llvm.org GIT mirror llvm / 1c85503 lib / Transforms / Utils / SimplifyCFG.cpp
1c85503

Tree @1c85503 (Download .tar.gz)

SimplifyCFG.cpp @1c85503raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "simplifycfg"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <functional>
#include <set>
#include <map>
using namespace llvm;

STATISTIC(NumSpeculations, "Number of speculative executed instructions");

/// SafeToMergeTerminators - Return true if it is safe to merge these two
/// terminator instructions together.
///
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
  if (SI1 == SI2) return false;  // Can't merge with self!
  
  // It is not safe to merge these two switch instructions if they have a common
  // successor, and if that successor has a PHI node, and if *that* PHI node has
  // conflicting incoming values from the two switch blocks.
  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();
  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
  
  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
    if (SI1Succs.count(*I))
      for (BasicBlock::iterator BBI = (*I)->begin();
           isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) !=
            PN->getIncomingValueForBlock(SI2BB))
          return false;
      }
        
  return true;
}

/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
/// now be entries in it from the 'NewPred' block.  The values that will be
/// flowing into the PHI nodes will be the same as those coming in from
/// ExistPred, an existing predecessor of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
                                  BasicBlock *ExistPred) {
  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
  
  PHINode *PN;
  for (BasicBlock::iterator I = Succ->begin();
       (PN = dyn_cast<PHINode>(I)); ++I)
    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
}

/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
/// almost-empty BB ending in an unconditional branch to Succ, into succ.
///
/// Assumption: Succ is the single successor for BB.
///
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");

  DOUT << "Looking to fold " << BB->getNameStart() << " into " 
       << Succ->getNameStart() << "\n";
  // Shortcut, if there is only a single predecessor is must be BB and merging
  // is always safe
  if (Succ->getSinglePredecessor()) return true;

  typedef SmallPtrSet<Instruction*, 16> InstrSet;
  InstrSet BBPHIs;

  // Make a list of all phi nodes in BB
  BasicBlock::iterator BBI = BB->begin();
  while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);

  // Make a list of the predecessors of BB
  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
  BlockSet BBPreds(pred_begin(BB), pred_end(BB));

  // Use that list to make another list of common predecessors of BB and Succ
  BlockSet CommonPreds;
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
        PI != PE; ++PI)
    if (BBPreds.count(*PI))
      CommonPreds.insert(*PI);

  // Shortcut, if there are no common predecessors, merging is always safe
  if (CommonPreds.empty())
    return true;
  
  // Look at all the phi nodes in Succ, to see if they present a conflict when
  // merging these blocks
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);

    // If the incoming value from BB is again a PHINode in
    // BB which has the same incoming value for *PI as PN does, we can
    // merge the phi nodes and then the blocks can still be merged
    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    if (BBPN && BBPN->getParent() == BB) {
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
            PI != PE; PI++) {
        if (BBPN->getIncomingValueForBlock(*PI) 
              != PN->getIncomingValueForBlock(*PI)) {
          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in " 
               << Succ->getNameStart() << " is conflicting with " 
               << BBPN->getNameStart() << " with regard to common predecessor "
               << (*PI)->getNameStart() << "\n";
          return false;
        }
      }
      // Remove this phinode from the list of phis in BB, since it has been
      // handled.
      BBPHIs.erase(BBPN);
    } else {
      Value* Val = PN->getIncomingValueForBlock(BB);
      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
            PI != PE; PI++) {
        // See if the incoming value for the common predecessor is equal to the
        // one for BB, in which case this phi node will not prevent the merging
        // of the block.
        if (Val != PN->getIncomingValueForBlock(*PI)) {
          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in " 
          << Succ->getNameStart() << " is conflicting with regard to common "
          << "predecessor " << (*PI)->getNameStart() << "\n";
          return false;
        }
      }
    }
  }

  // If there are any other phi nodes in BB that don't have a phi node in Succ
  // to merge with, they must be moved to Succ completely. However, for any
  // predecessors of Succ, branches will be added to the phi node that just
  // point to itself. So, for any common predecessors, this must not cause
  // conflicts.
  for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
        I != E; I++) {
    PHINode *PN = cast<PHINode>(*I);
    for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
          PI != PE; PI++)
      if (PN->getIncomingValueForBlock(*PI) != PN) {
        DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in " 
             << BB->getNameStart() << " is conflicting with regard to common "
             << "predecessor " << (*PI)->getNameStart() << "\n";
        return false;
      }
  }

  return true;
}

/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
/// branch to Succ, and contains no instructions other than PHI nodes and the
/// branch.  If possible, eliminate BB.
static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
                                                    BasicBlock *Succ) {
  // Check to see if merging these blocks would cause conflicts for any of the
  // phi nodes in BB or Succ. If not, we can safely merge.
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
  
  DOUT << "Killing Trivial BB: \n" << *BB;
  
  if (isa<PHINode>(Succ->begin())) {
    // If there is more than one pred of succ, and there are PHI nodes in
    // the successor, then we need to add incoming edges for the PHI nodes
    //
    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    
    // Loop over all of the PHI nodes in the successor of BB.
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
      PHINode *PN = cast<PHINode>(I);
      Value *OldVal = PN->removeIncomingValue(BB, false);
      assert(OldVal && "No entry in PHI for Pred BB!");
      
      // If this incoming value is one of the PHI nodes in BB, the new entries
      // in the PHI node are the entries from the old PHI.
      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
        PHINode *OldValPN = cast<PHINode>(OldVal);
        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
          // Note that, since we are merging phi nodes and BB and Succ might
          // have common predecessors, we could end up with a phi node with
          // identical incoming branches. This will be cleaned up later (and
          // will trigger asserts if we try to clean it up now, without also
          // simplifying the corresponding conditional branch).
          PN->addIncoming(OldValPN->getIncomingValue(i),
                          OldValPN->getIncomingBlock(i));
      } else {
        // Add an incoming value for each of the new incoming values.
        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
          PN->addIncoming(OldVal, BBPreds[i]);
      }
    }
  }
  
  if (isa<PHINode>(&BB->front())) {
    SmallVector<BasicBlock*, 16>
    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
    
    // Move all PHI nodes in BB to Succ if they are alive, otherwise
    // delete them.
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
      if (PN->use_empty()) {
        // Just remove the dead phi.  This happens if Succ's PHIs were the only
        // users of the PHI nodes.
        PN->eraseFromParent();
        continue;
      }
    
      // The instruction is alive, so this means that BB must dominate all
      // predecessors of Succ (Since all uses of the PN are after its
      // definition, so in Succ or a block dominated by Succ. If a predecessor
      // of Succ would not be dominated by BB, PN would violate the def before
      // use SSA demand). Therefore, we can simply move the phi node to the
      // next block.
      Succ->getInstList().splice(Succ->begin(),
                                 BB->getInstList(), BB->begin());
      
      // We need to add new entries for the PHI node to account for
      // predecessors of Succ that the PHI node does not take into
      // account.  At this point, since we know that BB dominated succ and all
      // of its predecessors, this means that we should any newly added
      // incoming edges should use the PHI node itself as the value for these
      // edges, because they are loop back edges.
      for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
        if (OldSuccPreds[i] != BB)
          PN->addIncoming(PN, OldSuccPreds[i]);
    }
  }
    
  // Everything that jumped to BB now goes to Succ.
  BB->replaceAllUsesWith(Succ);
  if (!Succ->hasName()) Succ->takeName(BB);
  BB->eraseFromParent();              // Delete the old basic block.
  return true;
}

/// GetIfCondition - Given a basic block (BB) with two predecessors (and
/// presumably PHI nodes in it), check to see if the merge at this block is due
/// to an "if condition".  If so, return the boolean condition that determines
/// which entry into BB will be taken.  Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
///
///
static Value *GetIfCondition(BasicBlock *BB,
                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
         "Function can only handle blocks with 2 predecessors!");
  BasicBlock *Pred1 = *pred_begin(BB);
  BasicBlock *Pred2 = *++pred_begin(BB);

  // We can only handle branches.  Other control flow will be lowered to
  // branches if possible anyway.
  if (!isa<BranchInst>(Pred1->getTerminator()) ||
      !isa<BranchInst>(Pred2->getTerminator()))
    return 0;
  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());

  // Eliminate code duplication by ensuring that Pred1Br is conditional if
  // either are.
  if (Pred2Br->isConditional()) {
    // If both branches are conditional, we don't have an "if statement".  In
    // reality, we could transform this case, but since the condition will be
    // required anyway, we stand no chance of eliminating it, so the xform is
    // probably not profitable.
    if (Pred1Br->isConditional())
      return 0;

    std::swap(Pred1, Pred2);
    std::swap(Pred1Br, Pred2Br);
  }

  if (Pred1Br->isConditional()) {
    // If we found a conditional branch predecessor, make sure that it branches
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    if (Pred1Br->getSuccessor(0) == BB &&
        Pred1Br->getSuccessor(1) == Pred2) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
               Pred1Br->getSuccessor(1) == BB) {
      IfTrue = Pred2;
      IfFalse = Pred1;
    } else {
      // We know that one arm of the conditional goes to BB, so the other must
      // go somewhere unrelated, and this must not be an "if statement".
      return 0;
    }

    // The only thing we have to watch out for here is to make sure that Pred2
    // doesn't have incoming edges from other blocks.  If it does, the condition
    // doesn't dominate BB.
    if (++pred_begin(Pred2) != pred_end(Pred2))
      return 0;

    return Pred1Br->getCondition();
  }

  // Ok, if we got here, both predecessors end with an unconditional branch to
  // BB.  Don't panic!  If both blocks only have a single (identical)
  // predecessor, and THAT is a conditional branch, then we're all ok!
  if (pred_begin(Pred1) == pred_end(Pred1) ||
      ++pred_begin(Pred1) != pred_end(Pred1) ||
      pred_begin(Pred2) == pred_end(Pred2) ||
      ++pred_begin(Pred2) != pred_end(Pred2) ||
      *pred_begin(Pred1) != *pred_begin(Pred2))
    return 0;

  // Otherwise, if this is a conditional branch, then we can use it!
  BasicBlock *CommonPred = *pred_begin(Pred1);
  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
    assert(BI->isConditional() && "Two successors but not conditional?");
    if (BI->getSuccessor(0) == Pred1) {
      IfTrue = Pred1;
      IfFalse = Pred2;
    } else {
      IfTrue = Pred2;
      IfFalse = Pred1;
    }
    return BI->getCondition();
  }
  return 0;
}


/// DominatesMergePoint - If we have a merge point of an "if condition" as
/// accepted above, return true if the specified value dominates the block.  We
/// don't handle the true generality of domination here, just a special case
/// which works well enough for us.
///
/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
/// see if V (which must be an instruction) is cheap to compute and is
/// non-trapping.  If both are true, the instruction is inserted into the set
/// and true is returned.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
                                std::set<Instruction*> *AggressiveInsts) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    // Non-instructions all dominate instructions, but not all constantexprs
    // can be executed unconditionally.
    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
      if (C->canTrap())
        return false;
    return true;
  }
  BasicBlock *PBB = I->getParent();

  // We don't want to allow weird loops that might have the "if condition" in
  // the bottom of this block.
  if (PBB == BB) return false;

  // If this instruction is defined in a block that contains an unconditional
  // branch to BB, then it must be in the 'conditional' part of the "if
  // statement".
  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
      if (!AggressiveInsts) return false;
      // Okay, it looks like the instruction IS in the "condition".  Check to
      // see if its a cheap instruction to unconditionally compute, and if it
      // only uses stuff defined outside of the condition.  If so, hoist it out.
      switch (I->getOpcode()) {
      default: return false;  // Cannot hoist this out safely.
      case Instruction::Load:
        // We can hoist loads that are non-volatile and obviously cannot trap.
        if (cast<LoadInst>(I)->isVolatile())
          return false;
        // FIXME: A computation of a constant can trap!
        if (!isa<AllocaInst>(I->getOperand(0)) &&
            !isa<Constant>(I->getOperand(0)))
          return false;

        // Finally, we have to check to make sure there are no instructions
        // before the load in its basic block, as we are going to hoist the loop
        // out to its predecessor.
        if (PBB->begin() != BasicBlock::iterator(I))
          return false;
        break;
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor:
      case Instruction::Shl:
      case Instruction::LShr:
      case Instruction::AShr:
      case Instruction::ICmp:
      case Instruction::FCmp:
        if (I->getOperand(0)->getType()->isFPOrFPVector())
          return false;  // FP arithmetic might trap.
        break;   // These are all cheap and non-trapping instructions.
      }

      // Okay, we can only really hoist these out if their operands are not
      // defined in the conditional region.
      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
        if (!DominatesMergePoint(*i, BB, 0))
          return false;
      // Okay, it's safe to do this!  Remember this instruction.
      AggressiveInsts->insert(I);
    }

  return true;
}

/// GatherConstantSetEQs - Given a potentially 'or'd together collection of
/// icmp_eq instructions that compare a value against a constant, return the
/// value being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Inst->getOpcode() == Instruction::ICmp &&
        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::Or) {
      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  }
  return 0;
}

/// GatherConstantSetNEs - Given a potentially 'and'd together collection of
/// setne instructions that compare a value against a constant, return the value
/// being compared, and stick the constant into the Values vector.
static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    if (Inst->getOpcode() == Instruction::ICmp &&
               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
        Values.push_back(C);
        return Inst->getOperand(0);
      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
        Values.push_back(C);
        return Inst->getOperand(1);
      }
    } else if (Inst->getOpcode() == Instruction::And) {
      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
          if (LHS == RHS)
            return LHS;
    }
  }
  return 0;
}

/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
/// bunch of comparisons of one value against constants, return the value and
/// the constants being compared.
static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
                                   std::vector<ConstantInt*> &Values) {
  if (Cond->getOpcode() == Instruction::Or) {
    CompVal = GatherConstantSetEQs(Cond, Values);

    // Return true to indicate that the condition is true if the CompVal is
    // equal to one of the constants.
    return true;
  } else if (Cond->getOpcode() == Instruction::And) {
    CompVal = GatherConstantSetNEs(Cond, Values);

    // Return false to indicate that the condition is false if the CompVal is
    // equal to one of the constants.
    return false;
  }
  return false;
}

static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
  Instruction* Cond = 0;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cond = dyn_cast<Instruction>(SI->getCondition());
  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isConditional())
      Cond = dyn_cast<Instruction>(BI->getCondition());
  }

  TI->eraseFromParent();
  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
}

/// isValueEqualityComparison - Return true if the specified terminator checks
/// to see if a value is equal to constant integer value.
static Value *isValueEqualityComparison(TerminatorInst *TI) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    // Do not permit merging of large switch instructions into their
    // predecessors unless there is only one predecessor.
    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
                                               pred_end(SI->getParent())) > 128)
      return 0;

    return SI->getCondition();
  }
  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    if (BI->isConditional() && BI->getCondition()->hasOneUse())
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
            isa<ConstantInt>(ICI->getOperand(1)))
          return ICI->getOperand(0);
  return 0;
}

/// GetValueEqualityComparisonCases - Given a value comparison instruction,
/// decode all of the 'cases' that it represents and return the 'default' block.
static BasicBlock *
GetValueEqualityComparisonCases(TerminatorInst *TI,
                                std::vector<std::pair<ConstantInt*,
                                                      BasicBlock*> > &Cases) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cases.reserve(SI->getNumCases());
    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
    return SI->getDefaultDest();
  }

  BranchInst *BI = cast<BranchInst>(TI);
  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
                                 BI->getSuccessor(ICI->getPredicate() ==
                                                  ICmpInst::ICMP_NE)));
  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}


/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
/// in the list that match the specified block.
static void EliminateBlockCases(BasicBlock *BB,
               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
    if (Cases[i].second == BB) {
      Cases.erase(Cases.begin()+i);
      --i; --e;
    }
}

/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
/// well.
static bool
ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;

  // Make V1 be smaller than V2.
  if (V1->size() > V2->size())
    std::swap(V1, V2);

  if (V1->size() == 0) return false;
  if (V1->size() == 1) {
    // Just scan V2.
    ConstantInt *TheVal = (*V1)[0].first;
    for (unsigned i = 0, e = V2->size(); i != e; ++i)
      if (TheVal == (*V2)[i].first)
        return true;
  }

  // Otherwise, just sort both lists and compare element by element.
  std::sort(V1->begin(), V1->end());
  std::sort(V2->begin(), V2->end());
  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
  while (i1 != e1 && i2 != e2) {
    if ((*V1)[i1].first == (*V2)[i2].first)
      return true;
    if ((*V1)[i1].first < (*V2)[i2].first)
      ++i1;
    else
      ++i2;
  }
  return false;
}

/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
/// terminator instruction and its block is known to only have a single
/// predecessor block, check to see if that predecessor is also a value
/// comparison with the same value, and if that comparison determines the
/// outcome of this comparison.  If so, simplify TI.  This does a very limited
/// form of jump threading.
static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
                                                          BasicBlock *Pred) {
  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
  if (!PredVal) return false;  // Not a value comparison in predecessor.

  Value *ThisVal = isValueEqualityComparison(TI);
  assert(ThisVal && "This isn't a value comparison!!");
  if (ThisVal != PredVal) return false;  // Different predicates.

  // Find out information about when control will move from Pred to TI's block.
  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
                                                        PredCases);
  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.

  // Find information about how control leaves this block.
  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.

  // If TI's block is the default block from Pred's comparison, potentially
  // simplify TI based on this knowledge.
  if (PredDef == TI->getParent()) {
    // If we are here, we know that the value is none of those cases listed in
    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    // can simplify TI.
    if (ValuesOverlap(PredCases, ThisCases)) {
      if (isa<BranchInst>(TI)) {
        // Okay, one of the successors of this condbr is dead.  Convert it to a
        // uncond br.
        assert(ThisCases.size() == 1 && "Branch can only have one case!");
        // Insert the new branch.
        Instruction *NI = BranchInst::Create(ThisDef, TI);

        // Remove PHI node entries for the dead edge.
        ThisCases[0].second->removePredecessor(TI->getParent());

        DOUT << "Threading pred instr: " << *Pred->getTerminator()
             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";

        EraseTerminatorInstAndDCECond(TI);
        return true;

      } else {
        SwitchInst *SI = cast<SwitchInst>(TI);
        // Okay, TI has cases that are statically dead, prune them away.
        SmallPtrSet<Constant*, 16> DeadCases;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          DeadCases.insert(PredCases[i].first);

        DOUT << "Threading pred instr: " << *Pred->getTerminator()
             << "Through successor TI: " << *TI;

        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
          if (DeadCases.count(SI->getCaseValue(i))) {
            SI->getSuccessor(i)->removePredecessor(TI->getParent());
            SI->removeCase(i);
          }

        DOUT << "Leaving: " << *TI << "\n";
        return true;
      }
    }

  } else {
    // Otherwise, TI's block must correspond to some matched value.  Find out
    // which value (or set of values) this is.
    ConstantInt *TIV = 0;
    BasicBlock *TIBB = TI->getParent();
    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
      if (PredCases[i].second == TIBB) {
        if (TIV == 0)
          TIV = PredCases[i].first;
        else
          return false;  // Cannot handle multiple values coming to this block.
      }
    assert(TIV && "No edge from pred to succ?");

    // Okay, we found the one constant that our value can be if we get into TI's
    // BB.  Find out which successor will unconditionally be branched to.
    BasicBlock *TheRealDest = 0;
    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
      if (ThisCases[i].first == TIV) {
        TheRealDest = ThisCases[i].second;
        break;
      }

    // If not handled by any explicit cases, it is handled by the default case.
    if (TheRealDest == 0) TheRealDest = ThisDef;

    // Remove PHI node entries for dead edges.
    BasicBlock *CheckEdge = TheRealDest;
    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
      if (*SI != CheckEdge)
        (*SI)->removePredecessor(TIBB);
      else
        CheckEdge = 0;

    // Insert the new branch.
    Instruction *NI = BranchInst::Create(TheRealDest, TI);

    DOUT << "Threading pred instr: " << *Pred->getTerminator()
         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";

    EraseTerminatorInstAndDCECond(TI);
    return true;
  }
  return false;
}

/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
/// equality comparison instruction (either a switch or a branch on "X == c").
/// See if any of the predecessors of the terminator block are value comparisons
/// on the same value.  If so, and if safe to do so, fold them together.
static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
  BasicBlock *BB = TI->getParent();
  Value *CV = isValueEqualityComparison(TI);  // CondVal
  assert(CV && "Not a comparison?");
  bool Changed = false;

  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
  while (!Preds.empty()) {
    BasicBlock *Pred = Preds.back();
    Preds.pop_back();

    // See if the predecessor is a comparison with the same value.
    TerminatorInst *PTI = Pred->getTerminator();
    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal

    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
      // Figure out which 'cases' to copy from SI to PSI.
      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);

      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);

      // Based on whether the default edge from PTI goes to BB or not, fill in
      // PredCases and PredDefault with the new switch cases we would like to
      // build.
      SmallVector<BasicBlock*, 8> NewSuccessors;

      if (PredDefault == BB) {
        // If this is the default destination from PTI, only the edges in TI
        // that don't occur in PTI, or that branch to BB will be activated.
        std::set<ConstantInt*> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second != BB)
            PTIHandled.insert(PredCases[i].first);
          else {
            // The default destination is BB, we don't need explicit targets.
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Reconstruct the new switch statement we will be building.
        if (PredDefault != BBDefault) {
          PredDefault->removePredecessor(Pred);
          PredDefault = BBDefault;
          NewSuccessors.push_back(BBDefault);
        }
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (!PTIHandled.count(BBCases[i].first) &&
              BBCases[i].second != BBDefault) {
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
          }

      } else {
        // If this is not the default destination from PSI, only the edges
        // in SI that occur in PSI with a destination of BB will be
        // activated.
        std::set<ConstantInt*> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].second == BB) {
            PTIHandled.insert(PredCases[i].first);
            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i; --e;
          }

        // Okay, now we know which constants were sent to BB from the
        // predecessor.  Figure out where they will all go now.
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (PTIHandled.count(BBCases[i].first)) {
            // If this is one we are capable of getting...
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].second);
            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
          }

        // If there are any constants vectored to BB that TI doesn't handle,
        // they must go to the default destination of TI.
        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
               E = PTIHandled.end(); I != E; ++I) {
          PredCases.push_back(std::make_pair(*I, BBDefault));
          NewSuccessors.push_back(BBDefault);
        }
      }

      // Okay, at this point, we know which new successor Pred will get.  Make
      // sure we update the number of entries in the PHI nodes for these
      // successors.
      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);

      // Now that the successors are updated, create the new Switch instruction.
      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
                                             PredCases.size(), PTI);
      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
        NewSI->addCase(PredCases[i].first, PredCases[i].second);

      EraseTerminatorInstAndDCECond(PTI);

      // Okay, last check.  If BB is still a successor of PSI, then we must
      // have an infinite loop case.  If so, add an infinitely looping block
      // to handle the case to preserve the behavior of the code.
      BasicBlock *InfLoopBlock = 0;
      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
        if (NewSI->getSuccessor(i) == BB) {
          if (InfLoopBlock == 0) {
            // Insert it at the end of the function, because it's either code,
            // or it won't matter if it's hot. :)
            InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
            BranchInst::Create(InfLoopBlock, InfLoopBlock);
          }
          NewSI->setSuccessor(i, InfLoopBlock);
        }

      Changed = true;
    }
  }
  return Changed;
}

/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
/// BB2, hoist any common code in the two blocks up into the branch block.  The
/// caller of this function guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI) {
  // This does very trivial matching, with limited scanning, to find identical
  // instructions in the two blocks.  In particular, we don't want to get into
  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
  // such, we currently just scan for obviously identical instructions in an
  // identical order.
  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination

  BasicBlock::iterator BB1_Itr = BB1->begin();
  BasicBlock::iterator BB2_Itr = BB2->begin();

  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
  while (isa<DbgInfoIntrinsic>(I1))
    I1 = BB1_Itr++;
  while (isa<DbgInfoIntrinsic>(I2))
    I2 = BB2_Itr++;
  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) || 
      isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
    return false;

  // If we get here, we can hoist at least one instruction.
  BasicBlock *BIParent = BI->getParent();

  do {
    // If we are hoisting the terminator instruction, don't move one (making a
    // broken BB), instead clone it, and remove BI.
    if (isa<TerminatorInst>(I1))
      goto HoistTerminator;

    // For a normal instruction, we just move one to right before the branch,
    // then replace all uses of the other with the first.  Finally, we remove
    // the now redundant second instruction.
    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
    if (!I2->use_empty())
      I2->replaceAllUsesWith(I1);
    BB2->getInstList().erase(I2);

    I1 = BB1_Itr++;
    while (isa<DbgInfoIntrinsic>(I1))
      I1 = BB1_Itr++;
    I2 = BB2_Itr++;
    while (isa<DbgInfoIntrinsic>(I2))
      I2 = BB2_Itr++;
  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));

  return true;

HoistTerminator:
  // Okay, it is safe to hoist the terminator.
  Instruction *NT = I1->clone();
  BIParent->getInstList().insert(BI, NT);
  if (NT->getType() != Type::VoidTy) {
    I1->replaceAllUsesWith(NT);
    I2->replaceAllUsesWith(NT);
    NT->takeName(I1);
  }

  // Hoisting one of the terminators from our successor is a great thing.
  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
  // nodes, so we insert select instruction to compute the final result.
  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = SI->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V != BB2V) {
        // These values do not agree.  Insert a select instruction before NT
        // that determines the right value.
        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
        if (SI == 0)
          SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
                                  BB1V->getName()+"."+BB2V->getName(), NT);
        // Make the PHI node use the select for all incoming values for BB1/BB2
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
            PN->setIncomingValue(i, SI);
      }
    }
  }

  // Update any PHI nodes in our new successors.
  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
    AddPredecessorToBlock(*SI, BIParent, BB1);

  EraseTerminatorInstAndDCECond(BI);
  return true;
}

/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
/// (for now, restricted to a single instruction that's side effect free) from
/// the BB1 into the branch block to speculatively execute it.
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
  // Only speculatively execution a single instruction (not counting the
  // terminator) for now.
  BasicBlock::iterator BBI = BB1->begin();
  ++BBI; // must have at least a terminator
  if (BBI == BB1->end()) return false; // only one inst
  ++BBI;
  if (BBI != BB1->end()) return false; // more than 2 insts.

  // Be conservative for now. FP select instruction can often be expensive.
  Value *BrCond = BI->getCondition();
  if (isa<Instruction>(BrCond) &&
      cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
    return false;

  // If BB1 is actually on the false edge of the conditional branch, remember
  // to swap the select operands later.
  bool Invert = false;
  if (BB1 != BI->getSuccessor(0)) {
    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
    Invert = true;
  }

  // Turn
  // BB:
  //     %t1 = icmp
  //     br i1 %t1, label %BB1, label %BB2
  // BB1:
  //     %t3 = add %t2, c
  //     br label BB2
  // BB2:
  // =>
  // BB:
  //     %t1 = icmp
  //     %t4 = add %t2, c
  //     %t3 = select i1 %t1, %t2, %t3
  Instruction *I = BB1->begin();
  switch (I->getOpcode()) {
  default: return false;  // Not safe / profitable to hoist.
  case Instruction::Add:
  case Instruction::Sub:
    // FP arithmetic might trap. Not worth doing for vector ops.
    if (I->getType()->isFloatingPoint() || isa<VectorType>(I->getType()))
      return false;
    break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    // Don't mess with vector operations.
    if (isa<VectorType>(I->getType()))
      return false;
    break;   // These are all cheap and non-trapping instructions.
  }
  
  // If the instruction is obviously dead, don't try to predicate it.
  if (I->use_empty()) {
    I->eraseFromParent();
    return true;
  }

  // Can we speculatively execute the instruction? And what is the value 
  // if the condition is false? Consider the phi uses, if the incoming value
  // from the "if" block are all the same V, then V is the value of the
  // select if the condition is false.
  BasicBlock *BIParent = BI->getParent();
  SmallVector<PHINode*, 4> PHIUses;
  Value *FalseV = NULL;
  
  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
       UI != E; ++UI) {
    // Ignore any user that is not a PHI node in BB2.  These can only occur in
    // unreachable blocks, because they would not be dominated by the instr.
    PHINode *PN = dyn_cast<PHINode>(UI);
    if (!PN || PN->getParent() != BB2)
      return false;
    PHIUses.push_back(PN);
    
    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
    if (!FalseV)
      FalseV = PHIV;
    else if (FalseV != PHIV)
      return false;  // Inconsistent value when condition is false.
  }
  
  assert(FalseV && "Must have at least one user, and it must be a PHI");

  // Do not hoist the instruction if any of its operands are defined but not
  // used in this BB. The transformation will prevent the operand from
  // being sunk into the use block.
  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
    Instruction *OpI = dyn_cast<Instruction>(*i);
    if (OpI && OpI->getParent() == BIParent &&
        !OpI->isUsedInBasicBlock(BIParent))
      return false;
  }

  // If we get here, we can hoist the instruction. Try to place it
  // before the icmp instruction preceeding the conditional branch.
  BasicBlock::iterator InsertPos = BI;
  if (InsertPos != BIParent->begin()) 
    --InsertPos;
  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
    SmallPtrSet<Instruction *, 4> BB1Insns;
    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); 
        BB1I != BB1E; ++BB1I) 
      BB1Insns.insert(BB1I);
    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
        UI != UE; ++UI) {
      Instruction *Use = cast<Instruction>(*UI);
      if (BB1Insns.count(Use)) {
        // If BrCond uses the instruction that place it just before
        // branch instruction.
        InsertPos = BI;
        break;
      }
    }
  } else
    InsertPos = BI;
  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), I);

  // Create a select whose true value is the speculatively executed value and
  // false value is the previously determined FalseV.
  SelectInst *SI;
  if (Invert)
    SI = SelectInst::Create(BrCond, FalseV, I,
                            FalseV->getName() + "." + I->getName(), BI);
  else
    SI = SelectInst::Create(BrCond, I, FalseV,
                            I->getName() + "." + FalseV->getName(), BI);

  // Make the PHI node use the select for all incoming values for "then" and
  // "if" blocks.
  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
    PHINode *PN = PHIUses[i];
    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
      if (PN->getIncomingBlock(j) == BB1 ||
          PN->getIncomingBlock(j) == BIParent)
        PN->setIncomingValue(j, SI);
  }

  ++NumSpeculations;
  return true;
}

/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
/// across this block.
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  unsigned Size = 0;
  
  // If this basic block contains anything other than a PHI (which controls the
  // branch) and branch itself, bail out.  FIXME: improve this in the future.
  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
    if (Size > 10) return false;  // Don't clone large BB's.
    
    // We can only support instructions that are do not define values that are
    // live outside of the current basic block.
    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
         UI != E; ++UI) {
      Instruction *U = cast<Instruction>(*UI);
      if (U->getParent() != BB || isa<PHINode>(U)) return false;
    }
    
    // Looks ok, continue checking.
  }

  return true;
}

/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
/// that is defined in the same block as the branch and if any PHI entries are
/// constants, thread edges corresponding to that entry to be branches to their
/// ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI) {
  BasicBlock *BB = BI->getParent();
  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
  // NOTE: we currently cannot transform this case if the PHI node is used
  // outside of the block.
  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
    return false;
  
  // Degenerate case of a single entry PHI.
  if (PN->getNumIncomingValues() == 1) {
    FoldSingleEntryPHINodes(PN->getParent());
    return true;    
  }

  // Now we know that this block has multiple preds and two succs.
  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
  
  // Okay, this is a simple enough basic block.  See if any phi values are
  // constants.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    ConstantInt *CB;
    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
        CB->getType() == Type::Int1Ty) {
      // Okay, we now know that all edges from PredBB should be revectored to
      // branch to RealDest.
      BasicBlock *PredBB = PN->getIncomingBlock(i);
      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
      
      if (RealDest == BB) continue;  // Skip self loops.
      
      // The dest block might have PHI nodes, other predecessors and other
      // difficult cases.  Instead of being smart about this, just insert a new
      // block that jumps to the destination block, effectively splitting
      // the edge we are about to create.
      BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
                                              RealDest->getParent(), RealDest);
      BranchInst::Create(RealDest, EdgeBB);
      PHINode *PN;
      for (BasicBlock::iterator BBI = RealDest->begin();
           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
        Value *V = PN->getIncomingValueForBlock(BB);
        PN->addIncoming(V, EdgeBB);
      }

      // BB may have instructions that are being threaded over.  Clone these
      // instructions into EdgeBB.  We know that there will be no uses of the
      // cloned instructions outside of EdgeBB.
      BasicBlock::iterator InsertPt = EdgeBB->begin();
      std::map<Value*, Value*> TranslateMap;  // Track translated values.
      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
        } else {
          // Clone the instruction.
          Instruction *N = BBI->clone();
          if (BBI->hasName()) N->setName(BBI->getName()+".c");
          
          // Update operands due to translation.
          for (User::op_iterator i = N->op_begin(), e = N->op_end();
               i != e; ++i) {
            std::map<Value*, Value*>::iterator PI =
              TranslateMap.find(*i);
            if (PI != TranslateMap.end())
              *i = PI->second;
          }
          
          // Check for trivial simplification.
          if (Constant *C = ConstantFoldInstruction(N)) {
            TranslateMap[BBI] = C;
            delete N;   // Constant folded away, don't need actual inst
          } else {
            // Insert the new instruction into its new home.
            EdgeBB->getInstList().insert(InsertPt, N);
            if (!BBI->use_empty())
              TranslateMap[BBI] = N;
          }
        }
      }

      // Loop over all of the edges from PredBB to BB, changing them to branch
      // to EdgeBB instead.
      TerminatorInst *PredBBTI = PredBB->getTerminator();
      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
        if (PredBBTI->getSuccessor(i) == BB) {
          BB->removePredecessor(PredBB);
          PredBBTI->setSuccessor(i, EdgeBB);
        }
      
      // Recurse, simplifying any other constants.
      return FoldCondBranchOnPHI(BI) | true;
    }
  }

  return false;
}

/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
/// PHI node, see if we can eliminate it.
static bool FoldTwoEntryPHINode(PHINode *PN) {
  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
  // statement", which has a very simple dominance structure.  Basically, we
  // are trying to find the condition that is being branched on, which
  // subsequently causes this merge to happen.  We really want control
  // dependence information for this check, but simplifycfg can't keep it up
  // to date, and this catches most of the cases we care about anyway.
  //
  BasicBlock *BB = PN->getParent();
  BasicBlock *IfTrue, *IfFalse;
  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
  if (!IfCond) return false;
  
  // Okay, we found that we can merge this two-entry phi node into a select.
  // Doing so would require us to fold *all* two entry phi nodes in this block.
  // At some point this becomes non-profitable (particularly if the target
  // doesn't support cmov's).  Only do this transformation if there are two or
  // fewer PHI nodes in this block.
  unsigned NumPhis = 0;
  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
    if (NumPhis > 2)
      return false;
  
  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
  
  // Loop over the PHI's seeing if we can promote them all to select
  // instructions.  While we are at it, keep track of the instructions
  // that need to be moved to the dominating block.
  std::set<Instruction*> AggressiveInsts;
  
  BasicBlock::iterator AfterPHIIt = BB->begin();
  while (isa<PHINode>(AfterPHIIt)) {
    PHINode *PN = cast<PHINode>(AfterPHIIt++);
    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
      if (PN->getIncomingValue(0) != PN)
        PN->replaceAllUsesWith(PN->getIncomingValue(0));
      else
        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
                                    &AggressiveInsts) ||
               !DominatesMergePoint(PN->getIncomingValue(1), BB,
                                    &AggressiveInsts)) {
      return false;
    }
  }
  
  // If we all PHI nodes are promotable, check to make sure that all
  // instructions in the predecessor blocks can be promoted as well.  If
  // not, we won't be able to get rid of the control flow, so it's not
  // worth promoting to select instructions.
  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
  PN = cast<PHINode>(BB->begin());
  BasicBlock *Pred = PN->getIncomingBlock(0);
  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
    IfBlock1 = Pred;
    DomBlock = *pred_begin(Pred);
    for (BasicBlock::iterator I = Pred->begin();
         !isa<TerminatorInst>(I); ++I)
      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control
        // flow, so the xform is not worth it.
        return false;
      }
  }
    
  Pred = PN->getIncomingBlock(1);
  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
    IfBlock2 = Pred;
    DomBlock = *pred_begin(Pred);
    for (BasicBlock::iterator I = Pred->begin();
         !isa<TerminatorInst>(I); ++I)
      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control
        // flow, so the xform is not worth it.
        return false;
      }
  }
      
  // If we can still promote the PHI nodes after this gauntlet of tests,
  // do all of the PHI's now.

  // Move all 'aggressive' instructions, which are defined in the
  // conditional parts of the if's up to the dominating block.
  if (IfBlock1) {
    DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                   IfBlock1->getInstList(),
                                   IfBlock1->begin(),
                                   IfBlock1->getTerminator());
  }
  if (IfBlock2) {
    DomBlock->getInstList().splice(DomBlock->getTerminator(),
                                   IfBlock2->getInstList(),
                                   IfBlock2->begin(),
                                   IfBlock2->getTerminator());
  }
  
  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
    // Change the PHI node into a select instruction.
    Value *TrueVal =
      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
    Value *FalseVal =
      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
    
    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
    PN->replaceAllUsesWith(NV);
    NV->takeName(PN);
    
    BB->getInstList().erase(PN);
  }
  return true;
}

/// isTerminatorFirstRelevantInsn - Return true if Term is very first 
/// instruction ignoring Phi nodes and dbg intrinsics.
static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
  BasicBlock::iterator BBI = Term;
  while (BBI != BB->begin()) {
    --BBI;
    if (!isa<DbgInfoIntrinsic>(BBI))
      break;
  }

  if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
    return true;
  return false;
}

/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
/// to two returning blocks, try to merge them together into one return,
/// introducing a select if the return values disagree.
static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
  assert(BI->isConditional() && "Must be a conditional branch");
  BasicBlock *TrueSucc = BI->getSuccessor(0);
  BasicBlock *FalseSucc = BI->getSuccessor(1);
  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
  
  // Check to ensure both blocks are empty (just a return) or optionally empty
  // with PHI nodes.  If there are other instructions, merging would cause extra
  // computation on one path or the other.
  if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
    return false;
  if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
    return false;

  // Okay, we found a branch that is going to two return nodes.  If
  // there is no return value for this function, just change the
  // branch into a return.
  if (FalseRet->getNumOperands() == 0) {
    TrueSucc->removePredecessor(BI->getParent());
    FalseSucc->removePredecessor(BI->getParent());
    ReturnInst::Create(0, BI);
    EraseTerminatorInstAndDCECond(BI);
    return true;
  }
    
  // Otherwise, figure out what the true and false return values are
  // so we can insert a new select instruction.
  Value *TrueValue = TrueRet->getReturnValue();
  Value *FalseValue = FalseRet->getReturnValue();
  
  // Unwrap any PHI nodes in the return blocks.
  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
    if (TVPN->getParent() == TrueSucc)
      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
    if (FVPN->getParent() == FalseSucc)
      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
  
  // In order for this transformation to be safe, we must be able to
  // unconditionally execute both operands to the return.  This is
  // normally the case, but we could have a potentially-trapping
  // constant expression that prevents this transformation from being
  // safe.
  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
    if (TCV->canTrap())
      return false;
  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
    if (FCV->canTrap())
      return false;
  
  // Okay, we collected all the mapped values and checked them for sanity, and
  // defined to really do this transformation.  First, update the CFG.
  TrueSucc->removePredecessor(BI->getParent());
  FalseSucc->removePredecessor(BI->getParent());
  
  // Insert select instructions where needed.
  Value *BrCond = BI->getCondition();
  if (TrueValue) {
    // Insert a select if the results differ.
    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
    } else if (isa<UndefValue>(TrueValue)) {
      TrueValue = FalseValue;
    } else {
      TrueValue = SelectInst::Create(BrCond, TrueValue,
                                     FalseValue, "retval", BI);
    }
  }

  Value *RI = !TrueValue ?
              ReturnInst::Create(BI) :
              ReturnInst::Create(TrueValue, BI);
      
  DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
       << "\n  " << *BI << "NewRet = " << *RI
       << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
      
  EraseTerminatorInstAndDCECond(BI);

  return true;
}

/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
/// and if a predecessor branches to us and one of our successors, fold the
/// setcc into the predecessor and use logical operations to pick the right
/// destination.
static bool FoldBranchToCommonDest(BranchInst *BI) {
  BasicBlock *BB = BI->getParent();
  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
  if (Cond == 0) return false;

  
  // Only allow this if the condition is a simple instruction that can be
  // executed unconditionally.  It must be in the same block as the branch, and
  // must be at the front of the block.
  BasicBlock::iterator FrontIt = BB->front();
  // Ignore dbg intrinsics.
  while(isa<DbgInfoIntrinsic>(FrontIt))
    ++FrontIt;
  if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
      Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
    return false;
  }
  
  // Make sure the instruction after the condition is the cond branch.
  BasicBlock::iterator CondIt = Cond; ++CondIt;
  // Ingore dbg intrinsics.
  while(isa<DbgInfoIntrinsic>(CondIt))
    ++CondIt;
  if (&*CondIt != BI) {
    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
    return false;
  }

  // Cond is known to be a compare or binary operator.  Check to make sure that
  // neither operand is a potentially-trapping constant expression.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
    if (CE->canTrap())
      return false;
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
    if (CE->canTrap())
      return false;
  
  
  // Finally, don't infinitely unroll conditional loops.
  BasicBlock *TrueDest  = BI->getSuccessor(0);
  BasicBlock *FalseDest = BI->getSuccessor(1);
  if (TrueDest == BB || FalseDest == BB)
    return false;
  
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *PredBlock = *PI;
    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
    
    // Check that we have two conditional branches.  If there is a PHI node in
    // the common successor, verify that the same value flows in from both
    // blocks.
    if (PBI == 0 || PBI->isUnconditional() ||
        !SafeToMergeTerminators(BI, PBI))
      continue;
    
    Instruction::BinaryOps Opc;
    bool InvertPredCond = false;

    if (PBI->getSuccessor(0) == TrueDest)
      Opc = Instruction::Or;
    else if (PBI->getSuccessor(1) == FalseDest)
      Opc = Instruction::And;
    else if (PBI->getSuccessor(0) == FalseDest)
      Opc = Instruction::And, InvertPredCond = true;
    else if (PBI->getSuccessor(1) == TrueDest)
      Opc = Instruction::Or, InvertPredCond = true;
    else
      continue;

    DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB;
    
    // If we need to invert the condition in the pred block to match, do so now.
    if (InvertPredCond) {
      Value *NewCond =
        BinaryOperator::CreateNot(PBI->getCondition(),
                                  PBI->getCondition()->getName()+".not", PBI);
      PBI->setCondition(NewCond);
      BasicBlock *OldTrue = PBI->getSuccessor(0);
      BasicBlock *OldFalse = PBI->getSuccessor(1);
      PBI->setSuccessor(0, OldFalse);
      PBI->setSuccessor(1, OldTrue);
    }
    
    // Clone Cond into the predecessor basic block, and or/and the
    // two conditions together.
    Instruction *New = Cond->clone();
    PredBlock->getInstList().insert(PBI, New);
    New->takeName(Cond);
    Cond->setName(New->getName()+".old");
    
    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
                                            New, "or.cond", PBI);
    PBI->setCondition(NewCond);
    if (PBI->getSuccessor(0) == BB) {
      AddPredecessorToBlock(TrueDest, PredBlock, BB);
      PBI->setSuccessor(0, TrueDest);
    }
    if (PBI->getSuccessor(1) == BB) {
      AddPredecessorToBlock(FalseDest, PredBlock, BB);
      PBI->setSuccessor(1, FalseDest);
    }
    return true;
  }
  return false;
}

/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
/// predecessor of another block, this function tries to simplify it.  We know
/// that PBI and BI are both conditional branches, and BI is in one of the
/// successor blocks of PBI - PBI branches to BI.
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
  assert(PBI->isConditional() && BI->isConditional());
  BasicBlock *BB = BI->getParent();
  
  // If this block ends with a branch instruction, and if there is a
  // predecessor that ends on a branch of the same condition, make 
  // this conditional branch redundant.
  if (PBI->getCondition() == BI->getCondition() &&
      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
    // Okay, the outcome of this conditional branch is statically
    // knowable.  If this block had a single pred, handle specially.
    if (BB->getSinglePredecessor()) {
      // Turn this into a branch on constant.
      bool CondIsTrue = PBI->getSuccessor(0) == BB;
      BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
      return true;  // Nuke the branch on constant.
    }
    
    // Otherwise, if there are multiple predecessors, insert a PHI that merges
    // in the constant and simplify the block result.  Subsequent passes of
    // simplifycfg will thread the block.
    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
      PHINode *NewPN = PHINode::Create(Type::Int1Ty,
                                       BI->getCondition()->getName() + ".pr",
                                       BB->begin());
      // Okay, we're going to insert the PHI node.  Since PBI is not the only
      // predecessor, compute the PHI'd conditional value for all of the preds.
      // Any predecessor where the condition is not computable we keep symbolic.
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
            PBI != BI && PBI->isConditional() &&
            PBI->getCondition() == BI->getCondition() &&
            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
          bool CondIsTrue = PBI->getSuccessor(0) == BB;
          NewPN->addIncoming(ConstantInt::get(Type::Int1Ty, 
                                              CondIsTrue), *PI);
        } else {
          NewPN->addIncoming(BI->getCondition(), *PI);
        }
      
      BI->setCondition(NewPN);
      return true;
    }
  }
  
  // If this is a conditional branch in an empty block, and if any
  // predecessors is a conditional branch to one of our destinations,
  // fold the conditions into logical ops and one cond br.
  BasicBlock::iterator BBI = BB->begin();
  // Ignore dbg intrinsics.
  while (isa<DbgInfoIntrinsic>(BBI))
    ++BBI;
  if (&*BBI != BI)
    return false;

  
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
    if (CE->canTrap())
      return false;
  
  int PBIOp, BIOp;
  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
    PBIOp = BIOp = 0;
  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
    PBIOp = 0, BIOp = 1;
  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
    PBIOp = 1, BIOp = 0;
  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
    PBIOp = BIOp = 1;
  else
    return false;
    
  // Check to make sure that the other destination of this branch
  // isn't BB itself.  If so, this is an infinite loop that will
  // keep getting unwound.
  if (PBI->getSuccessor(PBIOp) == BB)
    return false;
    
  // Do not perform this transformation if it would require 
  // insertion of a large number of select instructions. For targets
  // without predication/cmovs, this is a big pessimization.
  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
      
  unsigned NumPhis = 0;
  for (BasicBlock::iterator II = CommonDest->begin();
       isa<PHINode>(II); ++II, ++NumPhis)
    if (NumPhis > 2) // Disable this xform.
      return false;
    
  // Finally, if everything is ok, fold the branches to logical ops.
  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
  
  DOUT << "FOLDING BRs:" << *PBI->getParent()
       << "AND: " << *BI->getParent();
  
  
  // If OtherDest *is* BB, then BB is a basic block with a single conditional
  // branch in it, where one edge (OtherDest) goes back to itself but the other
  // exits.  We don't *know* that the program avoids the infinite loop
  // (even though that seems likely).  If we do this xform naively, we'll end up
  // recursively unpeeling the loop.  Since we know that (after the xform is
  // done) that the block *is* infinite if reached, we just make it an obviously
  // infinite loop with no cond branch.
  if (OtherDest == BB) {
    // Insert it at the end of the function, because it's either code,
    // or it won't matter if it's hot. :)
    BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
    BranchInst::Create(InfLoopBlock, InfLoopBlock);
    OtherDest = InfLoopBlock;
  }  
  
  DOUT << *PBI->getParent()->getParent();
  
  // BI may have other predecessors.  Because of this, we leave
  // it alone, but modify PBI.
  
  // Make sure we get to CommonDest on True&True directions.
  Value *PBICond = PBI->getCondition();
  if (PBIOp)
    PBICond = BinaryOperator::CreateNot(PBICond,
                                        PBICond->getName()+".not",
                                        PBI);
  Value *BICond = BI->getCondition();
  if (BIOp)
    BICond = BinaryOperator::CreateNot(BICond,
                                       BICond->getName()+".not",
                                       PBI);
  // Merge the conditions.
  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
  
  // Modify PBI to branch on the new condition to the new dests.
  PBI->setCondition(Cond);
  PBI->setSuccessor(0, CommonDest);
  PBI->setSuccessor(1, OtherDest);
  
  // OtherDest may have phi nodes.  If so, add an entry from PBI's
  // block that are identical to the entries for BI's block.
  PHINode *PN;
  for (BasicBlock::iterator II = OtherDest->begin();
       (PN = dyn_cast<PHINode>(II)); ++II) {
    Value *V = PN->getIncomingValueForBlock(BB);
    PN->addIncoming(V, PBI->getParent());
  }
  
  // We know that the CommonDest already had an edge from PBI to
  // it.  If it has PHIs though, the PHIs may have different
  // entries for BB and PBI's BB.  If so, insert a select to make
  // them agree.
  for (BasicBlock::iterator II = CommonDest->begin();
       (PN = dyn_cast<PHINode>(II)); ++II) {
    Value *BIV = PN->getIncomingValueForBlock(BB);
    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
    Value *PBIV = PN->getIncomingValue(PBBIdx);
    if (BIV != PBIV) {
      // Insert a select in PBI to pick the right value.
      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
                                     PBIV->getName()+".mux", PBI);
      PN->setIncomingValue(PBBIdx, NV);
    }
  }
  
  DOUT << "INTO: " << *PBI->getParent();
  
  DOUT << *PBI->getParent()->getParent();
  
  // This basic block is probably dead.  We know it has at least
  // one fewer predecessor.
  return true;
}


namespace {
  /// ConstantIntOrdering - This class implements a stable ordering of constant
  /// integers that does not depend on their address.  This is important for
  /// applications that sort ConstantInt's to ensure uniqueness.
  struct ConstantIntOrdering {
    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
      return LHS->getValue().ult(RHS->getValue());
    }
  };
}

/// SimplifyCFG - This function is used to do simplification of a CFG.  For
/// example, it adjusts branches to branches to eliminate the extra hop, it
/// eliminates unreachable basic blocks, and does other "peephole" optimization
/// of the CFG.  It returns true if a modification was made.
///
/// WARNING:  The entry node of a function may not be simplified.
///
bool llvm::SimplifyCFG(BasicBlock *BB) {
  bool Changed = false;
  Function *M = BB->getParent();

  assert(BB && BB->getParent() && "Block not embedded in function!");
  assert(BB->getTerminator() && "Degenerate basic block encountered!");
  assert(&BB->getParent()->getEntryBlock() != BB &&
         "Can't Simplify entry block!");

  // Remove basic blocks that have no predecessors... or that just have themself
  // as a predecessor.  These are unreachable.
  if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
    DOUT << "Removing BB: \n" << *BB;
    DeleteDeadBlock(BB);
    return true;
  }

  // Check to see if we can constant propagate this terminator instruction
  // away...
  Changed |= ConstantFoldTerminator(BB);

  // If there is a trivial two-entry PHI node in this basic block, and we can
  // eliminate it, do so now.
  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
    if (PN->getNumIncomingValues() == 2)
      Changed |= FoldTwoEntryPHINode(PN); 

  // If this is a returning block with only PHI nodes in it, fold the return
  // instruction into any unconditional branch predecessors.
  //
  // If any predecessor is a conditional branch that just selects among
  // different return values, fold the replace the branch/return with a select
  // and return.
  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
      // Find predecessors that end with branches.
      SmallVector<BasicBlock*, 8> UncondBranchPreds;
      SmallVector<BranchInst*, 8> CondBranchPreds;
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
        TerminatorInst *PTI = (*PI)->getTerminator();
        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
          if (BI->isUnconditional())
            UncondBranchPreds.push_back(*PI);
          else
            CondBranchPreds.push_back(BI);
        }
      }

      // If we found some, do the transformation!
      if (!UncondBranchPreds.empty()) {
        while (!UncondBranchPreds.empty()) {
          BasicBlock *Pred = UncondBranchPreds.back();
          DOUT << "FOLDING: " << *BB
               << "INTO UNCOND BRANCH PRED: " << *Pred;
          UncondBranchPreds.pop_back();
          Instruction *UncondBranch = Pred->getTerminator();
          // Clone the return and add it to the end of the predecessor.
          Instruction *NewRet = RI->clone();
          Pred->getInstList().push_back(NewRet);

          BasicBlock::iterator BBI = RI;
          if (BBI != BB->begin()) {
            // Move region end info into the predecessor.
            if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
              DREI->moveBefore(NewRet);
          }

          // If the return instruction returns a value, and if the value was a
          // PHI node in "BB", propagate the right value into the return.
          for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
               i != e; ++i)
            if (PHINode *PN = dyn_cast<PHINode>(*i))
              if (PN->getParent() == BB)
                *i = PN->getIncomingValueForBlock(Pred);
          
          // Update any PHI nodes in the returning block to realize that we no
          // longer branch to them.
          BB->removePredecessor(Pred);
          Pred->getInstList().erase(UncondBranch);
        }

        // If we eliminated all predecessors of the block, delete the block now.
        if (pred_begin(BB) == pred_end(BB))
          // We know there are no successors, so just nuke the block.
          M->getBasicBlockList().erase(BB);

        return true;
      }

      // Check out all of the conditional branches going to this return
      // instruction.  If any of them just select between returns, change the
      // branch itself into a select/return pair.
      while (!CondBranchPreds.empty()) {
        BranchInst *BI = CondBranchPreds.back();
        CondBranchPreds.pop_back();

        // Check to see if the non-BB successor is also a return block.
        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
            SimplifyCondBranchToTwoReturns(BI))
          return true;
      }
    }
  } else if (isa<UnwindInst>(BB->begin())) {
    // Check to see if the first instruction in this block is just an unwind.
    // If so, replace any invoke instructions which use this as an exception
    // destination with call instructions, and any unconditional branch
    // predecessor with an unwind.
    //
    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
    while (!Preds.empty()) {
      BasicBlock *Pred = Preds.back();
      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
        if (BI->isUnconditional()) {
          Pred->getInstList().pop_back();  // nuke uncond branch
          new UnwindInst(Pred);            // Use unwind.
          Changed = true;
        }
      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
        if (II->getUnwindDest() == BB) {
          // Insert a new branch instruction before the invoke, because this
          // is now a fall through...
          BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
          Pred->getInstList().remove(II);   // Take out of symbol table

          // Insert the call now...
          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
          CallInst *CI = CallInst::Create(II->getCalledValue(),
                                          Args.begin(), Args.end(),
                                          II->getName(), BI);
          CI->setCallingConv(II->getCallingConv());
          CI->setAttributes(II->getAttributes());
          // If the invoke produced a value, the Call now does instead
          II->replaceAllUsesWith(CI);
          delete II;
          Changed = true;
        }

      Preds.pop_back();
    }

    // If this block is now dead, remove it.
    if (pred_begin(BB) == pred_end(BB)) {
      // We know there are no successors, so just nuke the block.
      M->getBasicBlockList().erase(BB);
      return true;
    }

  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
    if (isValueEqualityComparison(SI)) {
      // If we only have one predecessor, and if it is a branch on this value,
      // see if that predecessor totally determines the outcome of this switch.
      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
          return SimplifyCFG(BB) || 1;

      // If the block only contains the switch, see if we can fold the block
      // away into any preds.
      BasicBlock::iterator BBI = BB->begin();
      // Ignore dbg intrinsics.
      while (isa<DbgInfoIntrinsic>(BBI))
        ++BBI;
      if (SI == &*BBI)
        if (FoldValueComparisonIntoPredecessors(SI))
          return SimplifyCFG(BB) || 1;
    }
  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    if (BI->isUnconditional()) {
      BasicBlock::iterator BBI = BB->getFirstNonPHI();

      BasicBlock *Succ = BI->getSuccessor(0);
      // Ignore dbg intrinsics.
      while (isa<DbgInfoIntrinsic>(BBI))
        ++BBI;
      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
          Succ != BB)             // Don't hurt infinite loops!
        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
          return true;
      
    } else {  // Conditional branch
      if (isValueEqualityComparison(BI)) {
        // If we only have one predecessor, and if it is a branch on this value,
        // see if that predecessor totally determines the outcome of this
        // switch.
        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
            return SimplifyCFG(BB) || 1;

        // This block must be empty, except for the setcond inst, if it exists.
        // Ignore dbg intrinsics.
        BasicBlock::iterator I = BB->begin();
        // Ignore dbg intrinsics.
        while (isa<DbgInfoIntrinsic>(I))
          ++I;
        if (&*I == BI) {
          if (FoldValueComparisonIntoPredecessors(BI))
            return SimplifyCFG(BB) | true;
        } else if (&*I == cast<Instruction>(BI->getCondition())){
          ++I;
          // Ignore dbg intrinsics.
          while (isa<DbgInfoIntrinsic>(I))
            ++I;
          if(&*I == BI) {
            if (FoldValueComparisonIntoPredecessors(BI))
              return SimplifyCFG(BB) | true;
          }
        }
      }

      // If this is a branch on a phi node in the current block, thread control
      // through this block if any PHI node entries are constants.
      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
        if (PN->getParent() == BI->getParent())
          if (FoldCondBranchOnPHI(BI))
            return SimplifyCFG(BB) | true;

      // If this basic block is ONLY a setcc and a branch, and if a predecessor
      // branches to us and one of our successors, fold the setcc into the
      // predecessor and use logical operations to pick the right destination.
      if (FoldBranchToCommonDest(BI))
        return SimplifyCFG(BB) | 1;


      // Scan predecessor blocks for conditional branches.
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
          if (PBI != BI && PBI->isConditional())
            if (SimplifyCondBranchToCondBranch(PBI, BI))
              return SimplifyCFG(BB) | true;
    }
  } else if (isa<UnreachableInst>(BB->getTerminator())) {
    // If there are any instructions immediately before the unreachable that can
    // be removed, do so.
    Instruction *Unreachable = BB->getTerminator();
    while (Unreachable != BB->begin()) {
      BasicBlock::iterator BBI = Unreachable;
      --BBI;
      // Do not delete instructions that can have side effects, like calls
      // (which may never return) and volatile loads and stores.
      if (isa<CallInst>(BBI)) break;

      if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
        if (SI->isVolatile())
          break;

      if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
        if (LI->isVolatile())
          break;

      // Delete this instruction
      BB->getInstList().erase(BBI);
      Changed = true;
    }

    // If the unreachable instruction is the first in the block, take a gander
    // at all of the predecessors of this instruction, and simplify them.
    if (&BB->front() == Unreachable) {
      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
        TerminatorInst *TI = Preds[i]->getTerminator();

        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
          if (BI->isUnconditional()) {
            if (BI->getSuccessor(0) == BB) {
              new UnreachableInst(TI);
              TI->eraseFromParent();
              Changed = true;
            }
          } else {
            if (BI->getSuccessor(0) == BB) {
              BranchInst::Create(BI->getSuccessor(1), BI);
              EraseTerminatorInstAndDCECond(BI);
            } else if (BI->getSuccessor(1) == BB) {
              BranchInst::Create(BI->getSuccessor(0), BI);
              EraseTerminatorInstAndDCECond(BI);
              Changed = true;
            }
          }
        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
            if (SI->getSuccessor(i) == BB) {
              BB->removePredecessor(SI->getParent());
              SI->removeCase(i);
              --i; --e;
              Changed = true;
            }
          // If the default value is unreachable, figure out the most popular
          // destination and make it the default.
          if (SI->getSuccessor(0) == BB) {
            std::map<BasicBlock*, unsigned> Popularity;
            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
              Popularity[SI->getSuccessor(i)]++;

            // Find the most popular block.
            unsigned MaxPop = 0;
            BasicBlock *MaxBlock = 0;
            for (std::map<BasicBlock*, unsigned>::iterator
                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
              if (I->second > MaxPop) {
                MaxPop = I->second;
                MaxBlock = I->first;
              }
            }
            if (MaxBlock) {
              // Make this the new default, allowing us to delete any explicit
              // edges to it.
              SI->setSuccessor(0, MaxBlock);
              Changed = true;

              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
              // it.
              if (isa<PHINode>(MaxBlock->begin()))
                for (unsigned i = 0; i != MaxPop-1; ++i)
                  MaxBlock->removePredecessor(SI->getParent());

              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
                if (SI->getSuccessor(i) == MaxBlock) {
                  SI->removeCase(i);
                  --i; --e;
                }
            }
          }
        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
          if (II->getUnwindDest() == BB) {
            // Convert the invoke to a call instruction.  This would be a good
            // place to note that the call does not throw though.
            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
            II->removeFromParent();   // Take out of symbol table

            // Insert the call now...
            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
            CallInst *CI = CallInst::Create(II->getCalledValue(),
                                            Args.begin(), Args.end(),
                                            II->getName(), BI);
            CI->setCallingConv(II->getCallingConv());
            CI->setAttributes(II->getAttributes());
            // If the invoke produced a value, the Call does now instead.
            II->replaceAllUsesWith(CI);
            delete II;
            Changed = true;
          }
        }
      }

      // If this block is now dead, remove it.
      if (pred_begin(BB) == pred_end(BB)) {
        // We know there are no successors, so just nuke the block.
        M->getBasicBlockList().erase(BB);
        return true;
      }
    }
  }

  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  //
  if (MergeBlockIntoPredecessor(BB))
    return true;

  // Otherwise, if this block only has a single predecessor, and if that block
  // is a conditional branch, see if we can hoist any code from this block up
  // into our predecessor.
  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
  BasicBlock *OnlyPred = *PI++;
  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
    if (*PI != OnlyPred) {
      OnlyPred = 0;       // There are multiple different predecessors...
      break;
    }
  
  if (OnlyPred)
    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
      if (BI->isConditional()) {
        // Get the other block.
        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
        PI = pred_begin(OtherBB);
        ++PI;
        
        if (PI == pred_end(OtherBB)) {
          // We have a conditional branch to two blocks that are only reachable
          // from the condbr.  We know that the condbr dominates the two blocks,
          // so see if there is any identical code in the "then" and "else"
          // blocks.  If so, we can hoist it up to the branching block.
          Changed |= HoistThenElseCodeToIf(BI);
        } else {
          BasicBlock* OnlySucc = NULL;
          for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
               SI != SE; ++SI) {
            if (!OnlySucc)
              OnlySucc = *SI;
            else if (*SI != OnlySucc) {
              OnlySucc = 0;     // There are multiple distinct successors!
              break;
            }
          }

          if (OnlySucc == OtherBB) {
            // If BB's only successor is the other successor of the predecessor,
            // i.e. a triangle, see if we can hoist any code from this block up
            // to the "if" block.
            Changed |= SpeculativelyExecuteBB(BI, BB);
          }
        }
      }

  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
      // Change br (X == 0 | X == 1), T, F into a switch instruction.
      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
        Instruction *Cond = cast<Instruction>(BI->getCondition());
        // If this is a bunch of seteq's or'd together, or if it's a bunch of
        // 'setne's and'ed together, collect them.
        Value *CompVal = 0;
        std::vector<ConstantInt*> Values;
        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
        if (CompVal && CompVal->getType()->isInteger()) {
          // There might be duplicate constants in the list, which the switch
          // instruction can't handle, remove them now.
          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());

          // Figure out which block is which destination.
          BasicBlock *DefaultBB = BI->getSuccessor(1);
          BasicBlock *EdgeBB    = BI->getSuccessor(0);
          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);

          // Create the new switch instruction now.
          SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
                                               Values.size(), BI);

          // Add all of the 'cases' to the switch instruction.
          for (unsigned i = 0, e = Values.size(); i != e; ++i)
            New->addCase(Values[i], EdgeBB);

          // We added edges from PI to the EdgeBB.  As such, if there were any
          // PHI nodes in EdgeBB, they need entries to be added corresponding to
          // the number of edges added.
          for (BasicBlock::iterator BBI = EdgeBB->begin();
               isa<PHINode>(BBI); ++BBI) {
            PHINode *PN = cast<PHINode>(BBI);
            Value *InVal = PN->getIncomingValueForBlock(*PI);
            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
              PN->addIncoming(InVal, *PI);
          }

          // Erase the old branch instruction.
          EraseTerminatorInstAndDCECond(BI);
          return true;
        }
      }

  return Changed;
}