llvm.org GIT mirror llvm / 1b27914 lib / CodeGen / LiveInterval.cpp
1b27914

Tree @1b27914 (Download .tar.gz)

LiveInterval.cpp @1b27914raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes.  Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live range for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation ranges can have holes,
// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
// individual segment is represented as an instance of LiveRange::Segment,
// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveInterval.h"
#include "RegisterCoalescer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;

LiveRange::iterator LiveRange::find(SlotIndex Pos) {
  // This algorithm is basically std::upper_bound.
  // Unfortunately, std::upper_bound cannot be used with mixed types until we
  // adopt C++0x. Many libraries can do it, but not all.
  if (empty() || Pos >= endIndex())
    return end();
  iterator I = begin();
  size_t Len = size();
  do {
    size_t Mid = Len >> 1;
    if (Pos < I[Mid].end)
      Len = Mid;
    else
      I += Mid + 1, Len -= Mid + 1;
  } while (Len);
  return I;
}

VNInfo *LiveRange::createDeadDef(SlotIndex Def,
                                  VNInfo::Allocator &VNInfoAllocator) {
  assert(!Def.isDead() && "Cannot define a value at the dead slot");
  iterator I = find(Def);
  if (I == end()) {
    VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
    segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
    return VNI;
  }
  if (SlotIndex::isSameInstr(Def, I->start)) {
    assert(I->valno->def == I->start && "Inconsistent existing value def");

    // It is possible to have both normal and early-clobber defs of the same
    // register on an instruction. It doesn't make a lot of sense, but it is
    // possible to specify in inline assembly.
    //
    // Just convert everything to early-clobber.
    Def = std::min(Def, I->start);
    if (Def != I->start)
      I->start = I->valno->def = Def;
    return I->valno;
  }
  assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
  VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
  segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
  return VNI;
}

// overlaps - Return true if the intersection of the two live ranges is
// not empty.
//
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live ranges should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
bool LiveRange::overlapsFrom(const LiveRange& other,
                             const_iterator StartPos) const {
  assert(!empty() && "empty range");
  const_iterator i = begin();
  const_iterator ie = end();
  const_iterator j = StartPos;
  const_iterator je = other.end();

  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
         StartPos != other.end() && "Bogus start position hint!");

  if (i->start < j->start) {
    i = std::upper_bound(i, ie, j->start);
    if (i != begin()) --i;
  } else if (j->start < i->start) {
    ++StartPos;
    if (StartPos != other.end() && StartPos->start <= i->start) {
      assert(StartPos < other.end() && i < end());
      j = std::upper_bound(j, je, i->start);
      if (j != other.begin()) --j;
    }
  } else {
    return true;
  }

  if (j == je) return false;

  while (i != ie) {
    if (i->start > j->start) {
      std::swap(i, j);
      std::swap(ie, je);
    }

    if (i->end > j->start)
      return true;
    ++i;
  }

  return false;
}

bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
                         const SlotIndexes &Indexes) const {
  assert(!empty() && "empty range");
  if (Other.empty())
    return false;

  // Use binary searches to find initial positions.
  const_iterator I = find(Other.beginIndex());
  const_iterator IE = end();
  if (I == IE)
    return false;
  const_iterator J = Other.find(I->start);
  const_iterator JE = Other.end();
  if (J == JE)
    return false;

  for (;;) {
    // J has just been advanced to satisfy:
    assert(J->end >= I->start);
    // Check for an overlap.
    if (J->start < I->end) {
      // I and J are overlapping. Find the later start.
      SlotIndex Def = std::max(I->start, J->start);
      // Allow the overlap if Def is a coalescable copy.
      if (Def.isBlock() ||
          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
        return true;
    }
    // Advance the iterator that ends first to check for more overlaps.
    if (J->end > I->end) {
      std::swap(I, J);
      std::swap(IE, JE);
    }
    // Advance J until J->end >= I->start.
    do
      if (++J == JE)
        return false;
    while (J->end < I->start);
  }
}

/// overlaps - Return true if the live range overlaps an interval specified
/// by [Start, End).
bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
  assert(Start < End && "Invalid range");
  const_iterator I = std::lower_bound(begin(), end(), End);
  return I != begin() && (--I)->end > Start;
}

bool LiveRange::covers(const LiveRange &Other) const {
  if (empty())
    return Other.empty();

  const_iterator I = begin();
  for (const Segment &O : Other.segments) {
    I = advanceTo(I, O.start);
    if (I == end() || I->start > O.start)
      return false;

    // Check adjacent live segments and see if we can get behind O.end.
    while (I->end < O.end) {
      const_iterator Last = I;
      // Get next segment and abort if it was not adjacent.
      ++I;
      if (I == end() || Last->end != I->start)
        return false;
    }
  }
  return true;
}

/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
/// it can be nuked later.
void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
  if (ValNo->id == getNumValNums()-1) {
    do {
      valnos.pop_back();
    } while (!valnos.empty() && valnos.back()->isUnused());
  } else {
    ValNo->markUnused();
  }
}

/// RenumberValues - Renumber all values in order of appearance and delete the
/// remaining unused values.
void LiveRange::RenumberValues() {
  SmallPtrSet<VNInfo*, 8> Seen;
  valnos.clear();
  for (const Segment &S : segments) {
    VNInfo *VNI = S.valno;
    if (!Seen.insert(VNI).second)
      continue;
    assert(!VNI->isUnused() && "Unused valno used by live segment");
    VNI->id = (unsigned)valnos.size();
    valnos.push_back(VNI);
  }
}

/// This method is used when we want to extend the segment specified by I to end
/// at the specified endpoint.  To do this, we should merge and eliminate all
/// segments that this will overlap with.  The iterator is not invalidated.
void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
  assert(I != end() && "Not a valid segment!");
  VNInfo *ValNo = I->valno;

  // Search for the first segment that we can't merge with.
  iterator MergeTo = std::next(I);
  for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
  }

  // If NewEnd was in the middle of a segment, make sure to get its endpoint.
  I->end = std::max(NewEnd, std::prev(MergeTo)->end);

  // If the newly formed segment now touches the segment after it and if they
  // have the same value number, merge the two segments into one segment.
  if (MergeTo != end() && MergeTo->start <= I->end &&
      MergeTo->valno == ValNo) {
    I->end = MergeTo->end;
    ++MergeTo;
  }

  // Erase any dead segments.
  segments.erase(std::next(I), MergeTo);
}


/// This method is used when we want to extend the segment specified by I to
/// start at the specified endpoint.  To do this, we should merge and eliminate
/// all segments that this will overlap with.
LiveRange::iterator
LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
  assert(I != end() && "Not a valid segment!");
  VNInfo *ValNo = I->valno;

  // Search for the first segment that we can't merge with.
  iterator MergeTo = I;
  do {
    if (MergeTo == begin()) {
      I->start = NewStart;
      segments.erase(MergeTo, I);
      return I;
    }
    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    --MergeTo;
  } while (NewStart <= MergeTo->start);

  // If we start in the middle of another segment, just delete a range and
  // extend that segment.
  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
    MergeTo->end = I->end;
  } else {
    // Otherwise, extend the segment right after.
    ++MergeTo;
    MergeTo->start = NewStart;
    MergeTo->end = I->end;
  }

  segments.erase(std::next(MergeTo), std::next(I));
  return MergeTo;
}

void LiveRange::append(const Segment S) {
  // Check that the segment belongs to the back of the list.
  assert(segments.empty() || segments.back().end <= S.start);
  segments.push_back(S);
}

LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
  SlotIndex Start = S.start, End = S.end;
  iterator it = std::upper_bound(From, end(), Start);

  // If the inserted segment starts in the middle or right at the end of
  // another segment, just extend that segment to contain the segment of S.
  if (it != begin()) {
    iterator B = std::prev(it);
    if (S.valno == B->valno) {
      if (B->start <= Start && B->end >= Start) {
        extendSegmentEndTo(B, End);
        return B;
      }
    } else {
      // Check to make sure that we are not overlapping two live segments with
      // different valno's.
      assert(B->end <= Start &&
             "Cannot overlap two segments with differing ValID's"
             " (did you def the same reg twice in a MachineInstr?)");
    }
  }

  // Otherwise, if this segment ends in the middle of, or right next to, another
  // segment, merge it into that segment.
  if (it != end()) {
    if (S.valno == it->valno) {
      if (it->start <= End) {
        it = extendSegmentStartTo(it, Start);

        // If S is a complete superset of a segment, we may need to grow its
        // endpoint as well.
        if (End > it->end)
          extendSegmentEndTo(it, End);
        return it;
      }
    } else {
      // Check to make sure that we are not overlapping two live segments with
      // different valno's.
      assert(it->start >= End &&
             "Cannot overlap two segments with differing ValID's");
    }
  }

  // Otherwise, this is just a new segment that doesn't interact with anything.
  // Insert it.
  return segments.insert(it, S);
}

/// extendInBlock - If this range is live before Kill in the basic
/// block that starts at StartIdx, extend it to be live up to Kill and return
/// the value. If there is no live range before Kill, return NULL.
VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
  if (empty())
    return nullptr;
  iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
  if (I == begin())
    return nullptr;
  --I;
  if (I->end <= StartIdx)
    return nullptr;
  if (I->end < Kill)
    extendSegmentEndTo(I, Kill);
  return I->valno;
}

/// Remove the specified segment from this range.  Note that the segment must
/// be in a single Segment in its entirety.
void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
                              bool RemoveDeadValNo) {
  // Find the Segment containing this span.
  iterator I = find(Start);
  assert(I != end() && "Segment is not in range!");
  assert(I->containsInterval(Start, End)
         && "Segment is not entirely in range!");

  // If the span we are removing is at the start of the Segment, adjust it.
  VNInfo *ValNo = I->valno;
  if (I->start == Start) {
    if (I->end == End) {
      if (RemoveDeadValNo) {
        // Check if val# is dead.
        bool isDead = true;
        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
          if (II != I && II->valno == ValNo) {
            isDead = false;
            break;
          }
        if (isDead) {
          // Now that ValNo is dead, remove it.
          markValNoForDeletion(ValNo);
        }
      }

      segments.erase(I);  // Removed the whole Segment.
    } else
      I->start = End;
    return;
  }

  // Otherwise if the span we are removing is at the end of the Segment,
  // adjust the other way.
  if (I->end == End) {
    I->end = Start;
    return;
  }

  // Otherwise, we are splitting the Segment into two pieces.
  SlotIndex OldEnd = I->end;
  I->end = Start;   // Trim the old segment.

  // Insert the new one.
  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
}

/// removeValNo - Remove all the segments defined by the specified value#.
/// Also remove the value# from value# list.
void LiveRange::removeValNo(VNInfo *ValNo) {
  if (empty()) return;
  iterator I = end();
  iterator E = begin();
  do {
    --I;
    if (I->valno == ValNo)
      segments.erase(I);
  } while (I != E);
  // Now that ValNo is dead, remove it.
  markValNoForDeletion(ValNo);
}

void LiveRange::join(LiveRange &Other,
                     const int *LHSValNoAssignments,
                     const int *RHSValNoAssignments,
                     SmallVectorImpl<VNInfo *> &NewVNInfo) {
  verify();

  // Determine if any of our values are mapped.  This is uncommon, so we want
  // to avoid the range scan if not.
  bool MustMapCurValNos = false;
  unsigned NumVals = getNumValNums();
  unsigned NumNewVals = NewVNInfo.size();
  for (unsigned i = 0; i != NumVals; ++i) {
    unsigned LHSValID = LHSValNoAssignments[i];
    if (i != LHSValID ||
        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
      MustMapCurValNos = true;
      break;
    }
  }

  // If we have to apply a mapping to our base range assignment, rewrite it now.
  if (MustMapCurValNos && !empty()) {
    // Map the first live range.

    iterator OutIt = begin();
    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
    for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
      assert(nextValNo && "Huh?");

      // If this live range has the same value # as its immediate predecessor,
      // and if they are neighbors, remove one Segment.  This happens when we
      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
        OutIt->end = I->end;
      } else {
        // Didn't merge. Move OutIt to the next segment,
        ++OutIt;
        OutIt->valno = nextValNo;
        if (OutIt != I) {
          OutIt->start = I->start;
          OutIt->end = I->end;
        }
      }
    }
    // If we merge some segments, chop off the end.
    ++OutIt;
    segments.erase(OutIt, end());
  }

  // Rewrite Other values before changing the VNInfo ids.
  // This can leave Other in an invalid state because we're not coalescing
  // touching segments that now have identical values. That's OK since Other is
  // not supposed to be valid after calling join();
  for (Segment &S : Other.segments)
    S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];

  // Update val# info. Renumber them and make sure they all belong to this
  // LiveRange now. Also remove dead val#'s.
  unsigned NumValNos = 0;
  for (unsigned i = 0; i < NumNewVals; ++i) {
    VNInfo *VNI = NewVNInfo[i];
    if (VNI) {
      if (NumValNos >= NumVals)
        valnos.push_back(VNI);
      else
        valnos[NumValNos] = VNI;
      VNI->id = NumValNos++;  // Renumber val#.
    }
  }
  if (NumNewVals < NumVals)
    valnos.resize(NumNewVals);  // shrinkify

  // Okay, now insert the RHS live segments into the LHS.
  LiveRangeUpdater Updater(this);
  for (Segment &S : Other.segments)
    Updater.add(S);
}

/// Merge all of the segments in RHS into this live range as the specified
/// value number.  The segments in RHS are allowed to overlap with segments in
/// the current range, but only if the overlapping segments have the
/// specified value number.
void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
                                       VNInfo *LHSValNo) {
  LiveRangeUpdater Updater(this);
  for (const Segment &S : RHS.segments)
    Updater.add(S.start, S.end, LHSValNo);
}

/// MergeValueInAsValue - Merge all of the live segments of a specific val#
/// in RHS into this live range as the specified value number.
/// The segments in RHS are allowed to overlap with segments in the
/// current range, it will replace the value numbers of the overlaped
/// segments with the specified value number.
void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
                                    const VNInfo *RHSValNo,
                                    VNInfo *LHSValNo) {
  LiveRangeUpdater Updater(this);
  for (const Segment &S : RHS.segments)
    if (S.valno == RHSValNo)
      Updater.add(S.start, S.end, LHSValNo);
}

/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent.  This eliminates V1, replacing all
/// segments with the V1 value number with the V2 value number.  This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
  assert(V1 != V2 && "Identical value#'s are always equivalent!");

  // This code actually merges the (numerically) larger value number into the
  // smaller value number, which is likely to allow us to compactify the value
  // space.  The only thing we have to be careful of is to preserve the
  // instruction that defines the result value.

  // Make sure V2 is smaller than V1.
  if (V1->id < V2->id) {
    V1->copyFrom(*V2);
    std::swap(V1, V2);
  }

  // Merge V1 segments into V2.
  for (iterator I = begin(); I != end(); ) {
    iterator S = I++;
    if (S->valno != V1) continue;  // Not a V1 Segment.

    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
    // range, extend it.
    if (S != begin()) {
      iterator Prev = S-1;
      if (Prev->valno == V2 && Prev->end == S->start) {
        Prev->end = S->end;

        // Erase this live-range.
        segments.erase(S);
        I = Prev+1;
        S = Prev;
      }
    }

    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
    // Ensure that it is a V2 live-range.
    S->valno = V2;

    // If we can merge it into later V2 segments, do so now.  We ignore any
    // following V1 segments, as they will be merged in subsequent iterations
    // of the loop.
    if (I != end()) {
      if (I->start == S->end && I->valno == V2) {
        S->end = I->end;
        segments.erase(I);
        I = S+1;
      }
    }
  }

  // Now that V1 is dead, remove it.
  markValNoForDeletion(V1);

  return V2;
}

void LiveInterval::removeEmptySubRanges() {
  SubRange **NextPtr = &SubRanges;
  SubRange *I = *NextPtr;
  while (I != nullptr) {
    if (!I->empty()) {
      NextPtr = &I->Next;
      I = *NextPtr;
      continue;
    }
    // Skip empty subranges until we find the first nonempty one.
    do {
      I = I->Next;
    } while (I != nullptr && I->empty());
    *NextPtr = I;
  }
}

/// Helper function for constructMainRangeFromSubranges(): Search the CFG
/// backwards until we find a place covered by a LiveRange segment that actually
/// has a valno set.
static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
    const MachineBasicBlock *MBB,
    SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
  // We start the search at the end of MBB.
  SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
  // In our use case we can't live the area covered by the live segments without
  // finding an actual VNI def.
  LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
  assert(I != LR.end());
  LiveRange::Segment &S = *I;
  if (S.valno != nullptr)
    return S.valno;

  VNInfo *VNI = nullptr;
  // Continue at predecessors (we could even go to idom with domtree available).
  for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    // Avoid going in circles.
    if (!Visited.insert(Pred).second)
      continue;

    VNI = searchForVNI(Indexes, LR, Pred, Visited);
    if (VNI != nullptr) {
      S.valno = VNI;
      break;
    }
  }

  return VNI;
}

static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
  SmallPtrSet<const MachineBasicBlock*, 5> Visited;
  for (LiveRange::Segment &S : LI.segments) {
    if (S.valno != nullptr)
      continue;
    // This can only happen at the begin of a basic block.
    assert(S.start.isBlock() && "valno should only be missing at block begin");

    Visited.clear();
    const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
      VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
      if (VNI != nullptr) {
        S.valno = VNI;
        break;
      }
    }
    assert(S.valno != nullptr && "could not determine valno");
  }
}

void LiveInterval::constructMainRangeFromSubranges(
    const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
  // The basic observations on which this algorithm is based:
  // - Each Def/ValNo in a subrange must have a corresponding def on the main
  //   range, but not further defs/valnos are necessary.
  // - If any of the subranges is live at a point the main liverange has to be
  //   live too, conversily if no subrange is live the main range mustn't be
  //   live either.
  // We do this by scannig through all the subranges simultaneously creating new
  // segments in the main range as segments start/ends come up in the subranges.
  assert(hasSubRanges() && "expected subranges to be present");
  assert(segments.empty() && valnos.empty() && "expected empty main range");

  // Collect subrange, iterator pairs for the walk and determine first and last
  // SlotIndex involved.
  SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
  SlotIndex First;
  SlotIndex Last;
  for (const SubRange &SR : subranges()) {
    if (SR.empty())
      continue;
    SRs.push_back(std::make_pair(&SR, SR.begin()));
    if (!First.isValid() || SR.segments.front().start < First)
      First = SR.segments.front().start;
    if (!Last.isValid() || SR.segments.back().end > Last)
      Last = SR.segments.back().end;
  }

  // Walk over all subranges simultaneously.
  Segment CurrentSegment;
  bool ConstructingSegment = false;
  bool NeedVNIFixup = false;
  unsigned ActiveMask = 0;
  SlotIndex Pos = First;
  while (true) {
    SlotIndex NextPos = Last;
    enum {
      NOTHING,
      BEGIN_SEGMENT,
      END_SEGMENT,
    } Event = NOTHING;
    // Which subregister lanes are affected by the current event.
    unsigned EventMask = 0;
    // Whether a BEGIN_SEGMENT is also a valno definition point.
    bool IsDef = false;
    // Find the next begin or end of a subrange segment. Combine masks if we
    // have multiple begins/ends at the same position. Ends take precedence over
    // Begins.
    for (auto &SRP : SRs) {
      const SubRange &SR = *SRP.first;
      const_iterator &I = SRP.second;
      // Advance iterator of subrange to a segment involving Pos; the earlier
      // segments are already merged at this point.
      while (I != SR.end() &&
             (I->end < Pos ||
              (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
        ++I;
      if (I == SR.end())
        continue;
      if ((ActiveMask & SR.LaneMask) == 0 &&
          Pos <= I->start && I->start <= NextPos) {
        // Merge multiple begins at the same position.
        if (I->start == NextPos && Event == BEGIN_SEGMENT) {
          EventMask |= SR.LaneMask;
          IsDef |= I->valno->def == I->start;
        } else if (I->start < NextPos || Event != END_SEGMENT) {
          Event = BEGIN_SEGMENT;
          NextPos = I->start;
          EventMask = SR.LaneMask;
          IsDef = I->valno->def == I->start;
        }
      }
      if ((ActiveMask & SR.LaneMask) != 0 &&
          Pos <= I->end && I->end <= NextPos) {
        // Merge multiple ends at the same position.
        if (I->end == NextPos && Event == END_SEGMENT)
          EventMask |= SR.LaneMask;
        else {
          Event = END_SEGMENT;
          NextPos = I->end;
          EventMask = SR.LaneMask;
        }
      }
    }

    // Advance scan position.
    Pos = NextPos;
    if (Event == BEGIN_SEGMENT) {
      if (ConstructingSegment && IsDef) {
        // Finish previous segment because we have to start a new one.
        CurrentSegment.end = Pos;
        append(CurrentSegment);
        ConstructingSegment = false;
      }

      // Start a new segment if necessary.
      if (!ConstructingSegment) {
        // Determine value number for the segment.
        VNInfo *VNI;
        if (IsDef) {
          VNI = getNextValue(Pos, VNIAllocator);
        } else {
          // We have to reuse an existing value number, if we are lucky
          // then we already passed one of the predecessor blocks and determined
          // its value number (with blocks in reverse postorder this would be
          // always true but we have no such guarantee).
          assert(Pos.isBlock());
          const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
          // See if any of the predecessor blocks has a lower number and a VNI
          for (const MachineBasicBlock *Pred : MBB->predecessors()) {
            SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
            VNI = getVNInfoBefore(PredEnd);
            if (VNI != nullptr)
              break;
          }
          // Def will come later: We have to do an extra fixup pass.
          if (VNI == nullptr)
            NeedVNIFixup = true;
        }

        CurrentSegment.start = Pos;
        CurrentSegment.valno = VNI;
        ConstructingSegment = true;
      }
      ActiveMask |= EventMask;
    } else if (Event == END_SEGMENT) {
      assert(ConstructingSegment);
      // Finish segment if no lane is active anymore.
      ActiveMask &= ~EventMask;
      if (ActiveMask == 0) {
        CurrentSegment.end = Pos;
        append(CurrentSegment);
        ConstructingSegment = false;
      }
    } else {
      // We reached the end of the last subranges and can stop.
      assert(Event == NOTHING);
      break;
    }
  }

  // We might not be able to assign new valnos for all segments if the basic
  // block containing the definition comes after a segment using the valno.
  // Do a fixup pass for this uncommon case.
  if (NeedVNIFixup)
    determineMissingVNIs(Indexes, *this);

  assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
  verify();
}

unsigned LiveInterval::getSize() const {
  unsigned Sum = 0;
  for (const Segment &S : segments)
    Sum += S.start.distance(S.end);
  return Sum;
}

raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
  return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveRange::Segment::dump() const {
  dbgs() << *this << "\n";
}
#endif

void LiveRange::print(raw_ostream &OS) const {
  if (empty())
    OS << "EMPTY";
  else {
    for (const Segment &S : segments) {
      OS << S;
      assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
    }
  }

  // Print value number info.
  if (getNumValNums()) {
    OS << "  ";
    unsigned vnum = 0;
    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
         ++i, ++vnum) {
      const VNInfo *vni = *i;
      if (vnum) OS << " ";
      OS << vnum << "@";
      if (vni->isUnused()) {
        OS << "x";
      } else {
        OS << vni->def;
        if (vni->isPHIDef())
          OS << "-phi";
      }
    }
  }
}

void LiveInterval::print(raw_ostream &OS) const {
  OS << PrintReg(reg) << ' ';
  super::print(OS);
  // Print subranges
  for (const SubRange &SR : subranges()) {
    OS << format(" L%04X ", SR.LaneMask) << SR;
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveRange::dump() const {
  dbgs() << *this << "\n";
}

void LiveInterval::dump() const {
  dbgs() << *this << "\n";
}
#endif

#ifndef NDEBUG
void LiveRange::verify() const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    assert(I->start.isValid());
    assert(I->end.isValid());
    assert(I->start < I->end);
    assert(I->valno != nullptr);
    assert(I->valno->id < valnos.size());
    assert(I->valno == valnos[I->valno->id]);
    if (std::next(I) != E) {
      assert(I->end <= std::next(I)->start);
      if (I->end == std::next(I)->start)
        assert(I->valno != std::next(I)->valno);
    }
  }
}

void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
  super::verify();

  // Make sure SubRanges are fine and LaneMasks are disjunct.
  unsigned Mask = 0;
  unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
  for (const SubRange &SR : subranges()) {
    // Subrange lanemask should be disjunct to any previous subrange masks.
    assert((Mask & SR.LaneMask) == 0);
    Mask |= SR.LaneMask;

    // subrange mask should not contained in maximum lane mask for the vreg.
    assert((Mask & ~MaxMask) == 0);

    SR.verify();
    // Main liverange should cover subrange.
    assert(covers(SR));
  }
}
#endif


//===----------------------------------------------------------------------===//
//                           LiveRangeUpdater class
//===----------------------------------------------------------------------===//
//
// The LiveRangeUpdater class always maintains these invariants:
//
// - When LastStart is invalid, Spills is empty and the iterators are invalid.
//   This is the initial state, and the state created by flush().
//   In this state, isDirty() returns false.
//
// Otherwise, segments are kept in three separate areas:
//
// 1. [begin; WriteI) at the front of LR.
// 2. [ReadI; end) at the back of LR.
// 3. Spills.
//
// - LR.begin() <= WriteI <= ReadI <= LR.end().
// - Segments in all three areas are fully ordered and coalesced.
// - Segments in area 1 precede and can't coalesce with segments in area 2.
// - Segments in Spills precede and can't coalesce with segments in area 2.
// - No coalescing is possible between segments in Spills and segments in area
//   1, and there are no overlapping segments.
//
// The segments in Spills are not ordered with respect to the segments in area
// 1. They need to be merged.
//
// When they exist, Spills.back().start <= LastStart,
//                 and WriteI[-1].start <= LastStart.

void LiveRangeUpdater::print(raw_ostream &OS) const {
  if (!isDirty()) {
    if (LR)
      OS << "Clean updater: " << *LR << '\n';
    else
      OS << "Null updater.\n";
    return;
  }
  assert(LR && "Can't have null LR in dirty updater.");
  OS << " updater with gap = " << (ReadI - WriteI)
     << ", last start = " << LastStart
     << ":\n  Area 1:";
  for (const auto &S : make_range(LR->begin(), WriteI))
    OS << ' ' << S;
  OS << "\n  Spills:";
  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
    OS << ' ' << Spills[I];
  OS << "\n  Area 2:";
  for (const auto &S : make_range(ReadI, LR->end()))
    OS << ' ' << S;
  OS << '\n';
}

void LiveRangeUpdater::dump() const
{
  print(errs());
}

// Determine if A and B should be coalesced.
static inline bool coalescable(const LiveRange::Segment &A,
                               const LiveRange::Segment &B) {
  assert(A.start <= B.start && "Unordered live segments.");
  if (A.end == B.start)
    return A.valno == B.valno;
  if (A.end < B.start)
    return false;
  assert(A.valno == B.valno && "Cannot overlap different values");
  return true;
}

void LiveRangeUpdater::add(LiveRange::Segment Seg) {
  assert(LR && "Cannot add to a null destination");

  // Flush the state if Start moves backwards.
  if (!LastStart.isValid() || LastStart > Seg.start) {
    if (isDirty())
      flush();
    // This brings us to an uninitialized state. Reinitialize.
    assert(Spills.empty() && "Leftover spilled segments");
    WriteI = ReadI = LR->begin();
  }

  // Remember start for next time.
  LastStart = Seg.start;

  // Advance ReadI until it ends after Seg.start.
  LiveRange::iterator E = LR->end();
  if (ReadI != E && ReadI->end <= Seg.start) {
    // First try to close the gap between WriteI and ReadI with spills.
    if (ReadI != WriteI)
      mergeSpills();
    // Then advance ReadI.
    if (ReadI == WriteI)
      ReadI = WriteI = LR->find(Seg.start);
    else
      while (ReadI != E && ReadI->end <= Seg.start)
        *WriteI++ = *ReadI++;
  }

  assert(ReadI == E || ReadI->end > Seg.start);

  // Check if the ReadI segment begins early.
  if (ReadI != E && ReadI->start <= Seg.start) {
    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
    // Bail if Seg is completely contained in ReadI.
    if (ReadI->end >= Seg.end)
      return;
    // Coalesce into Seg.
    Seg.start = ReadI->start;
    ++ReadI;
  }

  // Coalesce as much as possible from ReadI into Seg.
  while (ReadI != E && coalescable(Seg, *ReadI)) {
    Seg.end = std::max(Seg.end, ReadI->end);
    ++ReadI;
  }

  // Try coalescing Spills.back() into Seg.
  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
    Seg.start = Spills.back().start;
    Seg.end = std::max(Spills.back().end, Seg.end);
    Spills.pop_back();
  }

  // Try coalescing Seg into WriteI[-1].
  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
    return;
  }

  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
  if (WriteI != ReadI) {
    *WriteI++ = Seg;
    return;
  }

  // Finally, append to LR or Spills.
  if (WriteI == E) {
    LR->segments.push_back(Seg);
    WriteI = ReadI = LR->end();
  } else
    Spills.push_back(Seg);
}

// Merge as many spilled segments as possible into the gap between WriteI
// and ReadI. Advance WriteI to reflect the inserted instructions.
void LiveRangeUpdater::mergeSpills() {
  // Perform a backwards merge of Spills and [SpillI;WriteI).
  size_t GapSize = ReadI - WriteI;
  size_t NumMoved = std::min(Spills.size(), GapSize);
  LiveRange::iterator Src = WriteI;
  LiveRange::iterator Dst = Src + NumMoved;
  LiveRange::iterator SpillSrc = Spills.end();
  LiveRange::iterator B = LR->begin();

  // This is the new WriteI position after merging spills.
  WriteI = Dst;

  // Now merge Src and Spills backwards.
  while (Src != Dst) {
    if (Src != B && Src[-1].start > SpillSrc[-1].start)
      *--Dst = *--Src;
    else
      *--Dst = *--SpillSrc;
  }
  assert(NumMoved == size_t(Spills.end() - SpillSrc));
  Spills.erase(SpillSrc, Spills.end());
}

void LiveRangeUpdater::flush() {
  if (!isDirty())
    return;
  // Clear the dirty state.
  LastStart = SlotIndex();

  assert(LR && "Cannot add to a null destination");

  // Nothing to merge?
  if (Spills.empty()) {
    LR->segments.erase(WriteI, ReadI);
    LR->verify();
    return;
  }

  // Resize the WriteI - ReadI gap to match Spills.
  size_t GapSize = ReadI - WriteI;
  if (GapSize < Spills.size()) {
    // The gap is too small. Make some room.
    size_t WritePos = WriteI - LR->begin();
    LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
    // This also invalidated ReadI, but it is recomputed below.
    WriteI = LR->begin() + WritePos;
  } else {
    // Shrink the gap if necessary.
    LR->segments.erase(WriteI + Spills.size(), ReadI);
  }
  ReadI = WriteI + Spills.size();
  mergeSpills();
  LR->verify();
}

unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
  // Create initial equivalence classes.
  EqClass.clear();
  EqClass.grow(LI->getNumValNums());

  const VNInfo *used = nullptr, *unused = nullptr;

  // Determine connections.
  for (const VNInfo *VNI : LI->valnos) {
    // Group all unused values into one class.
    if (VNI->isUnused()) {
      if (unused)
        EqClass.join(unused->id, VNI->id);
      unused = VNI;
      continue;
    }
    used = VNI;
    if (VNI->isPHIDef()) {
      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
      assert(MBB && "Phi-def has no defining MBB");
      // Connect to values live out of predecessors.
      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
           PE = MBB->pred_end(); PI != PE; ++PI)
        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
          EqClass.join(VNI->id, PVNI->id);
    } else {
      // Normal value defined by an instruction. Check for two-addr redef.
      // FIXME: This could be coincidental. Should we really check for a tied
      // operand constraint?
      // Note that VNI->def may be a use slot for an early clobber def.
      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
        EqClass.join(VNI->id, UVNI->id);
    }
  }

  // Lump all the unused values in with the last used value.
  if (used && unused)
    EqClass.join(used->id, unused->id);

  EqClass.compress();
  return EqClass.getNumClasses();
}

void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
                                          MachineRegisterInfo &MRI) {
  assert(LIV[0] && "LIV[0] must be set");
  LiveInterval &LI = *LIV[0];

  // Rewrite instructions.
  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
       RE = MRI.reg_end(); RI != RE;) {
    MachineOperand &MO = *RI;
    MachineInstr *MI = RI->getParent();
    ++RI;
    // DBG_VALUE instructions don't have slot indexes, so get the index of the
    // instruction before them.
    // Normally, DBG_VALUE instructions are removed before this function is
    // called, but it is not a requirement.
    SlotIndex Idx;
    if (MI->isDebugValue())
      Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
    else
      Idx = LIS.getInstructionIndex(MI);
    LiveQueryResult LRQ = LI.Query(Idx);
    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
    // In the case of an <undef> use that isn't tied to any def, VNI will be
    // NULL. If the use is tied to a def, VNI will be the defined value.
    if (!VNI)
      continue;
    MO.setReg(LIV[getEqClass(VNI)]->reg);
  }

  // Move runs to new intervals.
  LiveInterval::iterator J = LI.begin(), E = LI.end();
  while (J != E && EqClass[J->valno->id] == 0)
    ++J;
  for (LiveInterval::iterator I = J; I != E; ++I) {
    if (unsigned eq = EqClass[I->valno->id]) {
      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
             "New intervals should be empty");
      LIV[eq]->segments.push_back(*I);
    } else
      *J++ = *I;
  }
  // TODO: do not cheat anymore by simply cleaning all subranges
  LI.clearSubRanges();
  LI.segments.erase(J, E);

  // Transfer VNInfos to their new owners and renumber them.
  unsigned j = 0, e = LI.getNumValNums();
  while (j != e && EqClass[j] == 0)
    ++j;
  for (unsigned i = j; i != e; ++i) {
    VNInfo *VNI = LI.getValNumInfo(i);
    if (unsigned eq = EqClass[i]) {
      VNI->id = LIV[eq]->getNumValNums();
      LIV[eq]->valnos.push_back(VNI);
    } else {
      VNI->id = j;
      LI.valnos[j++] = VNI;
    }
  }
  LI.valnos.resize(j);
}