llvm.org GIT mirror llvm / 1b27914 include / llvm / Support / GenericDomTree.h
1b27914

Tree @1b27914 (Download .tar.gz)

GenericDomTree.h @1b27914raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines a set of templates that efficiently compute a dominator
/// tree over a generic graph. This is used typically in LLVM for fast
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
/// graph types.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
#define LLVM_SUPPORT_GENERICDOMTREE_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

namespace llvm {

/// \brief Base class that other, more interesting dominator analyses
/// inherit from.
template <class NodeT> class DominatorBase {
protected:
  std::vector<NodeT *> Roots;
  bool IsPostDominators;
  explicit DominatorBase(bool isPostDom)
      : Roots(), IsPostDominators(isPostDom) {}
  DominatorBase(DominatorBase &&Arg)
      : Roots(std::move(Arg.Roots)),
        IsPostDominators(std::move(Arg.IsPostDominators)) {
    Arg.Roots.clear();
  }
  DominatorBase &operator=(DominatorBase &&RHS) {
    Roots = std::move(RHS.Roots);
    IsPostDominators = std::move(RHS.IsPostDominators);
    RHS.Roots.clear();
    return *this;
  }

public:
  /// getRoots - Return the root blocks of the current CFG.  This may include
  /// multiple blocks if we are computing post dominators.  For forward
  /// dominators, this will always be a single block (the entry node).
  ///
  const std::vector<NodeT *> &getRoots() const { return Roots; }

  /// isPostDominator - Returns true if analysis based of postdoms
  ///
  bool isPostDominator() const { return IsPostDominators; }
};

template <class NodeT> class DominatorTreeBase;
struct PostDominatorTree;

/// \brief Base class for the actual dominator tree node.
template <class NodeT> class DomTreeNodeBase {
  NodeT *TheBB;
  DomTreeNodeBase<NodeT> *IDom;
  std::vector<DomTreeNodeBase<NodeT> *> Children;
  mutable int DFSNumIn, DFSNumOut;

  template <class N> friend class DominatorTreeBase;
  friend struct PostDominatorTree;

public:
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
      const_iterator;

  iterator begin() { return Children.begin(); }
  iterator end() { return Children.end(); }
  const_iterator begin() const { return Children.begin(); }
  const_iterator end() const { return Children.end(); }

  NodeT *getBlock() const { return TheBB; }
  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
  const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
    return Children;
  }

  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
      : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}

  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
    Children.push_back(C);
    return C;
  }

  size_t getNumChildren() const { return Children.size(); }

  void clearAllChildren() { Children.clear(); }

  bool compare(const DomTreeNodeBase<NodeT> *Other) const {
    if (getNumChildren() != Other->getNumChildren())
      return true;

    SmallPtrSet<const NodeT *, 4> OtherChildren;
    for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
      const NodeT *Nd = (*I)->getBlock();
      OtherChildren.insert(Nd);
    }

    for (const_iterator I = begin(), E = end(); I != E; ++I) {
      const NodeT *N = (*I)->getBlock();
      if (OtherChildren.count(N) == 0)
        return true;
    }
    return false;
  }

  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
    assert(IDom && "No immediate dominator?");
    if (IDom != NewIDom) {
      typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
          std::find(IDom->Children.begin(), IDom->Children.end(), this);
      assert(I != IDom->Children.end() &&
             "Not in immediate dominator children set!");
      // I am no longer your child...
      IDom->Children.erase(I);

      // Switch to new dominator
      IDom = NewIDom;
      IDom->Children.push_back(this);
    }
  }

  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
  /// not call them.
  unsigned getDFSNumIn() const { return DFSNumIn; }
  unsigned getDFSNumOut() const { return DFSNumOut; }

private:
  // Return true if this node is dominated by other. Use this only if DFS info
  // is valid.
  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
    return this->DFSNumIn >= other->DFSNumIn &&
           this->DFSNumOut <= other->DFSNumOut;
  }
};

template <class NodeT>
raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
  if (Node->getBlock())
    Node->getBlock()->printAsOperand(o, false);
  else
    o << " <<exit node>>";

  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";

  return o << "\n";
}

template <class NodeT>
void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
                  unsigned Lev) {
  o.indent(2 * Lev) << "[" << Lev << "] " << N;
  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
                                                       E = N->end();
       I != E; ++I)
    PrintDomTree<NodeT>(*I, o, Lev + 1);
}

// The calculate routine is provided in a separate header but referenced here.
template <class FuncT, class N>
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
               FuncT &F);

/// \brief Core dominator tree base class.
///
/// This class is a generic template over graph nodes. It is instantiated for
/// various graphs in the LLVM IR or in the code generator.
template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
  DominatorTreeBase(const DominatorTreeBase &) LLVM_DELETED_FUNCTION;
  DominatorTreeBase &operator=(const DominatorTreeBase &) LLVM_DELETED_FUNCTION;

  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
                               const DomTreeNodeBase<NodeT> *B) const {
    assert(A != B);
    assert(isReachableFromEntry(B));
    assert(isReachableFromEntry(A));

    const DomTreeNodeBase<NodeT> *IDom;
    while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
      B = IDom; // Walk up the tree
    return IDom != nullptr;
  }

  /// \brief Wipe this tree's state without releasing any resources.
  ///
  /// This is essentially a post-move helper only. It leaves the object in an
  /// assignable and destroyable state, but otherwise invalid.
  void wipe() {
    DomTreeNodes.clear();
    IDoms.clear();
    Vertex.clear();
    Info.clear();
    RootNode = nullptr;
  }

protected:
  typedef DenseMap<NodeT *, DomTreeNodeBase<NodeT> *> DomTreeNodeMapType;
  DomTreeNodeMapType DomTreeNodes;
  DomTreeNodeBase<NodeT> *RootNode;

  mutable bool DFSInfoValid;
  mutable unsigned int SlowQueries;
  // Information record used during immediate dominators computation.
  struct InfoRec {
    unsigned DFSNum;
    unsigned Parent;
    unsigned Semi;
    NodeT *Label;

    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
  };

  DenseMap<NodeT *, NodeT *> IDoms;

  // Vertex - Map the DFS number to the NodeT*
  std::vector<NodeT *> Vertex;

  // Info - Collection of information used during the computation of idoms.
  DenseMap<NodeT *, InfoRec> Info;

  void reset() {
    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
                                               E = DomTreeNodes.end();
         I != E; ++I)
      delete I->second;
    DomTreeNodes.clear();
    IDoms.clear();
    this->Roots.clear();
    Vertex.clear();
    RootNode = nullptr;
  }

  // NewBB is split and now it has one successor. Update dominator tree to
  // reflect this change.
  template <class N, class GraphT>
  void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
             typename GraphT::NodeType *NewBB) {
    assert(std::distance(GraphT::child_begin(NewBB),
                         GraphT::child_end(NewBB)) == 1 &&
           "NewBB should have a single successor!");
    typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);

    std::vector<typename GraphT::NodeType *> PredBlocks;
    typedef GraphTraits<Inverse<N>> InvTraits;
    for (typename InvTraits::ChildIteratorType
             PI = InvTraits::child_begin(NewBB),
             PE = InvTraits::child_end(NewBB);
         PI != PE; ++PI)
      PredBlocks.push_back(*PI);

    assert(!PredBlocks.empty() && "No predblocks?");

    bool NewBBDominatesNewBBSucc = true;
    for (typename InvTraits::ChildIteratorType
             PI = InvTraits::child_begin(NewBBSucc),
             E = InvTraits::child_end(NewBBSucc);
         PI != E; ++PI) {
      typename InvTraits::NodeType *ND = *PI;
      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
          DT.isReachableFromEntry(ND)) {
        NewBBDominatesNewBBSucc = false;
        break;
      }
    }

    // Find NewBB's immediate dominator and create new dominator tree node for
    // NewBB.
    NodeT *NewBBIDom = nullptr;
    unsigned i = 0;
    for (i = 0; i < PredBlocks.size(); ++i)
      if (DT.isReachableFromEntry(PredBlocks[i])) {
        NewBBIDom = PredBlocks[i];
        break;
      }

    // It's possible that none of the predecessors of NewBB are reachable;
    // in that case, NewBB itself is unreachable, so nothing needs to be
    // changed.
    if (!NewBBIDom)
      return;

    for (i = i + 1; i < PredBlocks.size(); ++i) {
      if (DT.isReachableFromEntry(PredBlocks[i]))
        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
    }

    // Create the new dominator tree node... and set the idom of NewBB.
    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);

    // If NewBB strictly dominates other blocks, then it is now the immediate
    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
    if (NewBBDominatesNewBBSucc) {
      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
    }
  }

public:
  explicit DominatorTreeBase(bool isPostDom)
      : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
  ~DominatorTreeBase() { reset(); }

  DominatorTreeBase(DominatorTreeBase &&Arg)
      : DominatorBase<NodeT>(
            std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
        DomTreeNodes(std::move(Arg.DomTreeNodes)),
        RootNode(std::move(Arg.RootNode)),
        DFSInfoValid(std::move(Arg.DFSInfoValid)),
        SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
        Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
    Arg.wipe();
  }
  DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
    DominatorBase<NodeT>::operator=(
        std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
    DomTreeNodes = std::move(RHS.DomTreeNodes);
    RootNode = std::move(RHS.RootNode);
    DFSInfoValid = std::move(RHS.DFSInfoValid);
    SlowQueries = std::move(RHS.SlowQueries);
    IDoms = std::move(RHS.IDoms);
    Vertex = std::move(RHS.Vertex);
    Info = std::move(RHS.Info);
    RHS.wipe();
    return *this;
  }

  /// compare - Return false if the other dominator tree base matches this
  /// dominator tree base. Otherwise return true.
  bool compare(const DominatorTreeBase &Other) const {

    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
      return true;

    for (typename DomTreeNodeMapType::const_iterator
             I = this->DomTreeNodes.begin(),
             E = this->DomTreeNodes.end();
         I != E; ++I) {
      NodeT *BB = I->first;
      typename DomTreeNodeMapType::const_iterator OI =
          OtherDomTreeNodes.find(BB);
      if (OI == OtherDomTreeNodes.end())
        return true;

      DomTreeNodeBase<NodeT> *MyNd = I->second;
      DomTreeNodeBase<NodeT> *OtherNd = OI->second;

      if (MyNd->compare(OtherNd))
        return true;
    }

    return false;
  }

  void releaseMemory() { reset(); }

  /// getNode - return the (Post)DominatorTree node for the specified basic
  /// block.  This is the same as using operator[] on this class.
  ///
  DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
    return DomTreeNodes.lookup(BB);
  }

  DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }

  /// getRootNode - This returns the entry node for the CFG of the function.  If
  /// this tree represents the post-dominance relations for a function, however,
  /// this root may be a node with the block == NULL.  This is the case when
  /// there are multiple exit nodes from a particular function.  Consumers of
  /// post-dominance information must be capable of dealing with this
  /// possibility.
  ///
  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }

  /// Get all nodes dominated by R, including R itself.
  void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
    Result.clear();
    const DomTreeNodeBase<NodeT> *RN = getNode(R);
    if (!RN)
      return; // If R is unreachable, it will not be present in the DOM tree.
    SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
    WL.push_back(RN);

    while (!WL.empty()) {
      const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
      Result.push_back(N->getBlock());
      WL.append(N->begin(), N->end());
    }
  }

  /// properlyDominates - Returns true iff A dominates B and A != B.
  /// Note that this is not a constant time operation!
  ///
  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
                         const DomTreeNodeBase<NodeT> *B) const {
    if (!A || !B)
      return false;
    if (A == B)
      return false;
    return dominates(A, B);
  }

  bool properlyDominates(const NodeT *A, const NodeT *B) const;

  /// isReachableFromEntry - Return true if A is dominated by the entry
  /// block of the function containing it.
  bool isReachableFromEntry(const NodeT *A) const {
    assert(!this->isPostDominator() &&
           "This is not implemented for post dominators");
    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
  }

  bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }

  /// dominates - Returns true iff A dominates B.  Note that this is not a
  /// constant time operation!
  ///
  bool dominates(const DomTreeNodeBase<NodeT> *A,
                 const DomTreeNodeBase<NodeT> *B) const {
    // A node trivially dominates itself.
    if (B == A)
      return true;

    // An unreachable node is dominated by anything.
    if (!isReachableFromEntry(B))
      return true;

    // And dominates nothing.
    if (!isReachableFromEntry(A))
      return false;

    // Compare the result of the tree walk and the dfs numbers, if expensive
    // checks are enabled.
#ifdef XDEBUG
    assert((!DFSInfoValid ||
            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
           "Tree walk disagrees with dfs numbers!");
#endif

    if (DFSInfoValid)
      return B->DominatedBy(A);

    // If we end up with too many slow queries, just update the
    // DFS numbers on the theory that we are going to keep querying.
    SlowQueries++;
    if (SlowQueries > 32) {
      updateDFSNumbers();
      return B->DominatedBy(A);
    }

    return dominatedBySlowTreeWalk(A, B);
  }

  bool dominates(const NodeT *A, const NodeT *B) const;

  NodeT *getRoot() const {
    assert(this->Roots.size() == 1 && "Should always have entry node!");
    return this->Roots[0];
  }

  /// findNearestCommonDominator - Find nearest common dominator basic block
  /// for basic block A and B. If there is no such block then return NULL.
  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
    assert(A->getParent() == B->getParent() &&
           "Two blocks are not in same function");

    // If either A or B is a entry block then it is nearest common dominator
    // (for forward-dominators).
    if (!this->isPostDominator()) {
      NodeT &Entry = A->getParent()->front();
      if (A == &Entry || B == &Entry)
        return &Entry;
    }

    // If B dominates A then B is nearest common dominator.
    if (dominates(B, A))
      return B;

    // If A dominates B then A is nearest common dominator.
    if (dominates(A, B))
      return A;

    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
    DomTreeNodeBase<NodeT> *NodeB = getNode(B);

    // If we have DFS info, then we can avoid all allocations by just querying
    // it from each IDom. Note that because we call 'dominates' twice above, we
    // expect to call through this code at most 16 times in a row without
    // building valid DFS information. This is important as below is a *very*
    // slow tree walk.
    if (DFSInfoValid) {
      DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
      while (IDomA) {
        if (NodeB->DominatedBy(IDomA))
          return IDomA->getBlock();
        IDomA = IDomA->getIDom();
      }
      return nullptr;
    }

    // Collect NodeA dominators set.
    SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
    NodeADoms.insert(NodeA);
    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
    while (IDomA) {
      NodeADoms.insert(IDomA);
      IDomA = IDomA->getIDom();
    }

    // Walk NodeB immediate dominators chain and find common dominator node.
    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
    while (IDomB) {
      if (NodeADoms.count(IDomB) != 0)
        return IDomB->getBlock();

      IDomB = IDomB->getIDom();
    }

    return nullptr;
  }

  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
    // Cast away the const qualifiers here. This is ok since
    // const is re-introduced on the return type.
    return findNearestCommonDominator(const_cast<NodeT *>(A),
                                      const_cast<NodeT *>(B));
  }

  //===--------------------------------------------------------------------===//
  // API to update (Post)DominatorTree information based on modifications to
  // the CFG...

  /// addNewBlock - Add a new node to the dominator tree information.  This
  /// creates a new node as a child of DomBB dominator node,linking it into
  /// the children list of the immediate dominator.
  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
    assert(getNode(BB) == nullptr && "Block already in dominator tree!");
    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
    assert(IDomNode && "Not immediate dominator specified for block!");
    DFSInfoValid = false;
    return DomTreeNodes[BB] =
               IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
  }

  /// changeImmediateDominator - This method is used to update the dominator
  /// tree information when a node's immediate dominator changes.
  ///
  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
                                DomTreeNodeBase<NodeT> *NewIDom) {
    assert(N && NewIDom && "Cannot change null node pointers!");
    DFSInfoValid = false;
    N->setIDom(NewIDom);
  }

  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
    changeImmediateDominator(getNode(BB), getNode(NewBB));
  }

  /// eraseNode - Removes a node from the dominator tree. Block must not
  /// dominate any other blocks. Removes node from its immediate dominator's
  /// children list. Deletes dominator node associated with basic block BB.
  void eraseNode(NodeT *BB) {
    DomTreeNodeBase<NodeT> *Node = getNode(BB);
    assert(Node && "Removing node that isn't in dominator tree.");
    assert(Node->getChildren().empty() && "Node is not a leaf node.");

    // Remove node from immediate dominator's children list.
    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
    if (IDom) {
      typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
          std::find(IDom->Children.begin(), IDom->Children.end(), Node);
      assert(I != IDom->Children.end() &&
             "Not in immediate dominator children set!");
      // I am no longer your child...
      IDom->Children.erase(I);
    }

    DomTreeNodes.erase(BB);
    delete Node;
  }

  /// removeNode - Removes a node from the dominator tree.  Block must not
  /// dominate any other blocks.  Invalidates any node pointing to removed
  /// block.
  void removeNode(NodeT *BB) {
    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
    DomTreeNodes.erase(BB);
  }

  /// splitBlock - BB is split and now it has one successor. Update dominator
  /// tree to reflect this change.
  void splitBlock(NodeT *NewBB) {
    if (this->IsPostDominators)
      this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
                                                                   NewBB);
    else
      this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
  }

  /// print - Convert to human readable form
  ///
  void print(raw_ostream &o) const {
    o << "=============================--------------------------------\n";
    if (this->isPostDominator())
      o << "Inorder PostDominator Tree: ";
    else
      o << "Inorder Dominator Tree: ";
    if (!this->DFSInfoValid)
      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
    o << "\n";

    // The postdom tree can have a null root if there are no returns.
    if (getRootNode())
      PrintDomTree<NodeT>(getRootNode(), o, 1);
  }

protected:
  template <class GraphT>
  friend typename GraphT::NodeType *
  Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
       typename GraphT::NodeType *V, unsigned LastLinked);

  template <class GraphT>
  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
                          typename GraphT::NodeType *V, unsigned N);

  template <class FuncT, class N>
  friend void
  Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);

  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
  /// dominator tree in dfs order.
  void updateDFSNumbers() const {
    unsigned DFSNum = 0;

    SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
                          typename DomTreeNodeBase<NodeT>::const_iterator>,
                32> WorkStack;

    const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();

    if (!ThisRoot)
      return;

    // Even in the case of multiple exits that form the post dominator root
    // nodes, do not iterate over all exits, but start from the virtual root
    // node. Otherwise bbs, that are not post dominated by any exit but by the
    // virtual root node, will never be assigned a DFS number.
    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
    ThisRoot->DFSNumIn = DFSNum++;

    while (!WorkStack.empty()) {
      const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
      typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
          WorkStack.back().second;

      // If we visited all of the children of this node, "recurse" back up the
      // stack setting the DFOutNum.
      if (ChildIt == Node->end()) {
        Node->DFSNumOut = DFSNum++;
        WorkStack.pop_back();
      } else {
        // Otherwise, recursively visit this child.
        const DomTreeNodeBase<NodeT> *Child = *ChildIt;
        ++WorkStack.back().second;

        WorkStack.push_back(std::make_pair(Child, Child->begin()));
        Child->DFSNumIn = DFSNum++;
      }
    }

    SlowQueries = 0;
    DFSInfoValid = true;
  }

  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
      return Node;

    // Haven't calculated this node yet?  Get or calculate the node for the
    // immediate dominator.
    NodeT *IDom = getIDom(BB);

    assert(IDom || this->DomTreeNodes[nullptr]);
    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);

    // Add a new tree node for this NodeT, and link it as a child of
    // IDomNode
    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
  }

  NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }

  void addRoot(NodeT *BB) { this->Roots.push_back(BB); }

public:
  /// recalculate - compute a dominator tree for the given function
  template <class FT> void recalculate(FT &F) {
    typedef GraphTraits<FT *> TraitsTy;
    reset();
    this->Vertex.push_back(nullptr);

    if (!this->IsPostDominators) {
      // Initialize root
      NodeT *entry = TraitsTy::getEntryNode(&F);
      this->Roots.push_back(entry);
      this->IDoms[entry] = nullptr;
      this->DomTreeNodes[entry] = nullptr;

      Calculate<FT, NodeT *>(*this, F);
    } else {
      // Initialize the roots list
      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
                                             E = TraitsTy::nodes_end(&F);
           I != E; ++I) {
        if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
          addRoot(I);

        // Prepopulate maps so that we don't get iterator invalidation issues
        // later.
        this->IDoms[I] = nullptr;
        this->DomTreeNodes[I] = nullptr;
      }

      Calculate<FT, Inverse<NodeT *>>(*this, F);
    }
  }
};

// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template <class NodeT>
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
  if (A == B)
    return true;

  // Cast away the const qualifiers here. This is ok since
  // this function doesn't actually return the values returned
  // from getNode.
  return dominates(getNode(const_cast<NodeT *>(A)),
                   getNode(const_cast<NodeT *>(B)));
}
template <class NodeT>
bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
                                                 const NodeT *B) const {
  if (A == B)
    return false;

  // Cast away the const qualifiers here. This is ok since
  // this function doesn't actually return the values returned
  // from getNode.
  return dominates(getNode(const_cast<NodeT *>(A)),
                   getNode(const_cast<NodeT *>(B)));
}

}

#endif