llvm.org GIT mirror llvm / 1b27914 lib / CodeGen / CriticalAntiDepBreaker.cpp
1b27914

Tree @1b27914 (Download .tar.gz)

CriticalAntiDepBreaker.cpp @1b27914raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CriticalAntiDepBreaker class, which
// implements register anti-dependence breaking along a blocks
// critical path during post-RA scheduler.
//
//===----------------------------------------------------------------------===//

#include "CriticalAntiDepBreaker.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"

using namespace llvm;

#define DEBUG_TYPE "post-RA-sched"

CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
                                               const RegisterClassInfo &RCI)
    : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
      TII(MF.getSubtarget().getInstrInfo()),
      TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
      Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
      DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}

CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
}

void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
  const unsigned BBSize = BB->size();
  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
    // Clear out the register class data.
    Classes[i] = nullptr;

    // Initialize the indices to indicate that no registers are live.
    KillIndices[i] = ~0u;
    DefIndices[i] = BBSize;
  }

  // Clear "do not change" set.
  KeepRegs.reset();

  bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());

  // Examine the live-in regs of all successors.
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
         SE = BB->succ_end(); SI != SE; ++SI)
    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
           E = (*SI)->livein_end(); I != E; ++I) {
      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
        unsigned Reg = *AI;
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
        KillIndices[Reg] = BBSize;
        DefIndices[Reg] = ~0u;
      }
    }

  // Mark live-out callee-saved registers. In a return block this is
  // all callee-saved registers. In non-return this is any
  // callee-saved register that is not saved in the prolog.
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  BitVector Pristine = MFI->getPristineRegs(BB);
  for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
    if (!IsReturnBlock && !Pristine.test(*I)) continue;
    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
      unsigned Reg = *AI;
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
      KillIndices[Reg] = BBSize;
      DefIndices[Reg] = ~0u;
    }
  }
}

void CriticalAntiDepBreaker::FinishBlock() {
  RegRefs.clear();
  KeepRegs.reset();
}

void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
                                     unsigned InsertPosIndex) {
  // Kill instructions can define registers but are really nops, and there might
  // be a real definition earlier that needs to be paired with uses dominated by
  // this kill.

  // FIXME: It may be possible to remove the isKill() restriction once PR18663
  // has been properly fixed. There can be value in processing kills as seen in
  // the AggressiveAntiDepBreaker class.
  if (MI->isDebugValue() || MI->isKill())
    return;
  assert(Count < InsertPosIndex && "Instruction index out of expected range!");

  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    if (KillIndices[Reg] != ~0u) {
      // If Reg is currently live, then mark that it can't be renamed as
      // we don't know the extent of its live-range anymore (now that it
      // has been scheduled).
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
      KillIndices[Reg] = Count;
    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
      // Any register which was defined within the previous scheduling region
      // may have been rescheduled and its lifetime may overlap with registers
      // in ways not reflected in our current liveness state. For each such
      // register, adjust the liveness state to be conservatively correct.
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

      // Move the def index to the end of the previous region, to reflect
      // that the def could theoretically have been scheduled at the end.
      DefIndices[Reg] = InsertPosIndex;
    }
  }

  PrescanInstruction(MI);
  ScanInstruction(MI, Count);
}

/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
/// critical path.
static const SDep *CriticalPathStep(const SUnit *SU) {
  const SDep *Next = nullptr;
  unsigned NextDepth = 0;
  // Find the predecessor edge with the greatest depth.
  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
       P != PE; ++P) {
    const SUnit *PredSU = P->getSUnit();
    unsigned PredLatency = P->getLatency();
    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    // In the case of a latency tie, prefer an anti-dependency edge over
    // other types of edges.
    if (NextDepth < PredTotalLatency ||
        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
      NextDepth = PredTotalLatency;
      Next = &*P;
    }
  }
  return Next;
}

void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
  // It's not safe to change register allocation for source operands of
  // instructions that have special allocation requirements. Also assume all
  // registers used in a call must not be changed (ABI).
  // FIXME: The issue with predicated instruction is more complex. We are being
  // conservative here because the kill markers cannot be trusted after
  // if-conversion:
  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
  // ...
  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
  //
  // The first R6 kill is not really a kill since it's killed by a predicated
  // instruction which may not be executed. The second R6 def may or may not
  // re-define R6 so it's not safe to change it since the last R6 use cannot be
  // changed.
  bool Special = MI->isCall() ||
    MI->hasExtraSrcRegAllocReq() ||
    TII->isPredicated(MI);

  // Scan the register operands for this instruction and update
  // Classes and RegRefs.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;
    const TargetRegisterClass *NewRC = nullptr;

    if (i < MI->getDesc().getNumOperands())
      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);

    // For now, only allow the register to be changed if its register
    // class is consistent across all uses.
    if (!Classes[Reg] && NewRC)
      Classes[Reg] = NewRC;
    else if (!NewRC || Classes[Reg] != NewRC)
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

    // Now check for aliases.
    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
      // If an alias of the reg is used during the live range, give up.
      // Note that this allows us to skip checking if AntiDepReg
      // overlaps with any of the aliases, among other things.
      unsigned AliasReg = *AI;
      if (Classes[AliasReg]) {
        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
      }
    }

    // If we're still willing to consider this register, note the reference.
    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
      RegRefs.insert(std::make_pair(Reg, &MO));

    // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
    // it or any of its sub or super regs. We need to use KeepRegs to mark the
    // reg because not all uses of the same reg within an instruction are
    // necessarily tagged as tied.
    // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
    // def register but not the second (see PR20020 for details).
    // FIXME: can this check be relaxed to account for undef uses
    // of a register? In the above 'xor' example, the uses of %eax are undef, so
    // earlier instructions could still replace %eax even though the 'xor'
    // itself can't be changed.
    if (MI->isRegTiedToUseOperand(i) &&
        Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs) {
        KeepRegs.set(*SubRegs);
      }
      for (MCSuperRegIterator SuperRegs(Reg, TRI);
           SuperRegs.isValid(); ++SuperRegs) {
        KeepRegs.set(*SuperRegs);
      }
    }

    if (MO.isUse() && Special) {
      if (!KeepRegs.test(Reg)) {
        for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
             SubRegs.isValid(); ++SubRegs)
          KeepRegs.set(*SubRegs);
      }
    }
  }
}

void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
                                             unsigned Count) {
  // Update liveness.
  // Proceeding upwards, registers that are defed but not used in this
  // instruction are now dead.
  assert(!MI->isKill() && "Attempting to scan a kill instruction");

  if (!TII->isPredicated(MI)) {
    // Predicated defs are modeled as read + write, i.e. similar to two
    // address updates.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);

      if (MO.isRegMask())
        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
          if (MO.clobbersPhysReg(i)) {
            DefIndices[i] = Count;
            KillIndices[i] = ~0u;
            KeepRegs.reset(i);
            Classes[i] = nullptr;
            RegRefs.erase(i);
          }

      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;
      if (!MO.isDef()) continue;

      // If we've already marked this reg as unchangeable, carry on.
      if (KeepRegs.test(Reg)) continue;
      
      // Ignore two-addr defs.
      if (MI->isRegTiedToUseOperand(i)) continue;

      // For the reg itself and all subregs: update the def to current;
      // reset the kill state, any restrictions, and references.
      for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
        unsigned SubregReg = *SRI;
        DefIndices[SubregReg] = Count;
        KillIndices[SubregReg] = ~0u;
        KeepRegs.reset(SubregReg);
        Classes[SubregReg] = nullptr;
        RegRefs.erase(SubregReg);
      }
      // Conservatively mark super-registers as unusable.
      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
    }
  }
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;
    if (!MO.isUse()) continue;

    const TargetRegisterClass *NewRC = nullptr;
    if (i < MI->getDesc().getNumOperands())
      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);

    // For now, only allow the register to be changed if its register
    // class is consistent across all uses.
    if (!Classes[Reg] && NewRC)
      Classes[Reg] = NewRC;
    else if (!NewRC || Classes[Reg] != NewRC)
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

    RegRefs.insert(std::make_pair(Reg, &MO));

    // It wasn't previously live but now it is, this is a kill.
    // Repeat for all aliases.
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
      unsigned AliasReg = *AI;
      if (KillIndices[AliasReg] == ~0u) {
        KillIndices[AliasReg] = Count;
        DefIndices[AliasReg] = ~0u;
      }
    }
  }
}

// Check all machine operands that reference the antidependent register and must
// be replaced by NewReg. Return true if any of their parent instructions may
// clobber the new register.
//
// Note: AntiDepReg may be referenced by a two-address instruction such that
// it's use operand is tied to a def operand. We guard against the case in which
// the two-address instruction also defines NewReg, as may happen with
// pre/postincrement loads. In this case, both the use and def operands are in
// RegRefs because the def is inserted by PrescanInstruction and not erased
// during ScanInstruction. So checking for an instruction with definitions of
// both NewReg and AntiDepReg covers it.
bool
CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
                                                RegRefIter RegRefEnd,
                                                unsigned NewReg)
{
  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
    MachineOperand *RefOper = I->second;

    // Don't allow the instruction defining AntiDepReg to earlyclobber its
    // operands, in case they may be assigned to NewReg. In this case antidep
    // breaking must fail, but it's too rare to bother optimizing.
    if (RefOper->isDef() && RefOper->isEarlyClobber())
      return true;

    // Handle cases in which this instruction defines NewReg.
    MachineInstr *MI = RefOper->getParent();
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &CheckOper = MI->getOperand(i);

      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
        return true;

      if (!CheckOper.isReg() || !CheckOper.isDef() ||
          CheckOper.getReg() != NewReg)
        continue;

      // Don't allow the instruction to define NewReg and AntiDepReg.
      // When AntiDepReg is renamed it will be an illegal op.
      if (RefOper->isDef())
        return true;

      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
      // NewReg.
      if (CheckOper.isEarlyClobber())
        return true;

      // Don't allow inline asm to define NewReg at all. Who knows what it's
      // doing with it.
      if (MI->isInlineAsm())
        return true;
    }
  }
  return false;
}

unsigned CriticalAntiDepBreaker::
findSuitableFreeRegister(RegRefIter RegRefBegin,
                         RegRefIter RegRefEnd,
                         unsigned AntiDepReg,
                         unsigned LastNewReg,
                         const TargetRegisterClass *RC,
                         SmallVectorImpl<unsigned> &Forbid)
{
  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
  for (unsigned i = 0; i != Order.size(); ++i) {
    unsigned NewReg = Order[i];
    // Don't replace a register with itself.
    if (NewReg == AntiDepReg) continue;
    // Don't replace a register with one that was recently used to repair
    // an anti-dependence with this AntiDepReg, because that would
    // re-introduce that anti-dependence.
    if (NewReg == LastNewReg) continue;
    // If any instructions that define AntiDepReg also define the NewReg, it's
    // not suitable.  For example, Instruction with multiple definitions can
    // result in this condition.
    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
    // If NewReg is dead and NewReg's most recent def is not before
    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
           && "Kill and Def maps aren't consistent for AntiDepReg!");
    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
           && "Kill and Def maps aren't consistent for NewReg!");
    if (KillIndices[NewReg] != ~0u ||
        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
        KillIndices[AntiDepReg] > DefIndices[NewReg])
      continue;
    // If NewReg overlaps any of the forbidden registers, we can't use it.
    bool Forbidden = false;
    for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
           ite = Forbid.end(); it != ite; ++it)
      if (TRI->regsOverlap(NewReg, *it)) {
        Forbidden = true;
        break;
      }
    if (Forbidden) continue;
    return NewReg;
  }

  // No registers are free and available!
  return 0;
}

unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit>& SUnits,
                      MachineBasicBlock::iterator Begin,
                      MachineBasicBlock::iterator End,
                      unsigned InsertPosIndex,
                      DbgValueVector &DbgValues) {
  // The code below assumes that there is at least one instruction,
  // so just duck out immediately if the block is empty.
  if (SUnits.empty()) return 0;

  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
  // This is used for updating debug information.
  //
  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;

  // Find the node at the bottom of the critical path.
  const SUnit *Max = nullptr;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    const SUnit *SU = &SUnits[i];
    MISUnitMap[SU->getInstr()] = SU;
    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
      Max = SU;
  }

#ifndef NDEBUG
  {
    DEBUG(dbgs() << "Critical path has total latency "
          << (Max->getDepth() + Max->Latency) << "\n");
    DEBUG(dbgs() << "Available regs:");
    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
      if (KillIndices[Reg] == ~0u)
        DEBUG(dbgs() << " " << TRI->getName(Reg));
    }
    DEBUG(dbgs() << '\n');
  }
#endif

  // Track progress along the critical path through the SUnit graph as we walk
  // the instructions.
  const SUnit *CriticalPathSU = Max;
  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();

  // Consider this pattern:
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  // There are three anti-dependencies here, and without special care,
  // we'd break all of them using the same register:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  // because at each anti-dependence, B is the first register that
  // isn't A which is free.  This re-introduces anti-dependencies
  // at all but one of the original anti-dependencies that we were
  // trying to break.  To avoid this, keep track of the most recent
  // register that each register was replaced with, avoid
  // using it to repair an anti-dependence on the same register.
  // This lets us produce this:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   C = ...
  //   ... = C
  //   B = ...
  //   ... = B
  // This still has an anti-dependence on B, but at least it isn't on the
  // original critical path.
  //
  // TODO: If we tracked more than one register here, we could potentially
  // fix that remaining critical edge too. This is a little more involved,
  // because unlike the most recent register, less recent registers should
  // still be considered, though only if no other registers are available.
  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);

  // Attempt to break anti-dependence edges on the critical path. Walk the
  // instructions from the bottom up, tracking information about liveness
  // as we go to help determine which registers are available.
  unsigned Broken = 0;
  unsigned Count = InsertPosIndex - 1;
  for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
    MachineInstr *MI = --I;
    // Kill instructions can define registers but are really nops, and there
    // might be a real definition earlier that needs to be paired with uses
    // dominated by this kill.
    
    // FIXME: It may be possible to remove the isKill() restriction once PR18663
    // has been properly fixed. There can be value in processing kills as seen
    // in the AggressiveAntiDepBreaker class.
    if (MI->isDebugValue() || MI->isKill())
      continue;

    // Check if this instruction has a dependence on the critical path that
    // is an anti-dependence that we may be able to break. If it is, set
    // AntiDepReg to the non-zero register associated with the anti-dependence.
    //
    // We limit our attention to the critical path as a heuristic to avoid
    // breaking anti-dependence edges that aren't going to significantly
    // impact the overall schedule. There are a limited number of registers
    // and we want to save them for the important edges.
    //
    // TODO: Instructions with multiple defs could have multiple
    // anti-dependencies. The current code here only knows how to break one
    // edge per instruction. Note that we'd have to be able to break all of
    // the anti-dependencies in an instruction in order to be effective.
    unsigned AntiDepReg = 0;
    if (MI == CriticalPathMI) {
      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
        const SUnit *NextSU = Edge->getSUnit();

        // Only consider anti-dependence edges.
        if (Edge->getKind() == SDep::Anti) {
          AntiDepReg = Edge->getReg();
          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
          if (!MRI.isAllocatable(AntiDepReg))
            // Don't break anti-dependencies on non-allocatable registers.
            AntiDepReg = 0;
          else if (KeepRegs.test(AntiDepReg))
            // Don't break anti-dependencies if a use down below requires
            // this exact register.
            AntiDepReg = 0;
          else {
            // If the SUnit has other dependencies on the SUnit that it
            // anti-depends on, don't bother breaking the anti-dependency
            // since those edges would prevent such units from being
            // scheduled past each other regardless.
            //
            // Also, if there are dependencies on other SUnits with the
            // same register as the anti-dependency, don't attempt to
            // break it.
            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
              if (P->getSUnit() == NextSU ?
                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
                AntiDepReg = 0;
                break;
              }
          }
        }
        CriticalPathSU = NextSU;
        CriticalPathMI = CriticalPathSU->getInstr();
      } else {
        // We've reached the end of the critical path.
        CriticalPathSU = nullptr;
        CriticalPathMI = nullptr;
      }
    }

    PrescanInstruction(MI);

    SmallVector<unsigned, 2> ForbidRegs;

    // If MI's defs have a special allocation requirement, don't allow
    // any def registers to be changed. Also assume all registers
    // defined in a call must not be changed (ABI).
    if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
      // If this instruction's defs have special allocation requirement, don't
      // break this anti-dependency.
      AntiDepReg = 0;
    else if (AntiDepReg) {
      // If this instruction has a use of AntiDepReg, breaking it
      // is invalid.  If the instruction defines other registers,
      // save a list of them so that we don't pick a new register
      // that overlaps any of them.
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg()) continue;
        unsigned Reg = MO.getReg();
        if (Reg == 0) continue;
        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
          AntiDepReg = 0;
          break;
        }
        if (MO.isDef() && Reg != AntiDepReg)
          ForbidRegs.push_back(Reg);
      }
    }

    // Determine AntiDepReg's register class, if it is live and is
    // consistently used within a single class.
    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
                                                    : nullptr;
    assert((AntiDepReg == 0 || RC != nullptr) &&
           "Register should be live if it's causing an anti-dependence!");
    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
      AntiDepReg = 0;

    // Look for a suitable register to use to break the anti-dependence.
    //
    // TODO: Instead of picking the first free register, consider which might
    // be the best.
    if (AntiDepReg != 0) {
      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
                std::multimap<unsigned, MachineOperand *>::iterator>
        Range = RegRefs.equal_range(AntiDepReg);
      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
                                                     AntiDepReg,
                                                     LastNewReg[AntiDepReg],
                                                     RC, ForbidRegs)) {
        DEBUG(dbgs() << "Breaking anti-dependence edge on "
              << TRI->getName(AntiDepReg)
              << " with " << RegRefs.count(AntiDepReg) << " references"
              << " using " << TRI->getName(NewReg) << "!\n");

        // Update the references to the old register to refer to the new
        // register.
        for (std::multimap<unsigned, MachineOperand *>::iterator
             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
          Q->second->setReg(NewReg);
          // If the SU for the instruction being updated has debug information
          // related to the anti-dependency register, make sure to update that
          // as well.
          const SUnit *SU = MISUnitMap[Q->second->getParent()];
          if (!SU) continue;
          for (DbgValueVector::iterator DVI = DbgValues.begin(),
                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
            if (DVI->second == Q->second->getParent())
              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
        }

        // We just went back in time and modified history; the
        // liveness information for the anti-dependence reg is now
        // inconsistent. Set the state as if it were dead.
        Classes[NewReg] = Classes[AntiDepReg];
        DefIndices[NewReg] = DefIndices[AntiDepReg];
        KillIndices[NewReg] = KillIndices[AntiDepReg];
        assert(((KillIndices[NewReg] == ~0u) !=
                (DefIndices[NewReg] == ~0u)) &&
             "Kill and Def maps aren't consistent for NewReg!");

        Classes[AntiDepReg] = nullptr;
        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
        KillIndices[AntiDepReg] = ~0u;
        assert(((KillIndices[AntiDepReg] == ~0u) !=
                (DefIndices[AntiDepReg] == ~0u)) &&
             "Kill and Def maps aren't consistent for AntiDepReg!");

        RegRefs.erase(AntiDepReg);
        LastNewReg[AntiDepReg] = NewReg;
        ++Broken;
      }
    }

    ScanInstruction(MI, Count);
  }

  return Broken;
}