llvm.org GIT mirror llvm / 1cb383e include / llvm / LTO / LTO.h
1cb383e

Tree @1cb383e (Download .tar.gz)

LTO.h @1cb383eraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares functions and classes used to support LTO. It is intended
// to be used both by LTO classes as well as by clients (gold-plugin) that
// don't utilize the LTO code generator interfaces.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LTO_LTO_H
#define LLVM_LTO_LTO_H

#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/RemarkStreamer.h"
#include "llvm/LTO/Config.h"
#include "llvm/Linker/IRMover.h"
#include "llvm/Object/IRSymtab.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/thread.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO/FunctionImport.h"

namespace llvm {

class BitcodeModule;
class Error;
class LLVMContext;
class MemoryBufferRef;
class Module;
class Target;
class raw_pwrite_stream;

/// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
/// recorded in the index and the ThinLTO backends must apply the changes to
/// the module via thinLTOResolvePrevailingInModule.
///
/// This is done for correctness (if value exported, ensure we always
/// emit a copy), and compile-time optimization (allow drop of duplicates).
void thinLTOResolvePrevailingInIndex(
    ModuleSummaryIndex &Index,
    function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
        isPrevailing,
    function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
        recordNewLinkage,
    const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);

/// Update the linkages in the given \p Index to mark exported values
/// as external and non-exported values as internal. The ThinLTO backends
/// must apply the changes to the Module via thinLTOInternalizeModule.
void thinLTOInternalizeAndPromoteInIndex(
    ModuleSummaryIndex &Index,
    function_ref<bool(StringRef, GlobalValue::GUID)> isExported);

/// Computes a unique hash for the Module considering the current list of
/// export/import and other global analysis results.
/// The hash is produced in \p Key.
void computeLTOCacheKey(
    SmallString<40> &Key, const lto::Config &Conf,
    const ModuleSummaryIndex &Index, StringRef ModuleID,
    const FunctionImporter::ImportMapTy &ImportList,
    const FunctionImporter::ExportSetTy &ExportList,
    const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
    const GVSummaryMapTy &DefinedGlobals,
    const std::set<GlobalValue::GUID> &CfiFunctionDefs = {},
    const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});

namespace lto {

/// Given the original \p Path to an output file, replace any path
/// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
/// resulting directory if it does not yet exist.
std::string getThinLTOOutputFile(const std::string &Path,
                                 const std::string &OldPrefix,
                                 const std::string &NewPrefix);

/// Setup optimization remarks.
Expected<std::unique_ptr<ToolOutputFile>>
setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename,
                         StringRef RemarksPasses, StringRef RemarksFormat,
                         bool RemarksWithHotness, int Count = -1);

/// Setups the output file for saving statistics.
Expected<std::unique_ptr<ToolOutputFile>>
setupStatsFile(StringRef StatsFilename);

class LTO;
struct SymbolResolution;
class ThinBackendProc;

/// An input file. This is a symbol table wrapper that only exposes the
/// information that an LTO client should need in order to do symbol resolution.
class InputFile {
public:
  class Symbol;

private:
  // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
  friend LTO;
  InputFile() = default;

  std::vector<BitcodeModule> Mods;
  SmallVector<char, 0> Strtab;
  std::vector<Symbol> Symbols;

  // [begin, end) for each module
  std::vector<std::pair<size_t, size_t>> ModuleSymIndices;

  StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
  std::vector<StringRef> DependentLibraries;
  std::vector<StringRef> ComdatTable;

public:
  ~InputFile();

  /// Create an InputFile.
  static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);

  /// The purpose of this class is to only expose the symbol information that an
  /// LTO client should need in order to do symbol resolution.
  class Symbol : irsymtab::Symbol {
    friend LTO;

  public:
    Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}

    using irsymtab::Symbol::isUndefined;
    using irsymtab::Symbol::isCommon;
    using irsymtab::Symbol::isWeak;
    using irsymtab::Symbol::isIndirect;
    using irsymtab::Symbol::getName;
    using irsymtab::Symbol::getIRName;
    using irsymtab::Symbol::getVisibility;
    using irsymtab::Symbol::canBeOmittedFromSymbolTable;
    using irsymtab::Symbol::isTLS;
    using irsymtab::Symbol::getComdatIndex;
    using irsymtab::Symbol::getCommonSize;
    using irsymtab::Symbol::getCommonAlignment;
    using irsymtab::Symbol::getCOFFWeakExternalFallback;
    using irsymtab::Symbol::getSectionName;
    using irsymtab::Symbol::isExecutable;
    using irsymtab::Symbol::isUsed;
  };

  /// A range over the symbols in this InputFile.
  ArrayRef<Symbol> symbols() const { return Symbols; }

  /// Returns linker options specified in the input file.
  StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }

  /// Returns dependent library specifiers from the input file.
  ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; }

  /// Returns the path to the InputFile.
  StringRef getName() const;

  /// Returns the input file's target triple.
  StringRef getTargetTriple() const { return TargetTriple; }

  /// Returns the source file path specified at compile time.
  StringRef getSourceFileName() const { return SourceFileName; }

  // Returns a table with all the comdats used by this file.
  ArrayRef<StringRef> getComdatTable() const { return ComdatTable; }

  // Returns the only BitcodeModule from InputFile.
  BitcodeModule &getSingleBitcodeModule();

private:
  ArrayRef<Symbol> module_symbols(unsigned I) const {
    const auto &Indices = ModuleSymIndices[I];
    return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
  }
};

/// This class wraps an output stream for a native object. Most clients should
/// just be able to return an instance of this base class from the stream
/// callback, but if a client needs to perform some action after the stream is
/// written to, that can be done by deriving from this class and overriding the
/// destructor.
class NativeObjectStream {
public:
  NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {}
  std::unique_ptr<raw_pwrite_stream> OS;
  virtual ~NativeObjectStream() = default;
};

/// This type defines the callback to add a native object that is generated on
/// the fly.
///
/// Stream callbacks must be thread safe.
using AddStreamFn =
    std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>;

/// This is the type of a native object cache. To request an item from the
/// cache, pass a unique string as the Key. For hits, the cached file will be
/// added to the link and this function will return AddStreamFn(). For misses,
/// the cache will return a stream callback which must be called at most once to
/// produce content for the stream. The native object stream produced by the
/// stream callback will add the file to the link after the stream is written
/// to.
///
/// Clients generally look like this:
///
/// if (AddStreamFn AddStream = Cache(Task, Key))
///   ProduceContent(AddStream);
using NativeObjectCache =
    std::function<AddStreamFn(unsigned Task, StringRef Key)>;

/// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
/// The details of this type definition aren't important; clients can only
/// create a ThinBackend using one of the create*ThinBackend() functions below.
using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>(
    Config &C, ModuleSummaryIndex &CombinedIndex,
    StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
    AddStreamFn AddStream, NativeObjectCache Cache)>;

/// This ThinBackend runs the individual backend jobs in-process.
ThinBackend createInProcessThinBackend(unsigned ParallelismLevel);

/// This ThinBackend writes individual module indexes to files, instead of
/// running the individual backend jobs. This backend is for distributed builds
/// where separate processes will invoke the real backends.
///
/// To find the path to write the index to, the backend checks if the path has a
/// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
/// appends ".thinlto.bc" and writes the index to that path. If
/// ShouldEmitImportsFiles is true it also writes a list of imported files to a
/// similar path with ".imports" appended instead.
/// LinkedObjectsFile is an output stream to write the list of object files for
/// the final ThinLTO linking. Can be nullptr.
/// OnWrite is callback which receives module identifier and notifies LTO user
/// that index file for the module (and optionally imports file) was created.
using IndexWriteCallback = std::function<void(const std::string &)>;
ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
                                          std::string NewPrefix,
                                          bool ShouldEmitImportsFiles,
                                          raw_fd_ostream *LinkedObjectsFile,
                                          IndexWriteCallback OnWrite);

/// This class implements a resolution-based interface to LLVM's LTO
/// functionality. It supports regular LTO, parallel LTO code generation and
/// ThinLTO. You can use it from a linker in the following way:
/// - Set hooks and code generation options (see lto::Config struct defined in
///   Config.h), and use the lto::Config object to create an lto::LTO object.
/// - Create lto::InputFile objects using lto::InputFile::create(), then use
///   the symbols() function to enumerate its symbols and compute a resolution
///   for each symbol (see SymbolResolution below).
/// - After the linker has visited each input file (and each regular object
///   file) and computed a resolution for each symbol, take each lto::InputFile
///   and pass it and an array of symbol resolutions to the add() function.
/// - Call the getMaxTasks() function to get an upper bound on the number of
///   native object files that LTO may add to the link.
/// - Call the run() function. This function will use the supplied AddStream
///   and Cache functions to add up to getMaxTasks() native object files to
///   the link.
class LTO {
  friend InputFile;

public:
  /// Create an LTO object. A default constructed LTO object has a reasonable
  /// production configuration, but you can customize it by passing arguments to
  /// this constructor.
  /// FIXME: We do currently require the DiagHandler field to be set in Conf.
  /// Until that is fixed, a Config argument is required.
  LTO(Config Conf, ThinBackend Backend = nullptr,
      unsigned ParallelCodeGenParallelismLevel = 1);
  ~LTO();

  /// Add an input file to the LTO link, using the provided symbol resolutions.
  /// The symbol resolutions must appear in the enumeration order given by
  /// InputFile::symbols().
  Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);

  /// Returns an upper bound on the number of tasks that the client may expect.
  /// This may only be called after all IR object files have been added. For a
  /// full description of tasks see LTOBackend.h.
  unsigned getMaxTasks() const;

  /// Runs the LTO pipeline. This function calls the supplied AddStream
  /// function to add native object files to the link.
  ///
  /// The Cache parameter is optional. If supplied, it will be used to cache
  /// native object files and add them to the link.
  ///
  /// The client will receive at most one callback (via either AddStream or
  /// Cache) for each task identifier.
  Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr);

private:
  Config Conf;

  struct RegularLTOState {
    RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf);
    struct CommonResolution {
      uint64_t Size = 0;
      unsigned Align = 0;
      /// Record if at least one instance of the common was marked as prevailing
      bool Prevailing = false;
    };
    std::map<std::string, CommonResolution> Commons;

    unsigned ParallelCodeGenParallelismLevel;
    LTOLLVMContext Ctx;
    std::unique_ptr<Module> CombinedModule;
    std::unique_ptr<IRMover> Mover;

    // This stores the information about a regular LTO module that we have added
    // to the link. It will either be linked immediately (for modules without
    // summaries) or after summary-based dead stripping (for modules with
    // summaries).
    struct AddedModule {
      std::unique_ptr<Module> M;
      std::vector<GlobalValue *> Keep;
    };
    std::vector<AddedModule> ModsWithSummaries;
  } RegularLTO;

  struct ThinLTOState {
    ThinLTOState(ThinBackend Backend);

    ThinBackend Backend;
    ModuleSummaryIndex CombinedIndex;
    MapVector<StringRef, BitcodeModule> ModuleMap;
    DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
  } ThinLTO;

  // The global resolution for a particular (mangled) symbol name. This is in
  // particular necessary to track whether each symbol can be internalized.
  // Because any input file may introduce a new cross-partition reference, we
  // cannot make any final internalization decisions until all input files have
  // been added and the client has called run(). During run() we apply
  // internalization decisions either directly to the module (for regular LTO)
  // or to the combined index (for ThinLTO).
  struct GlobalResolution {
    /// The unmangled name of the global.
    std::string IRName;

    /// Keep track if the symbol is visible outside of a module with a summary
    /// (i.e. in either a regular object or a regular LTO module without a
    /// summary).
    bool VisibleOutsideSummary = false;

    bool UnnamedAddr = true;

    /// True if module contains the prevailing definition.
    bool Prevailing = false;

    /// Returns true if module contains the prevailing definition and symbol is
    /// an IR symbol. For example when module-level inline asm block is used,
    /// symbol can be prevailing in module but have no IR name.
    bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }

    /// This field keeps track of the partition number of this global. The
    /// regular LTO object is partition 0, while each ThinLTO object has its own
    /// partition number from 1 onwards.
    ///
    /// Any global that is defined or used by more than one partition, or that
    /// is referenced externally, may not be internalized.
    ///
    /// Partitions generally have a one-to-one correspondence with tasks, except
    /// that we use partition 0 for all parallel LTO code generation partitions.
    /// Any partitioning of the combined LTO object is done internally by the
    /// LTO backend.
    unsigned Partition = Unknown;

    /// Special partition numbers.
    enum : unsigned {
      /// A partition number has not yet been assigned to this global.
      Unknown = -1u,

      /// This global is either used by more than one partition or has an
      /// external reference, and therefore cannot be internalized.
      External = -2u,

      /// The RegularLTO partition
      RegularLTO = 0,
    };
  };

  // Global mapping from mangled symbol names to resolutions.
  StringMap<GlobalResolution> GlobalResolutions;

  void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
                            ArrayRef<SymbolResolution> Res, unsigned Partition,
                            bool InSummary);

  // These functions take a range of symbol resolutions [ResI, ResE) and consume
  // the resolutions used by a single input module by incrementing ResI. After
  // these functions return, [ResI, ResE) will refer to the resolution range for
  // the remaining modules in the InputFile.
  Error addModule(InputFile &Input, unsigned ModI,
                  const SymbolResolution *&ResI, const SymbolResolution *ResE);

  Expected<RegularLTOState::AddedModule>
  addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
                const SymbolResolution *&ResI, const SymbolResolution *ResE);
  Error linkRegularLTO(RegularLTOState::AddedModule Mod,
                       bool LivenessFromIndex);

  Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
                   const SymbolResolution *&ResI, const SymbolResolution *ResE);

  Error runRegularLTO(AddStreamFn AddStream);
  Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
                   const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);

  Error checkPartiallySplit();

  mutable bool CalledGetMaxTasks = false;

  // Use Optional to distinguish false from not yet initialized.
  Optional<bool> EnableSplitLTOUnit;
};

/// The resolution for a symbol. The linker must provide a SymbolResolution for
/// each global symbol based on its internal resolution of that symbol.
struct SymbolResolution {
  SymbolResolution()
      : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
        LinkerRedefined(0) {}

  /// The linker has chosen this definition of the symbol.
  unsigned Prevailing : 1;

  /// The definition of this symbol is unpreemptable at runtime and is known to
  /// be in this linkage unit.
  unsigned FinalDefinitionInLinkageUnit : 1;

  /// The definition of this symbol is visible outside of the LTO unit.
  unsigned VisibleToRegularObj : 1;

  /// Linker redefined version of the symbol which appeared in -wrap or -defsym
  /// linker option.
  unsigned LinkerRedefined : 1;
};

} // namespace lto
} // namespace llvm

#endif