llvm.org GIT mirror llvm / 1b27914 lib / Target / Mips / MipsSEISelDAGToDAG.cpp
1b27914

Tree @1b27914 (Download .tar.gz)

MipsSEISelDAGToDAG.cpp @1b27914raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsDAGToDAGISel specialized for mips32/64.
//
//===----------------------------------------------------------------------===//

#include "MipsSEISelDAGToDAG.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "Mips.h"
#include "MipsAnalyzeImmediate.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;

#define DEBUG_TYPE "mips-isel"

bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
  Subtarget = &TM.getSubtarget<MipsSubtarget>();
  if (Subtarget->inMips16Mode())
    return false;
  return MipsDAGToDAGISel::runOnMachineFunction(MF);
}

void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
                                               MachineFunction &MF) {
  MachineInstrBuilder MIB(MF, &MI);
  unsigned Mask = MI.getOperand(1).getImm();
  unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;

  if (Mask & 1)
    MIB.addReg(Mips::DSPPos, Flag);

  if (Mask & 2)
    MIB.addReg(Mips::DSPSCount, Flag);

  if (Mask & 4)
    MIB.addReg(Mips::DSPCarry, Flag);

  if (Mask & 8)
    MIB.addReg(Mips::DSPOutFlag, Flag);

  if (Mask & 16)
    MIB.addReg(Mips::DSPCCond, Flag);

  if (Mask & 32)
    MIB.addReg(Mips::DSPEFI, Flag);
}

unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
  switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
  default:
    llvm_unreachable("Could not map int to register");
  case 0: return Mips::MSAIR;
  case 1: return Mips::MSACSR;
  case 2: return Mips::MSAAccess;
  case 3: return Mips::MSASave;
  case 4: return Mips::MSAModify;
  case 5: return Mips::MSARequest;
  case 6: return Mips::MSAMap;
  case 7: return Mips::MSAUnmap;
  }
}

bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
                                                const MachineInstr& MI) {
  unsigned DstReg = 0, ZeroReg = 0;

  // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
  if ((MI.getOpcode() == Mips::ADDiu) &&
      (MI.getOperand(1).getReg() == Mips::ZERO) &&
      (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO;
  } else if ((MI.getOpcode() == Mips::DADDiu) &&
             (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
             (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO_64;
  }

  if (!DstReg)
    return false;

  // Replace uses with ZeroReg.
  for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
       E = MRI->use_end(); U != E;) {
    MachineOperand &MO = *U;
    unsigned OpNo = U.getOperandNo();
    MachineInstr *MI = MO.getParent();
    ++U;

    // Do not replace if it is a phi's operand or is tied to def operand.
    if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
      continue;

    MO.setReg(ZeroReg);
  }

  return true;
}

void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  if (!MipsFI->globalBaseRegSet())
    return;

  MachineBasicBlock &MBB = MF.front();
  MachineBasicBlock::iterator I = MBB.begin();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
  unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
  const TargetRegisterClass *RC;

  RC = (Subtarget->isABI_N64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;

  V0 = RegInfo.createVirtualRegister(RC);
  V1 = RegInfo.createVirtualRegister(RC);

  if (Subtarget->isABI_N64()) {
    MF.getRegInfo().addLiveIn(Mips::T9_64);
    MBB.addLiveIn(Mips::T9_64);

    // lui $v0, %hi(%neg(%gp_rel(fname)))
    // daddu $v1, $v0, $t9
    // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
    const GlobalValue *FName = MF.getFunction();
    BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
    BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
      .addReg(Mips::T9_64);
    BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
    return;
  }

  if (MF.getTarget().getRelocationModel() == Reloc::Static) {
    // Set global register to __gnu_local_gp.
    //
    // lui   $v0, %hi(__gnu_local_gp)
    // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
    BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
      .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
    BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
      .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
    return;
  }

  MF.getRegInfo().addLiveIn(Mips::T9);
  MBB.addLiveIn(Mips::T9);

  if (Subtarget->isABI_N32()) {
    // lui $v0, %hi(%neg(%gp_rel(fname)))
    // addu $v1, $v0, $t9
    // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
    const GlobalValue *FName = MF.getFunction();
    BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
    BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
    BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
    return;
  }

  assert(Subtarget->isABI_O32());

  // For O32 ABI, the following instruction sequence is emitted to initialize
  // the global base register:
  //
  //  0. lui   $2, %hi(_gp_disp)
  //  1. addiu $2, $2, %lo(_gp_disp)
  //  2. addu  $globalbasereg, $2, $t9
  //
  // We emit only the last instruction here.
  //
  // GNU linker requires that the first two instructions appear at the beginning
  // of a function and no instructions be inserted before or between them.
  // The two instructions are emitted during lowering to MC layer in order to
  // avoid any reordering.
  //
  // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
  // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
  // reads it.
  MF.getRegInfo().addLiveIn(Mips::V0);
  MBB.addLiveIn(Mips::V0);
  BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
    .addReg(Mips::V0).addReg(Mips::T9);
}

void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
  initGlobalBaseReg(MF);

  MachineRegisterInfo *MRI = &MF.getRegInfo();

  for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
       ++MFI)
    for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
      if (I->getOpcode() == Mips::RDDSP)
        addDSPCtrlRegOperands(false, *I, MF);
      else if (I->getOpcode() == Mips::WRDSP)
        addDSPCtrlRegOperands(true, *I, MF);
      else
        replaceUsesWithZeroReg(MRI, *I);
    }
}

SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
                                           SDValue CmpLHS, SDLoc DL,
                                           SDNode *Node) const {
  unsigned Opc = InFlag.getOpcode(); (void)Opc;

  assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
          (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
         "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");

  SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
  SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
  EVT VT = LHS.getValueType();

  SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, DL, VT, Ops);
  SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, DL, VT,
                                            SDValue(Carry, 0), RHS);
  return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
                              SDValue(AddCarry, 0));
}

/// Match frameindex
bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
                                              SDValue &Offset) const {
  if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
    EVT ValTy = Addr.getValueType();

    Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
    Offset = CurDAG->getTargetConstant(0, ValTy);
    return true;
  }
  return false;
}

/// Match frameindex+offset and frameindex|offset
bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
                                                    SDValue &Offset,
                                                    unsigned OffsetBits) const {
  if (CurDAG->isBaseWithConstantOffset(Addr)) {
    ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
    if (isIntN(OffsetBits, CN->getSExtValue())) {
      EVT ValTy = Addr.getValueType();

      // If the first operand is a FI, get the TargetFI Node
      if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
                                  (Addr.getOperand(0)))
        Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
      else
        Base = Addr.getOperand(0);

      Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
      return true;
    }
  }
  return false;
}

/// ComplexPattern used on MipsInstrInfo
/// Used on Mips Load/Store instructions
bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
                                          SDValue &Offset) const {
  // if Address is FI, get the TargetFrameIndex.
  if (selectAddrFrameIndex(Addr, Base, Offset))
    return true;

  // on PIC code Load GA
  if (Addr.getOpcode() == MipsISD::Wrapper) {
    Base   = Addr.getOperand(0);
    Offset = Addr.getOperand(1);
    return true;
  }

  if (TM.getRelocationModel() != Reloc::PIC_) {
    if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
        Addr.getOpcode() == ISD::TargetGlobalAddress))
      return false;
  }

  // Addresses of the form FI+const or FI|const
  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
    return true;

  // Operand is a result from an ADD.
  if (Addr.getOpcode() == ISD::ADD) {
    // When loading from constant pools, load the lower address part in
    // the instruction itself. Example, instead of:
    //  lui $2, %hi($CPI1_0)
    //  addiu $2, $2, %lo($CPI1_0)
    //  lwc1 $f0, 0($2)
    // Generate:
    //  lui $2, %hi($CPI1_0)
    //  lwc1 $f0, %lo($CPI1_0)($2)
    if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
        Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
      SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
      if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
          isa<JumpTableSDNode>(Opnd0)) {
        Base = Addr.getOperand(0);
        Offset = Opnd0;
        return true;
      }
    }
  }

  return false;
}

/// ComplexPattern used on MipsInstrInfo
/// Used on Mips Load/Store instructions
bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
                                          SDValue &Offset) const {
  // Operand is a result from an ADD.
  if (Addr.getOpcode() == ISD::ADD) {
    Base = Addr.getOperand(0);
    Offset = Addr.getOperand(1);
    return true;
  }

  return false;
}

bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
                                           SDValue &Offset) const {
  Base = Addr;
  Offset = CurDAG->getTargetConstant(0, Addr.getValueType());
  return true;
}

bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
                                       SDValue &Offset) const {
  return selectAddrRegImm(Addr, Base, Offset) ||
    selectAddrDefault(Addr, Base, Offset);
}

bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
                                            SDValue &Offset) const {
  if (selectAddrFrameIndex(Addr, Base, Offset))
    return true;

  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
    return true;

  return false;
}

/// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
                                            SDValue &Offset) const {
  if (selectAddrFrameIndex(Addr, Base, Offset))
    return true;

  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
    return true;

  return false;
}

bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
                                         SDValue &Offset) const {
  return selectAddrRegImm12(Addr, Base, Offset) ||
    selectAddrDefault(Addr, Base, Offset);
}

bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
                                          SDValue &Offset) const {
  if (selectAddrRegImm10(Addr, Base, Offset))
    return true;

  if (selectAddrDefault(Addr, Base, Offset))
    return true;

  return false;
}

// Select constant vector splats.
//
// Returns true and sets Imm if:
// * MSA is enabled
// * N is a ISD::BUILD_VECTOR representing a constant splat
bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const {
  if (!Subtarget->hasMSA())
    return false;

  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);

  if (!Node)
    return false;

  APInt SplatValue, SplatUndef;
  unsigned SplatBitSize;
  bool HasAnyUndefs;

  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
                             HasAnyUndefs, 8,
                             !Subtarget->isLittle()))
    return false;

  Imm = SplatValue;

  return true;
}

// Select constant vector splats.
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value fits in an integer with the specified signed-ness and
//   width.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
//       sometimes a shuffle in big-endian mode.
//
// It's worth noting that this function is not used as part of the selection
// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
// MipsSEDAGToDAGISel::selectNode.
bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
                   unsigned ImmBitSize) const {
  APInt ImmValue;
  EVT EltTy = N->getValueType(0).getVectorElementType();

  if (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0);

  if (selectVSplat (N.getNode(), ImmValue) &&
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
        (!Signed && ImmValue.isIntN(ImmBitSize))) {
      Imm = CurDAG->getTargetConstant(ImmValue, EltTy);
      return true;
    }
  }

  return false;
}

// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, false, 1);
}

bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, false, 2);
}

bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, false, 3);
}

// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, false, 4);
}

// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, false, 5);
}

// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, false, 6);
}

// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, false, 8);
}

// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N, SDValue &Imm) const {
  return selectVSplatCommon(N, Imm, true, 5);
}

// Select constant vector splats whose value is a power of 2.
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value is a power of two.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
//       sometimes a shuffle in big-endian mode.
bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
  APInt ImmValue;
  EVT EltTy = N->getValueType(0).getVectorElementType();

  if (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0);

  if (selectVSplat (N.getNode(), ImmValue) &&
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    int32_t Log2 = ImmValue.exactLogBase2();

    if (Log2 != -1) {
      Imm = CurDAG->getTargetConstant(Log2, EltTy);
      return true;
    }
  }

  return false;
}

// Select constant vector splats whose value only has a consecutive sequence
// of left-most bits set (e.g. 0b11...1100...00).
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value is a consecutive sequence of left-most bits.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
//       sometimes a shuffle in big-endian mode.
bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
  APInt ImmValue;
  EVT EltTy = N->getValueType(0).getVectorElementType();

  if (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0);

  if (selectVSplat(N.getNode(), ImmValue) &&
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    // Extract the run of set bits starting with bit zero from the bitwise
    // inverse of ImmValue, and test that the inverse of this is the same
    // as the original value.
    if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {

      Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
      return true;
    }
  }

  return false;
}

// Select constant vector splats whose value only has a consecutive sequence
// of right-most bits set (e.g. 0b00...0011...11).
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value is a consecutive sequence of right-most bits.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
//       sometimes a shuffle in big-endian mode.
bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
  APInt ImmValue;
  EVT EltTy = N->getValueType(0).getVectorElementType();

  if (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0);

  if (selectVSplat(N.getNode(), ImmValue) &&
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    // Extract the run of set bits starting with bit zero, and test that the
    // result is the same as the original value
    if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
      Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
      return true;
    }
  }

  return false;
}

bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
                                                 SDValue &Imm) const {
  APInt ImmValue;
  EVT EltTy = N->getValueType(0).getVectorElementType();

  if (N->getOpcode() == ISD::BITCAST)
    N = N->getOperand(0);

  if (selectVSplat(N.getNode(), ImmValue) &&
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
    int32_t Log2 = (~ImmValue).exactLogBase2();

    if (Log2 != -1) {
      Imm = CurDAG->getTargetConstant(Log2, EltTy);
      return true;
    }
  }

  return false;
}

std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
  unsigned Opcode = Node->getOpcode();
  SDLoc DL(Node);

  ///
  // Instruction Selection not handled by the auto-generated
  // tablegen selection should be handled here.
  ///
  SDNode *Result;

  switch(Opcode) {
  default: break;

  case ISD::SUBE: {
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
    return std::make_pair(true, Result);
  }

  case ISD::ADDE: {
    if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
      break;
    SDValue InFlag = Node->getOperand(2);
    Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
    return std::make_pair(true, Result);
  }

  case ISD::ConstantFP: {
    ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
    if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
      if (Subtarget->isGP64bit()) {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO_64, MVT::i64);
        Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
      } else if (Subtarget->isFP64bit()) {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO, MVT::i32);
        Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
                                        Zero, Zero);
      } else {
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
                                              Mips::ZERO, MVT::i32);
        Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
                                        Zero);
      }

      return std::make_pair(true, Result);
    }
    break;
  }

  case ISD::Constant: {
    const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
    unsigned Size = CN->getValueSizeInBits(0);

    if (Size == 32)
      break;

    MipsAnalyzeImmediate AnalyzeImm;
    int64_t Imm = CN->getSExtValue();

    const MipsAnalyzeImmediate::InstSeq &Seq =
      AnalyzeImm.Analyze(Imm, Size, false);

    MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
    SDLoc DL(CN);
    SDNode *RegOpnd;
    SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                                MVT::i64);

    // The first instruction can be a LUi which is different from other
    // instructions (ADDiu, ORI and SLL) in that it does not have a register
    // operand.
    if (Inst->Opc == Mips::LUi64)
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
    else
      RegOpnd =
        CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                               CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
                               ImmOpnd);

    // The remaining instructions in the sequence are handled here.
    for (++Inst; Inst != Seq.end(); ++Inst) {
      ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
                                          MVT::i64);
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
                                       SDValue(RegOpnd, 0), ImmOpnd);
    }

    return std::make_pair(true, RegOpnd);
  }

  case ISD::INTRINSIC_W_CHAIN: {
    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
    default:
      break;

    case Intrinsic::mips_cfcmsa: {
      SDValue ChainIn = Node->getOperand(0);
      SDValue RegIdx = Node->getOperand(2);
      SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
                                           getMSACtrlReg(RegIdx), MVT::i32);
      return std::make_pair(true, Reg.getNode());
    }
    }
    break;
  }

  case ISD::INTRINSIC_WO_CHAIN: {
    switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
    default:
      break;

    case Intrinsic::mips_move_v:
      // Like an assignment but will always produce a move.v even if
      // unnecessary.
      return std::make_pair(true,
                            CurDAG->getMachineNode(Mips::MOVE_V, DL,
                                                   Node->getValueType(0),
                                                   Node->getOperand(1)));
    }
    break;
  }

  case ISD::INTRINSIC_VOID: {
    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
    default:
      break;

    case Intrinsic::mips_ctcmsa: {
      SDValue ChainIn = Node->getOperand(0);
      SDValue RegIdx  = Node->getOperand(2);
      SDValue Value   = Node->getOperand(3);
      SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
                                              getMSACtrlReg(RegIdx), Value);
      return std::make_pair(true, ChainOut.getNode());
    }
    }
    break;
  }

  case MipsISD::ThreadPointer: {
    EVT PtrVT = getTargetLowering()->getPointerTy();
    unsigned RdhwrOpc, DestReg;

    if (PtrVT == MVT::i32) {
      RdhwrOpc = Mips::RDHWR;
      DestReg = Mips::V1;
    } else {
      RdhwrOpc = Mips::RDHWR64;
      DestReg = Mips::V1_64;
    }

    SDNode *Rdhwr =
      CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node),
                             Node->getValueType(0),
                             CurDAG->getRegister(Mips::HWR29, MVT::i32));
    SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
                                         SDValue(Rdhwr, 0));
    SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
    ReplaceUses(SDValue(Node, 0), ResNode);
    return std::make_pair(true, ResNode.getNode());
  }

  case ISD::BUILD_VECTOR: {
    // Select appropriate ldi.[bhwd] instructions for constant splats of
    // 128-bit when MSA is enabled. Fixup any register class mismatches that
    // occur as a result.
    //
    // This allows the compiler to use a wider range of immediates than would
    // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
    // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
    // 0x01010101 } without using a constant pool. This would be sub-optimal
    // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
    // same set/ of registers. Similarly, ldi.h isn't capable of producing {
    // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.

    BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
    APInt SplatValue, SplatUndef;
    unsigned SplatBitSize;
    bool HasAnyUndefs;
    unsigned LdiOp;
    EVT ResVecTy = BVN->getValueType(0);
    EVT ViaVecTy;

    if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
      return std::make_pair(false, nullptr);

    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
                              HasAnyUndefs, 8,
                              !Subtarget->isLittle()))
      return std::make_pair(false, nullptr);

    switch (SplatBitSize) {
    default:
      return std::make_pair(false, nullptr);
    case 8:
      LdiOp = Mips::LDI_B;
      ViaVecTy = MVT::v16i8;
      break;
    case 16:
      LdiOp = Mips::LDI_H;
      ViaVecTy = MVT::v8i16;
      break;
    case 32:
      LdiOp = Mips::LDI_W;
      ViaVecTy = MVT::v4i32;
      break;
    case 64:
      LdiOp = Mips::LDI_D;
      ViaVecTy = MVT::v2i64;
      break;
    }

    if (!SplatValue.isSignedIntN(10))
      return std::make_pair(false, nullptr);

    SDValue Imm = CurDAG->getTargetConstant(SplatValue,
                                            ViaVecTy.getVectorElementType());

    SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm);

    if (ResVecTy != ViaVecTy) {
      // If LdiOp is writing to a different register class to ResVecTy, then
      // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
      // since the source and destination register sets contain the same
      // registers.
      const TargetLowering *TLI = getTargetLowering();
      MVT ResVecTySimple = ResVecTy.getSimpleVT();
      const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
      Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, SDLoc(Node),
                                   ResVecTy, SDValue(Res, 0),
                                   CurDAG->getTargetConstant(RC->getID(),
                                                             MVT::i32));
    }

    return std::make_pair(true, Res);
  }

  }

  return std::make_pair(false, nullptr);
}

FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) {
  return new MipsSEDAGToDAGISel(TM);
}