Otherwise, we cannot select it.
    return true;
  }

  // Default, generate it as a register.
  AM.BaseType = X86ISelAddressMode::RegBase;
  AM.Base_Reg = N;
  return false;
}

/// SelectAddr - returns true if it is able pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
///
/// Parent is the parent node of the addr operand that is being matched.  It
/// is always a load, store, atomic node, or null.  It is only null when
/// checking memory operands for inline asm nodes.
bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
                                 SDValue &Scale, SDValue &Index,
                                 SDValue &Disp, SDValue &Segment) {
  X86ISelAddressMode AM;
  
  if (Parent &&
      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
      // that are not a MemSDNode, and thus don't have proper addrspace info.
      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
    unsigned AddrSpace =
      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
    // AddrSpace 256 -> GS, 257 -> FS.
    if (AddrSpace == 256)
      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
    if (AddrSpace == 257)
      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
  }
  
  if (MatchAddress(N, AM))
    return false;

  EVT VT = N.getValueType();
  if (AM.BaseType == X86ISelAddressMode::RegBase) {
    if (!AM.Base_Reg.getNode())
      AM.Base_Reg = CurDAG->getRegister(0, VT);
  }

  if (!AM.IndexReg.getNode())
    AM.IndexReg = CurDAG->getRegister(0, VT);

  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
  return true;
}

/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
/// match a load whose top elements are either undef or zeros.  The load flavor
/// is derived from the type of N, which is either v4f32 or v2f64.
///
/// We also return:
///   PatternChainNode: this is the matched node that has a chain input and
///   output.
bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
                                          SDValue N, SDValue &Base,
                                          SDValue &Scale, SDValue &Index,
                                          SDValue &Disp, SDValue &Segment,
                                          SDValue &PatternNodeWithChain) {
  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
    PatternNodeWithChain = N.getOperand(0);
    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
        PatternNodeWithChain.hasOneUse() &&
        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
        return false;
      return true;
    }
  }

  // Also handle the case where we explicitly require zeros in the top
  // elements.  This is a vector shuffle from the zero vector.
  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
      // Check to see if the top elements are all zeros (or bitcast of zeros).
      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 
      N.getOperand(0).getNode()->hasOneUse() &&
      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
      N.getOperand(0).getOperand(0).hasOneUse() &&
      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
    // Okay, this is a zero extending load.  Fold it.
    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
      return false;
    PatternNodeWithChain = SDValue(LD, 0);
    return true;
  }
  return false;
}


/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
                                    SDValue &Base, SDValue &Scale,
                                    SDValue &Index, SDValue &Disp,
                                    SDValue &Segment) {
  X86ISelAddressMode AM;

  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
  // segments.
  SDValue Copy = AM.Segment;
  SDValue T = CurDAG->getRegister(0, MVT::i32);
  AM.Segment = T;
  if (MatchAddress(N, AM))
    return false;
  assert (T == AM.Segment);
  AM.Segment = Copy;

  EVT VT = N.getValueType();
  unsigned Complexity = 0;
  if (AM.BaseType == X86ISelAddressMode::RegBase)
    if (AM.Base_Reg.getNode())
      Complexity = 1;
    else
      AM.Base_Reg = CurDAG->getRegister(0, VT);
  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
    Complexity = 4;

  if (AM.IndexReg.getNode())
    Complexity++;
  else
    AM.IndexReg = CurDAG->getRegister(0, VT);

  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
  // a simple shift.
  if (AM.Scale > 1)
    Complexity++;

  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
  // to a LEA. This is determined with some expermentation but is by no means
  // optimal (especially for code size consideration). LEA is nice because of
  // its three-address nature. Tweak the cost function again when we can run
  // convertToThreeAddress() at register allocation time.
  if (AM.hasSymbolicDisplacement()) {
    // For X86-64, we should always use lea to materialize RIP relative
    // addresses.
    if (Subtarget->is64Bit())
      Complexity = 4;
    else
      Complexity += 2;
  }

  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
    Complexity++;

  // If it isn't worth using an LEA, reject it.
  if (Complexity <= 2)
    return false;
  
  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
  return true;
}

/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
                                        SDValue &Scale, SDValue &Index,
                                        SDValue &Disp, SDValue &Segment) {
  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
    
  X86ISelAddressMode AM;
  AM.GV = GA->getGlobal();
  AM.Disp += GA->getOffset();
  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
  AM.SymbolFlags = GA->getTargetFlags();

  if (N.getValueType() == MVT::i32) {
    AM.Scale = 1;
    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
  } else {
    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
  }
  
  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
  return true;
}


bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
                                  SDValue &Base, SDValue &Scale,
                                  SDValue &Index, SDValue &Disp,
                                  SDValue &Segment) {
  if (!ISD::isNON_EXTLoad(N.getNode()) ||
      !IsProfitableToFold(N, P, P) ||
      !IsLegalToFold(N, P, P, OptLevel))
    return false;
  
  return SelectAddr(N.getNode(),
                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
}

/// getGlobalBaseReg - Return an SDNode that returns the value of
/// the global base register. Output instructions required to
/// initialize the global base register, if necessary.
///
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
}

SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
  SDValue Chain = Node->getOperand(0);
  SDValue In1 = Node->getOperand(1);
  SDValue In2L = Node->getOperand(2);
  SDValue In2H = Node->getOperand(3);
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
    return NULL;
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
                                           MVT::i32, MVT::i32, MVT::Other, Ops,
                                           array_lengthof(Ops));
  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
  return ResNode;
}

// FIXME: Figure out some way to unify this with the 'or' and other code
// below.
SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
  if (Node->hasAnyUseOfValue(0))
    return 0;

  // Optimize common patterns for __sync_add_and_fetch and
  // __sync_sub_and_fetch where the result is not used. This allows us
  // to use "lock" version of add, sub, inc, dec instructions.
  // FIXME: Do not use special instructions but instead add the "lock"
  // prefix to the target node somehow. The extra information will then be
  // transferred to machine instruction and it denotes the prefix.
  SDValue Chain = Node->getOperand(0);
  SDValue Ptr = Node->getOperand(1);
  SDValue Val = Node->getOperand(2);
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
    return 0;

  bool isInc = false, isDec = false, isSub = false, isCN = false;
  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
  if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
    isCN = true;
    int64_t CNVal = CN->getSExtValue();
    if (CNVal == 1)
      isInc = true;
    else if (CNVal == -1)
      isDec = true;
    else if (CNVal >= 0)
      Val = CurDAG->getTargetConstant(CNVal, NVT);
    else {
      isSub = true;
      Val = CurDAG->getTargetConstant(-CNVal, NVT);
    }
  } else if (Val.hasOneUse() &&
             Val.getOpcode() == ISD::SUB &&
             X86::isZeroNode(Val.getOperand(0))) {
    isSub = true;
    Val = Val.getOperand(1);
  }

  DebugLoc dl = Node->getDebugLoc();
  unsigned Opc = 0;
  switch (NVT.getSimpleVT().SimpleTy) {
  default: return 0;
  case MVT::i8:
    if (isInc)
      Opc = X86::LOCK_INC8m;
    else if (isDec)
      Opc = X86::LOCK_DEC8m;
    else if (isSub) {
      if (isCN)
        Opc = X86::LOCK_SUB8mi;
      else
        Opc = X86::LOCK_SUB8mr;
    } else {
      if (isCN)
        Opc = X86::LOCK_ADD8mi;
      else
        Opc = X86::LOCK_ADD8mr;
    }
    break;
  case MVT::i16:
    if (isInc)
      Opc = X86::LOCK_INC16m;
    else if (isDec)
      Opc = X86::LOCK_DEC16m;
    else if (isSub) {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_SUB16mi8;
        else
          Opc = X86::LOCK_SUB16mi;
      } else
        Opc = X86::LOCK_SUB16mr;
    } else {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_ADD16mi8;
        else
          Opc = X86::LOCK_ADD16mi;
      } else
        Opc = X86::LOCK_ADD16mr;
    }
    break;
  case MVT::i32:
    if (isInc)
      Opc = X86::LOCK_INC32m;
    else if (isDec)
      Opc = X86::LOCK_DEC32m;
    else if (isSub) {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_SUB32mi8;
        else
          Opc = X86::LOCK_SUB32mi;
      } else
        Opc = X86::LOCK_SUB32mr;
    } else {
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_ADD32mi8;
        else
          Opc = X86::LOCK_ADD32mi;
      } else
        Opc = X86::LOCK_ADD32mr;
    }
    break;
  case MVT::i64:
    if (isInc)
      Opc = X86::LOCK_INC64m;
    else if (isDec)
      Opc = X86::LOCK_DEC64m;
    else if (isSub) {
      Opc = X86::LOCK_SUB64mr;
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_SUB64mi8;
        else if (i64immSExt32(Val.getNode()))
          Opc = X86::LOCK_SUB64mi32;
      }
    } else {
      Opc = X86::LOCK_ADD64mr;
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = X86::LOCK_ADD64mi8;
        else if (i64immSExt32(Val.getNode()))
          Opc = X86::LOCK_ADD64mi32;
      }
    }
    break;
  }

  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
                                                 dl, NVT), 0);
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
  if (isInc || isDec) {
    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
    SDValue RetVals[] = { Undef, Ret };
    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
  } else {
    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
    SDValue RetVals[] = { Undef, Ret };
    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
  }
}

enum AtomicOpc {
  OR,
  AND,
  XOR,
  AtomicOpcEnd
};

enum AtomicSz {
  ConstantI8,
  I8,
  SextConstantI16,
  ConstantI16,
  I16,
  SextConstantI32,
  ConstantI32,
  I32,
  SextConstantI64,
  ConstantI64,
  I64,
  AtomicSzEnd
};

static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
  {
    X86::LOCK_OR8mi,
    X86::LOCK_OR8mr,
    X86::LOCK_OR16mi8,
    X86::LOCK_OR16mi,
    X86::LOCK_OR16mr,
    X86::LOCK_OR32mi8,
    X86::LOCK_OR32mi,
    X86::LOCK_OR32mr,
    X86::LOCK_OR64mi8,
    X86::LOCK_OR64mi32,
    X86::LOCK_OR64mr
  },
  {
    X86::LOCK_AND8mi,
    X86::LOCK_AND8mr,
    X86::LOCK_AND16mi8,
    X86::LOCK_AND16mi,
    X86::LOCK_AND16mr,
    X86::LOCK_AND32mi8,
    X86::LOCK_AND32mi,
    X86::LOCK_AND32mr,
    X86::LOCK_AND64mi8,
    X86::LOCK_AND64mi32,
    X86::LOCK_AND64mr
  },
  {
    X86::LOCK_XOR8mi,
    X86::LOCK_XOR8mr,
    X86::LOCK_XOR16mi8,
    X86::LOCK_XOR16mi,
    X86::LOCK_XOR16mr,
    X86::LOCK_XOR32mi8,
    X86::LOCK_XOR32mi,
    X86::LOCK_XOR32mr,
    X86::LOCK_XOR64mi8,
    X86::LOCK_XOR64mi32,
    X86::LOCK_XOR64mr
  }
};

SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
  if (Node->hasAnyUseOfValue(0))
    return 0;
  
  // Optimize common patterns for __sync_or_and_fetch and similar arith
  // operations where the result is not used. This allows us to use the "lock"
  // version of the arithmetic instruction.
  // FIXME: Same as for 'add' and 'sub', try to merge those down here.
  SDValue Chain = Node->getOperand(0);
  SDValue Ptr = Node->getOperand(1);
  SDValue Val = Node->getOperand(2);
  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
    return 0;

  // Which index into the table.
  enum AtomicOpc Op;
  switch (Node->getOpcode()) {
    case ISD::ATOMIC_LOAD_OR:
      Op = OR;
      break;
    case ISD::ATOMIC_LOAD_AND:
      Op = AND;
      break;
    case ISD::ATOMIC_LOAD_XOR:
      Op = XOR;
      break;
    default:
      return 0;
  }
  
  bool isCN = false;
  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
  if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
    isCN = true;
    Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
  }
  
  unsigned Opc = 0;
  switch (NVT.getSimpleVT().SimpleTy) {
    default: return 0;
    case MVT::i8:
      if (isCN)
        Opc = AtomicOpcTbl[Op][ConstantI8];
      else
        Opc = AtomicOpcTbl[Op][I8];
      break;
    case MVT::i16:
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = AtomicOpcTbl[Op][SextConstantI16];
        else
          Opc = AtomicOpcTbl[Op][ConstantI16];
      } else
        Opc = AtomicOpcTbl[Op][I16];
      break;
    case MVT::i32:
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = AtomicOpcTbl[Op][SextConstantI32];
        else
          Opc = AtomicOpcTbl[Op][ConstantI32];
      } else
        Opc = AtomicOpcTbl[Op][I32];
      break;
    case MVT::i64:
      Opc = AtomicOpcTbl[Op][I64];
      if (isCN) {
        if (immSext8(Val.getNode()))
          Opc = AtomicOpcTbl[Op][SextConstantI64];
        else if (i64immSExt32(Val.getNode()))
          Opc = AtomicOpcTbl[Op][ConstantI64];
      }
      break;
  }
  
  assert(Opc != 0 && "Invalid arith lock transform!");

  DebugLoc dl = Node->getDebugLoc();
  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
                                                 dl, NVT), 0);
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
  SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
  SDValue RetVals[] = { Undef, Ret };
  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
}

/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
/// any uses which require the SF or OF bits to be accurate.
static bool HasNoSignedComparisonUses(SDNode *N) {
  // Examine each user of the node.
  for (SDNode::use_iterator UI = N->use_begin(),
         UE = N->use_end(); UI != UE; ++UI) {
    // Only examine CopyToReg uses.
    if (UI->getOpcode() != ISD::CopyToReg)
      return false;
    // Only examine CopyToReg uses that copy to EFLAGS.
    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
          X86::EFLAGS)
      return false;
    // Examine each user of the CopyToReg use.
    for (SDNode::use_iterator FlagUI = UI->use_begin(),
           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
      // Only examine the Flag result.
      if (FlagUI.getUse().getResNo() != 1) continue;
      // Anything unusual: assume conservatively.
      if (!FlagUI->isMachineOpcode()) return false;
      // Examine the opcode of the user.
      switch (FlagUI->getMachineOpcode()) {
      // These comparisons don't treat the most significant bit specially.
      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
      case X86::CMOVA16rr: case X86::CMOVA16rm:
      case X86::CMOVA32rr: case X86::CMOVA32rm:
      case X86::CMOVA64rr: case X86::CMOVA64rm:
      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
      case X86::CMOVB16rr: case X86::CMOVB16rm:
      case X86::CMOVB32rr: case X86::CMOVB32rm:
      case X86::CMOVB64rr: case X86::CMOVB64rm:
      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
      case X86::CMOVE16rr: case X86::CMOVE16rm:
      case X86::CMOVE32rr: case X86::CMOVE32rm:
      case X86::CMOVE64rr: case X86::CMOVE64rm:
      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
      case X86::CMOVP16rr: case X86::CMOVP16rm:
      case X86::CMOVP32rr: case X86::CMOVP32rm:
      case X86::CMOVP64rr: case X86::CMOVP64rm:
        continue;
      // Anything else: assume conservatively.
      default: return false;
      }
    }
  }
  return true;
}

/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
/// is suitable for doing the {load; increment or decrement; store} to modify
/// transformation.
static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, 
                                SDValue StoredVal, SelectionDAG *CurDAG,
                                LoadSDNode* &LoadNode, SDValue &InputChain) {

  // is the value stored the result of a DEC or INC?
  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;

  // is the stored value result 0 of the load?
  if (StoredVal.getResNo() != 0) return false;

  // are there other uses of the loaded value than the inc or dec?
  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;

  // is the store non-extending and non-indexed?
  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
    return false;

  SDValue Load = StoredVal->getOperand(0);
  // Is the stored value a non-extending and non-indexed load?
  if (!ISD::isNormalLoad(Load.getNode())) return false;

  // Return LoadNode by reference.
  LoadNode = cast<LoadSDNode>(Load);
  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
  EVT LdVT = LoadNode->getMemoryVT();    
  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && 
      LdVT != MVT::i8)
    return false;

  // Is store the only read of the loaded value?
  if (!Load.hasOneUse())
    return false;
  
  // Is the address of the store the same as the load?
  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
      LoadNode->getOffset() != StoreNode->getOffset())
    return false;

  // Check if the chain is produced by the load or is a TokenFactor with
  // the load output chain as an operand. Return InputChain by reference.
  SDValue Chain = StoreNode->getChain();

  bool ChainCheck = false;
  if (Chain == Load.getValue(1)) {
    ChainCheck = true;
    InputChain = LoadNode->getChain();
  } else if (Chain.getOpcode() == ISD::TokenFactor) {
    SmallVector<SDValue, 4> ChainOps;
    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
      SDValue Op = Chain.getOperand(i);
      if (Op == Load.getValue(1)) {
        ChainCheck = true;
        continue;
      }

      // Make sure using Op as part of the chain would not cause a cycle here.
      // In theory, we could check whether the chain node is a predecessor of
      // the load. But that can be very expensive. Instead visit the uses and
      // make sure they all have smaller node id than the load.
      int LoadId = LoadNode->getNodeId();
      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
             UE = UI->use_end(); UI != UE; ++UI) {
        if (UI.getUse().getResNo() != 0)
          continue;
        if (UI->getNodeId() > LoadId)
          return false;
      }

      ChainOps.push_back(Op);
    }

    if (ChainCheck)
      // Make a new TokenFactor with all the other input chains except
      // for the load.
      InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
                                   MVT::Other, &ChainOps[0], ChainOps.size());
  }
  if (!ChainCheck)
    return false;

  return true;
}

/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
  if (Opc == X86ISD::DEC) {
    if (LdVT == MVT::i64) return X86::DEC64m;
    if (LdVT == MVT::i32) return X86::DEC32m;
    if (LdVT == MVT::i16) return X86::DEC16m;
    if (LdVT == MVT::i8)  return X86::DEC8m;
  } else {
    assert(Opc == X86ISD::INC && "unrecognized opcode");
    if (LdVT == MVT::i64) return X86::INC64m;
    if (LdVT == MVT::i32) return X86::INC32m;
    if (LdVT == MVT::i16) return X86::INC16m;
    if (LdVT == MVT::i8)  return X86::INC8m;
  }
  llvm_unreachable("unrecognized size for LdVT");
}

/// SelectGather - Customized ISel for GATHER operations.
///
SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
  SDValue Chain = Node->getOperand(0);
  SDValue VSrc = Node->getOperand(2);
  SDValue Base = Node->getOperand(3);
  SDValue VIdx = Node->getOperand(4);
  SDValue VMask = Node->getOperand(5);
  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
  assert(Scale && "Scale should be a constant for GATHER operations");

  // Memory Operands: Base, Scale, Index, Disp, Segment
  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
                          Disp, Segment, VMask, Chain};
  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
                                           VSrc.getValueType(), MVT::Other,
                                           Ops, array_lengthof(Ops));
  return ResNode;
}

SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
  EVT NVT = Node->getValueType(0);
  unsigned Opc, MOpc;
  unsigned Opcode = Node->getOpcode();
  DebugLoc dl = Node->getDebugLoc();
  
  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');

  if (Node->isMachineOpcode()) {
    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
    return NULL;   // Already selected.
  }

  switch (Opcode) {
  default: break;
  case ISD::INTRINSIC_W_CHAIN: {
    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    switch (IntNo) {
    default: break;
    case Intrinsic::x86_avx2_gather_d_pd:
      return SelectGather(Node, X86::VGATHERDPDrm);
    case Intrinsic::x86_avx2_gather_d_pd_256:
      return SelectGather(Node, X86::VGATHERDPDYrm);
    case Intrinsic::x86_avx2_gather_q_pd:
      return SelectGather(Node, X86::VGATHERQPDrm);
    case Intrinsic::x86_avx2_gather_q_pd_256:
      return SelectGather(Node, X86::VGATHERQPDYrm);
    case Intrinsic::x86_avx2_gather_d_ps:
      return SelectGather(Node, X86::VGATHERDPSrm);
    case Intrinsic::x86_avx2_gather_d_ps_256:
      return SelectGather(Node, X86::VGATHERDPSYrm);
    case Intrinsic::x86_avx2_gather_q_ps:
      return SelectGather(Node, X86::VGATHERQPSrm);
    case Intrinsic::x86_avx2_gather_q_ps_256:
      return SelectGather(Node, X86::VGATHERQPSYrm);
    }
    break;
  }
  case X86ISD::GlobalBaseReg:
    return getGlobalBaseReg();

  case X86ISD::ATOMOR64_DAG:
    return SelectAtomic64(Node, X86::ATOMOR6432);
  case X86ISD::ATOMXOR64_DAG:
    return SelectAtomic64(Node, X86::ATOMXOR6432);
  case X86ISD::ATOMADD64_DAG:
    return SelectAtomic64(Node, X86::ATOMADD6432);
  case X86ISD::ATOMSUB64_DAG:
    return SelectAtomic64(Node, X86::ATOMSUB6432);
  case X86ISD::ATOMNAND64_DAG:
    return SelectAtomic64(Node, X86::ATOMNAND6432);
  case X86ISD::ATOMAND64_DAG:
    return SelectAtomic64(Node, X86::ATOMAND6432);
  case X86ISD::ATOMSWAP64_DAG:
    return SelectAtomic64(Node, X86::ATOMSWAP6432);

  case ISD::ATOMIC_LOAD_ADD: {
    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
    if (RetVal)
      return RetVal;
    break;
  }
  case ISD::ATOMIC_LOAD_XOR:
  case ISD::ATOMIC_LOAD_AND:
  case ISD::ATOMIC_LOAD_OR: {
    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
    if (RetVal)
      return RetVal;
    break;
  }
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR: {
    // For operations of the form (x << C1) op C2, check if we can use a smaller
    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
      break;

    // i8 is unshrinkable, i16 should be promoted to i32.
    if (NVT != MVT::i32 && NVT != MVT::i64)
      break;

    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
    if (!Cst || !ShlCst)
      break;

    int64_t Val = Cst->getSExtValue();
    uint64_t ShlVal = ShlCst->getZExtValue();

    // Make sure that we don't change the operation by removing bits.
    // This only matters for OR and XOR, AND is unaffected.
    if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
      break;

    unsigned ShlOp, Op = 0;
    EVT CstVT = NVT;

    // Check the minimum bitwidth for the new constant.
    // TODO: AND32ri is the same as AND64ri32 with zext imm.
    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
      CstVT = MVT::i8;
    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
      CstVT = MVT::i32;

    // Bail if there is no smaller encoding.
    if (NVT == CstVT)
      break;

    switch (NVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i32:
      assert(CstVT == MVT::i8);
      ShlOp = X86::SHL32ri;

      switch (Opcode) {
      case ISD::AND: Op = X86::AND32ri8; break;
      case ISD::OR:  Op =  X86::OR32ri8; break;
      case ISD::XOR: Op = X86::XOR32ri8; break;
      }
      break;
    case MVT::i64:
      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
      ShlOp = X86::SHL64ri;

      switch (Opcode) {
      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
      }
      break;
    }

    // Emit the smaller op and the shift.
    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
                                getI8Imm(ShlVal));
  }
  case X86ISD::UMUL: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);
    
    unsigned LoReg;
    switch (NVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
    }
    
    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
                                          N0, SDValue()).getValue(1);
    
    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
    SDValue Ops[] = {N1, InFlag};
    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
    
    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
    return NULL;
  }
      
  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    bool isSigned = Opcode == ISD::SMUL_LOHI;
    if (!isSigned) {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
      }
    } else {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
      }
    }

    unsigned LoReg, HiReg;
    switch (NVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
    }

    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
    // Multiply is commmutative.
    if (!foldedLoad) {
      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
      if (foldedLoad)
        std::swap(N0, N1);
    }

    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
                                          N0, SDValue()).getValue(1);

    if (foldedLoad) {
      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                        InFlag };
      SDNode *CNode =
        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
                               array_lengthof(Ops));
      InFlag = SDValue(CNode, 1);

      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
    } else {
      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
      InFlag = SDValue(CNode, 0);
    }

    // Prevent use of AH in a REX instruction by referencing AX instead.
    if (HiReg == X86::AH && Subtarget->is64Bit() &&
        !SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              X86::AX, MVT::i16, InFlag);
      InFlag = Result.getValue(2);
      // Get the low part if needed. Don't use getCopyFromReg for aliasing
      // registers.
      if (!SDValue(Node, 0).use_empty())
        ReplaceUses(SDValue(Node, 1),
          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));

      // Shift AX down 8 bits.
      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
                                              Result,
                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
      // Then truncate it down to i8.
      ReplaceUses(SDValue(Node, 1),
        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
    }
    // Copy the low half of the result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              LoReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 0), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }
    // Copy the high half of the result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              HiReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 1), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }
    
    return NULL;
  }

  case ISD::SDIVREM:
  case ISD::UDIVREM: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    bool isSigned = Opcode == ISD::SDIVREM;
    if (!isSigned) {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
      }
    } else {
      switch (NVT.getSimpleVT().SimpleTy) {
      default: llvm_unreachable("Unsupported VT!");
      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
      }
    }

    unsigned LoReg, HiReg, ClrReg;
    unsigned ClrOpcode, SExtOpcode;
    switch (NVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unsupported VT!");
    case MVT::i8:
      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
      ClrOpcode  = 0;
      SExtOpcode = X86::CBW;
      break;
    case MVT::i16:
      LoReg = X86::AX;  HiReg = X86::DX;
      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
      SExtOpcode = X86::CWD;
      break;
    case MVT::i32:
      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
      ClrOpcode  = X86::MOV32r0;
      SExtOpcode = X86::CDQ;
      break;
    case MVT::i64:
      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
      ClrOpcode  = X86::MOV64r0;
      SExtOpcode = X86::CQO;
      break;
    }

    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
    bool signBitIsZero = CurDAG->SignBitIsZero(N0);

    SDValue InFlag;
    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
      // Special case for div8, just use a move with zero extension to AX to
      // clear the upper 8 bits (AH).
      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
        Move =
          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
                                         MVT::Other, Ops,
                                         array_lengthof(Ops)), 0);
        Chain = Move.getValue(1);
        ReplaceUses(N0.getValue(1), Chain);
      } else {
        Move =
          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
        Chain = CurDAG->getEntryNode();
      }
      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
      InFlag = Chain.getValue(1);
    } else {
      InFlag =
        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
                             LoReg, N0, SDValue()).getValue(1);
      if (isSigned && !signBitIsZero) {
        // Sign extend the low part into the high part.
        InFlag =
          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
      } else {
        // Zero out the high part, effectively zero extending the input.
        SDValue ClrNode =
          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
                                      ClrNode, InFlag).getValue(1);
      }
    }

    if (foldedLoad) {
      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
                        InFlag };
      SDNode *CNode =
        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
                               array_lengthof(Ops));
      InFlag = SDValue(CNode, 1);
      // Update the chain.
      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
    } else {
      InFlag =
        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
    }

    // Prevent use of AH in a REX instruction by referencing AX instead.
    // Shift it down 8 bits.
    if (HiReg == X86::AH && Subtarget->is64Bit() &&
        !SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              X86::AX, MVT::i16, InFlag);
      InFlag = Result.getValue(2);

      // If we also need AL (the quotient), get it by extracting a subreg from
      // Result. The fast register allocator does not like multiple CopyFromReg
      // nodes using aliasing registers.
      if (!SDValue(Node, 0).use_empty())
        ReplaceUses(SDValue(Node, 0),
          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));

      // Shift AX right by 8 bits instead of using AH.
      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
                                         Result,
                                         CurDAG->getTargetConstant(8, MVT::i8)),
                       0);
      ReplaceUses(SDValue(Node, 1),
        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
    }
    // Copy the division (low) result, if it is needed.
    if (!SDValue(Node, 0).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                                LoReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 0), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }
    // Copy the remainder (high) result, if it is needed.
    if (!SDValue(Node, 1).use_empty()) {
      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
                                              HiReg, NVT, InFlag);
      InFlag = Result.getValue(2);
      ReplaceUses(SDValue(Node, 1), Result);
      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
    }
    return NULL;
  }

  case X86ISD::CMP: {
    SDValue N0 = Node->getOperand(0);
    SDValue N1 = Node->getOperand(1);

    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
    // use a smaller encoding.
    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
        HasNoSignedComparisonUses(Node))
      // Look past the truncate if CMP is the only use of it.
      N0 = N0.getOperand(0);
    if ((N0.getNode()->getOpcode() == ISD::AND ||
         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
        N0.getNode()->hasOneUse() &&
        N0.getValueType() != MVT::i8 &&
        X86::isZeroNode(N1)) {
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
      if (!C) break;

      // For example, convert "testl %eax, $8" to "testb %al, $8"
      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
          (!(C->getZExtValue() & 0x80) ||
           HasNoSignedComparisonUses(Node))) {
        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
        SDValue Reg = N0.getNode()->getOperand(0);

        // On x86-32, only the ABCD registers have 8-bit subregisters.
        if (!Subtarget->is64Bit()) {
          const TargetRegisterClass *TRC;
          switch (N0.getValueType().getSimpleVT().SimpleTy) {
          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
          default: llvm_unreachable("Unsupported TEST operand type!");
          }
          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
                                               Reg.getValueType(), Reg, RC), 0);
        }

        // Extract the l-register.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
                                                        MVT::i8, Reg);

        // Emit a testb.
        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
      }

      // For example, "testl %eax, $2048" to "testb %ah, $8".
      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
          (!(C->getZExtValue() & 0x8000) ||
           HasNoSignedComparisonUses(Node))) {
        // Shift the immediate right by 8 bits.
        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
                                                       MVT::i8);
        SDValue Reg = N0.getNode()->getOperand(0);

        // Put the value in an ABCD register.
        const TargetRegisterClass *TRC;
        switch (N0.getValueType().getSimpleVT().SimpleTy) {
        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
        default: llvm_unreachable("Unsupported TEST operand type!");
        }
        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
                                             Reg.getValueType(), Reg, RC), 0);

        // Extract the h-register.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
                                                        MVT::i8, Reg);

        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
        // target GR8_NOREX registers, so make sure the register class is
        // forced.
        return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
                                      Subreg, ShiftedImm);
      }

      // For example, "testl %eax, $32776" to "testw %ax, $32776".
      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
          N0.getValueType() != MVT::i16 &&
          (!(C->getZExtValue() & 0x8000) ||
           HasNoSignedComparisonUses(Node))) {
        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
        SDValue Reg = N0.getNode()->getOperand(0);

        // Extract the 16-bit subregister.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
                                                        MVT::i16, Reg);

        // Emit a testw.
        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
      }

      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
          N0.getValueType() == MVT::i64 &&
          (!(C->getZExtValue() & 0x80000000) ||
           HasNoSignedComparisonUses(Node))) {
        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
        SDValue Reg = N0.getNode()->getOperand(0);

        // Extract the 32-bit subregister.
        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
                                                        MVT::i32, Reg);

        // Emit a testl.
        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
      }
    }
    break;
  }
  case ISD::STORE: {
    // Change a chain of {load; incr or dec; store} of the same value into
    // a simple increment or decrement through memory of that value, if the
    // uses of the modified value and its address are suitable.
    // The DEC64m tablegen pattern is currently not able to match the case where
    // the EFLAGS on the original DEC are used. (This also applies to 
    // {INC,DEC}X{64,32,16,8}.)
    // We'll need to improve tablegen to allow flags to be transferred from a
    // node in the pattern to the result node.  probably with a new keyword
    // for example, we have this
    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
    //   (implicit EFLAGS)]>;
    // but maybe need something like this
    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
    //   (transferrable EFLAGS)]>;

    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
    SDValue StoredVal = StoreNode->getOperand(1);
    unsigned Opc = StoredVal->getOpcode();

    LoadSDNode *LoadNode = 0;
    SDValue InputChain;
    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
                             LoadNode, InputChain))
      break;

    SDValue Base, Scale, Index, Disp, Segment;
    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
                    Base, Scale, Index, Disp, Segment))
      break;

    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
    MemOp[0] = StoreNode->getMemOperand();
    MemOp[1] = LoadNode->getMemOperand();
    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
    EVT LdVT = LoadNode->getMemoryVT();    
    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
                                                   Node->getDebugLoc(),
                                                   MVT::i32, MVT::Other, Ops,
                                                   array_lengthof(Ops));
    Result->setMemRefs(MemOp, MemOp + 2);

    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));

    return Result;
  }
  }

  SDNode *ResNode = SelectCode(Node);

  DEBUG(dbgs() << "=> ";
        if (ResNode == NULL || ResNode == Node)
          Node->dump(CurDAG);
        else
          ResNode->dump(CurDAG);
        dbgs() << '\n');

  return ResNode;
}

bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
                             std::vector<SDValue> &OutOps) {
  SDValue Op0, Op1, Op2, Op3, Op4;
  switch (ConstraintCode) {
  case 'o':   // offsetable        ??
  case 'v':   // not offsetable    ??
  default: return true;
  case 'm':   // memory
    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
      return true;
    break;
  }
  
  OutOps.push_back(Op0);
  OutOps.push_back(Op1);
  OutOps.push_back(Op2);
  OutOps.push_back(Op3);
  OutOps.push_back(Op4);
  return false;
}

/// createX86ISelDag - This pass converts a legalized DAG into a 
/// X86-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
                                     CodeGenOpt::Level OptLevel) {
  return new X86DAGToDAGISel(TM, OptLevel);
}