llvm.org GIT mirror llvm / 1a4e1d8 lib / Target / PowerPC / PPCInstrInfo.cpp
1a4e1d8

Tree @1a4e1d8 (Download .tar.gz)

PPCInstrInfo.cpp @1a4e1d8raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "PPCInstrInfo.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCHazardRecognizers.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-instr-info"

#define GET_INSTRMAP_INFO
#define GET_INSTRINFO_CTOR_DTOR
#include "PPCGenInstrInfo.inc"

static cl::
opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
            cl::desc("Disable analysis for CTR loops"));

static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
cl::desc("Disable compare instruction optimization"), cl::Hidden);

static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
cl::Hidden);

static cl::opt<bool>
UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
  cl::desc("Use the old (incorrect) instruction latency calculation"));

// Pin the vtable to this file.
void PPCInstrInfo::anchor() {}

PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
    : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
      Subtarget(STI), RI(STI.getTargetMachine()) {}

/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
ScheduleHazardRecognizer *
PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                                           const ScheduleDAG *DAG) const {
  unsigned Directive =
      static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
    const InstrItineraryData *II =
        static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
    return new ScoreboardHazardRecognizer(II, DAG);
  }

  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
}

/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
/// to use for this target when scheduling the DAG.
ScheduleHazardRecognizer *
PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                                 const ScheduleDAG *DAG) const {
  unsigned Directive =
      DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();

  // FIXME: Leaving this as-is until we have POWER9 scheduling info
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);

  // Most subtargets use a PPC970 recognizer.
  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
    assert(DAG->TII && "No InstrInfo?");

    return new PPCHazardRecognizer970(*DAG);
  }

  return new ScoreboardHazardRecognizer(II, DAG);
}

unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                       const MachineInstr &MI,
                                       unsigned *PredCost) const {
  if (!ItinData || UseOldLatencyCalc)
    return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);

  // The default implementation of getInstrLatency calls getStageLatency, but
  // getStageLatency does not do the right thing for us. While we have
  // itinerary, most cores are fully pipelined, and so the itineraries only
  // express the first part of the pipeline, not every stage. Instead, we need
  // to use the listed output operand cycle number (using operand 0 here, which
  // is an output).

  unsigned Latency = 1;
  unsigned DefClass = MI.getDesc().getSchedClass();
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
      continue;

    int Cycle = ItinData->getOperandCycle(DefClass, i);
    if (Cycle < 0)
      continue;

    Latency = std::max(Latency, (unsigned) Cycle);
  }

  return Latency;
}

int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                    const MachineInstr &DefMI, unsigned DefIdx,
                                    const MachineInstr &UseMI,
                                    unsigned UseIdx) const {
  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
                                                   UseMI, UseIdx);

  if (!DefMI.getParent())
    return Latency;

  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
  unsigned Reg = DefMO.getReg();

  bool IsRegCR;
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    const MachineRegisterInfo *MRI =
        &DefMI.getParent()->getParent()->getRegInfo();
    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
  } else {
    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
              PPC::CRBITRCRegClass.contains(Reg);
  }

  if (UseMI.isBranch() && IsRegCR) {
    if (Latency < 0)
      Latency = getInstrLatency(ItinData, DefMI);

    // On some cores, there is an additional delay between writing to a condition
    // register, and using it from a branch.
    unsigned Directive = Subtarget.getDarwinDirective();
    switch (Directive) {
    default: break;
    case PPC::DIR_7400:
    case PPC::DIR_750:
    case PPC::DIR_970:
    case PPC::DIR_E5500:
    case PPC::DIR_PWR4:
    case PPC::DIR_PWR5:
    case PPC::DIR_PWR5X:
    case PPC::DIR_PWR6:
    case PPC::DIR_PWR6X:
    case PPC::DIR_PWR7:
    case PPC::DIR_PWR8:
    // FIXME: Is this needed for POWER9?
      Latency += 2;
      break;
    }
  }

  return Latency;
}

// This function does not list all associative and commutative operations, but
// only those worth feeding through the machine combiner in an attempt to
// reduce the critical path. Mostly, this means floating-point operations,
// because they have high latencies (compared to other operations, such and
// and/or, which are also associative and commutative, but have low latencies).
bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
  switch (Inst.getOpcode()) {
  // FP Add:
  case PPC::FADD:
  case PPC::FADDS:
  // FP Multiply:
  case PPC::FMUL:
  case PPC::FMULS:
  // Altivec Add:
  case PPC::VADDFP:
  // VSX Add:
  case PPC::XSADDDP:
  case PPC::XVADDDP:
  case PPC::XVADDSP:
  case PPC::XSADDSP:
  // VSX Multiply:
  case PPC::XSMULDP:
  case PPC::XVMULDP:
  case PPC::XVMULSP:
  case PPC::XSMULSP:
  // QPX Add:
  case PPC::QVFADD:
  case PPC::QVFADDS:
  case PPC::QVFADDSs:
  // QPX Multiply:
  case PPC::QVFMUL:
  case PPC::QVFMULS:
  case PPC::QVFMULSs:
    return true;
  default:
    return false;
  }
}

bool PPCInstrInfo::getMachineCombinerPatterns(
    MachineInstr &Root,
    SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
  // Using the machine combiner in this way is potentially expensive, so
  // restrict to when aggressive optimizations are desired.
  if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
    return false;

  // FP reassociation is only legal when we don't need strict IEEE semantics.
  if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
    return false;

  return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
}

// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
                                         unsigned &SrcReg, unsigned &DstReg,
                                         unsigned &SubIdx) const {
  switch (MI.getOpcode()) {
  default: return false;
  case PPC::EXTSW:
  case PPC::EXTSW_32_64:
    SrcReg = MI.getOperand(1).getReg();
    DstReg = MI.getOperand(0).getReg();
    SubIdx = PPC::sub_32;
    return true;
  }
}

unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                           int &FrameIndex) const {
  // Note: This list must be kept consistent with LoadRegFromStackSlot.
  switch (MI.getOpcode()) {
  default: break;
  case PPC::LD:
  case PPC::LWZ:
  case PPC::LFS:
  case PPC::LFD:
  case PPC::RESTORE_CR:
  case PPC::RESTORE_CRBIT:
  case PPC::LVX:
  case PPC::LXVD2X:
  case PPC::QVLFDX:
  case PPC::QVLFSXs:
  case PPC::QVLFDXb:
  case PPC::RESTORE_VRSAVE:
    // Check for the operands added by addFrameReference (the immediate is the
    // offset which defaults to 0).
    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
        MI.getOperand(2).isFI()) {
      FrameIndex = MI.getOperand(2).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                          int &FrameIndex) const {
  // Note: This list must be kept consistent with StoreRegToStackSlot.
  switch (MI.getOpcode()) {
  default: break;
  case PPC::STD:
  case PPC::STW:
  case PPC::STFS:
  case PPC::STFD:
  case PPC::SPILL_CR:
  case PPC::SPILL_CRBIT:
  case PPC::STVX:
  case PPC::STXVD2X:
  case PPC::QVSTFDX:
  case PPC::QVSTFSXs:
  case PPC::QVSTFDXb:
  case PPC::SPILL_VRSAVE:
    // Check for the operands added by addFrameReference (the immediate is the
    // offset which defaults to 0).
    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
        MI.getOperand(2).isFI()) {
      FrameIndex = MI.getOperand(2).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                                   unsigned OpIdx1,
                                                   unsigned OpIdx2) const {
  MachineFunction &MF = *MI.getParent()->getParent();

  // Normal instructions can be commuted the obvious way.
  if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
  // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
  // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
  // changing the relative order of the mask operands might change what happens
  // to the high-bits of the mask (and, thus, the result).

  // Cannot commute if it has a non-zero rotate count.
  if (MI.getOperand(3).getImm() != 0)
    return nullptr;

  // If we have a zero rotate count, we have:
  //   M = mask(MB,ME)
  //   Op0 = (Op1 & ~M) | (Op2 & M)
  // Change this to:
  //   M = mask((ME+1)&31, (MB-1)&31)
  //   Op0 = (Op2 & ~M) | (Op1 & M)

  // Swap op1/op2
  assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
         "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
  unsigned Reg0 = MI.getOperand(0).getReg();
  unsigned Reg1 = MI.getOperand(1).getReg();
  unsigned Reg2 = MI.getOperand(2).getReg();
  unsigned SubReg1 = MI.getOperand(1).getSubReg();
  unsigned SubReg2 = MI.getOperand(2).getSubReg();
  bool Reg1IsKill = MI.getOperand(1).isKill();
  bool Reg2IsKill = MI.getOperand(2).isKill();
  bool ChangeReg0 = false;
  // If machine instrs are no longer in two-address forms, update
  // destination register as well.
  if (Reg0 == Reg1) {
    // Must be two address instruction!
    assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
           "Expecting a two-address instruction!");
    assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
    Reg2IsKill = false;
    ChangeReg0 = true;
  }

  // Masks.
  unsigned MB = MI.getOperand(4).getImm();
  unsigned ME = MI.getOperand(5).getImm();

  // We can't commute a trivial mask (there is no way to represent an all-zero
  // mask).
  if (MB == 0 && ME == 31)
    return nullptr;

  if (NewMI) {
    // Create a new instruction.
    unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
    bool Reg0IsDead = MI.getOperand(0).isDead();
    return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
        .addReg(Reg2, getKillRegState(Reg2IsKill))
        .addReg(Reg1, getKillRegState(Reg1IsKill))
        .addImm((ME + 1) & 31)
        .addImm((MB - 1) & 31);
  }

  if (ChangeReg0) {
    MI.getOperand(0).setReg(Reg2);
    MI.getOperand(0).setSubReg(SubReg2);
  }
  MI.getOperand(2).setReg(Reg1);
  MI.getOperand(1).setReg(Reg2);
  MI.getOperand(2).setSubReg(SubReg1);
  MI.getOperand(1).setSubReg(SubReg2);
  MI.getOperand(2).setIsKill(Reg1IsKill);
  MI.getOperand(1).setIsKill(Reg2IsKill);

  // Swap the mask around.
  MI.getOperand(4).setImm((ME + 1) & 31);
  MI.getOperand(5).setImm((MB - 1) & 31);
  return &MI;
}

bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
                                         unsigned &SrcOpIdx2) const {
  // For VSX A-Type FMA instructions, it is the first two operands that can be
  // commuted, however, because the non-encoded tied input operand is listed
  // first, the operands to swap are actually the second and third.

  int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
  if (AltOpc == -1)
    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);

  // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
  // and SrcOpIdx2.
  return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
}

void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator MI) const {
  // This function is used for scheduling, and the nop wanted here is the type
  // that terminates dispatch groups on the POWER cores.
  unsigned Directive = Subtarget.getDarwinDirective();
  unsigned Opcode;
  switch (Directive) {
  default:            Opcode = PPC::NOP; break;
  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
  case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
  // FIXME: Update when POWER9 scheduling model is ready.
  case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
  }

  DebugLoc DL;
  BuildMI(MBB, MI, DL, get(Opcode));
}

/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
  NopInst.setOpcode(PPC::NOP);
}

// Branch analysis.
// Note: If the condition register is set to CTR or CTR8 then this is a
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 bool AllowModify) const {
  bool isPPC64 = Subtarget.isPPC64();

  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return false;

  if (!isUnpredicatedTerminator(*I))
    return false;

  // Get the last instruction in the block.
  MachineInstr *LastInst = I;

  // If there is only one terminator instruction, process it.
  if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
    if (LastInst->getOpcode() == PPC::B) {
      if (!LastInst->getOperand(0).isMBB())
        return true;
      TBB = LastInst->getOperand(0).getMBB();
      return false;
    } else if (LastInst->getOpcode() == PPC::BCC) {
      if (!LastInst->getOperand(2).isMBB())
        return true;
      // Block ends with fall-through condbranch.
      TBB = LastInst->getOperand(2).getMBB();
      Cond.push_back(LastInst->getOperand(0));
      Cond.push_back(LastInst->getOperand(1));
      return false;
    } else if (LastInst->getOpcode() == PPC::BC) {
      if (!LastInst->getOperand(1).isMBB())
        return true;
      // Block ends with fall-through condbranch.
      TBB = LastInst->getOperand(1).getMBB();
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
      Cond.push_back(LastInst->getOperand(0));
      return false;
    } else if (LastInst->getOpcode() == PPC::BCn) {
      if (!LastInst->getOperand(1).isMBB())
        return true;
      // Block ends with fall-through condbranch.
      TBB = LastInst->getOperand(1).getMBB();
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
      Cond.push_back(LastInst->getOperand(0));
      return false;
    } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
               LastInst->getOpcode() == PPC::BDNZ) {
      if (!LastInst->getOperand(0).isMBB())
        return true;
      if (DisableCTRLoopAnal)
        return true;
      TBB = LastInst->getOperand(0).getMBB();
      Cond.push_back(MachineOperand::CreateImm(1));
      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                               true));
      return false;
    } else if (LastInst->getOpcode() == PPC::BDZ8 ||
               LastInst->getOpcode() == PPC::BDZ) {
      if (!LastInst->getOperand(0).isMBB())
        return true;
      if (DisableCTRLoopAnal)
        return true;
      TBB = LastInst->getOperand(0).getMBB();
      Cond.push_back(MachineOperand::CreateImm(0));
      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                               true));
      return false;
    }

    // Otherwise, don't know what this is.
    return true;
  }

  // Get the instruction before it if it's a terminator.
  MachineInstr *SecondLastInst = I;

  // If there are three terminators, we don't know what sort of block this is.
  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
    return true;

  // If the block ends with PPC::B and PPC:BCC, handle it.
  if (SecondLastInst->getOpcode() == PPC::BCC &&
      LastInst->getOpcode() == PPC::B) {
    if (!SecondLastInst->getOperand(2).isMBB() ||
        !LastInst->getOperand(0).isMBB())
      return true;
    TBB =  SecondLastInst->getOperand(2).getMBB();
    Cond.push_back(SecondLastInst->getOperand(0));
    Cond.push_back(SecondLastInst->getOperand(1));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  } else if (SecondLastInst->getOpcode() == PPC::BC &&
      LastInst->getOpcode() == PPC::B) {
    if (!SecondLastInst->getOperand(1).isMBB() ||
        !LastInst->getOperand(0).isMBB())
      return true;
    TBB =  SecondLastInst->getOperand(1).getMBB();
    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    Cond.push_back(SecondLastInst->getOperand(0));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  } else if (SecondLastInst->getOpcode() == PPC::BCn &&
      LastInst->getOpcode() == PPC::B) {
    if (!SecondLastInst->getOperand(1).isMBB() ||
        !LastInst->getOperand(0).isMBB())
      return true;
    TBB =  SecondLastInst->getOperand(1).getMBB();
    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    Cond.push_back(SecondLastInst->getOperand(0));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
              SecondLastInst->getOpcode() == PPC::BDNZ) &&
      LastInst->getOpcode() == PPC::B) {
    if (!SecondLastInst->getOperand(0).isMBB() ||
        !LastInst->getOperand(0).isMBB())
      return true;
    if (DisableCTRLoopAnal)
      return true;
    TBB = SecondLastInst->getOperand(0).getMBB();
    Cond.push_back(MachineOperand::CreateImm(1));
    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                             true));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
              SecondLastInst->getOpcode() == PPC::BDZ) &&
      LastInst->getOpcode() == PPC::B) {
    if (!SecondLastInst->getOperand(0).isMBB() ||
        !LastInst->getOperand(0).isMBB())
      return true;
    if (DisableCTRLoopAnal)
      return true;
    TBB = SecondLastInst->getOperand(0).getMBB();
    Cond.push_back(MachineOperand::CreateImm(0));
    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
                                             true));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  }

  // If the block ends with two PPC:Bs, handle it.  The second one is not
  // executed, so remove it.
  if (SecondLastInst->getOpcode() == PPC::B &&
      LastInst->getOpcode() == PPC::B) {
    if (!SecondLastInst->getOperand(0).isMBB())
      return true;
    TBB = SecondLastInst->getOperand(0).getMBB();
    I = LastInst;
    if (AllowModify)
      I->eraseFromParent();
    return false;
  }

  // Otherwise, can't handle this.
  return true;
}

unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    return 0;

  // Remove the branch.
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin()) return 1;
  --I;
  if (I->getOpcode() != PPC::BCC &&
      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    return 1;

  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB,
                                    MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    ArrayRef<MachineOperand> Cond,
                                    const DebugLoc &DL) const {
  // Shouldn't be a fall through.
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 2 || Cond.size() == 0) &&
         "PPC branch conditions have two components!");

  bool isPPC64 = Subtarget.isPPC64();

  // One-way branch.
  if (!FBB) {
    if (Cond.empty())   // Unconditional branch
      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
      BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
      BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
    else                // Conditional branch
      BuildMI(&MBB, DL, get(PPC::BCC))
        .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
    return 1;
  }

  // Two-way Conditional Branch.
  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
  else
    BuildMI(&MBB, DL, get(PPC::BCC))
      .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
  return 2;
}

// Select analysis.
bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
                ArrayRef<MachineOperand> Cond,
                unsigned TrueReg, unsigned FalseReg,
                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
  if (!Subtarget.hasISEL())
    return false;

  if (Cond.size() != 2)
    return false;

  // If this is really a bdnz-like condition, then it cannot be turned into a
  // select.
  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    return false;

  // Check register classes.
  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  const TargetRegisterClass *RC =
    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
  if (!RC)
    return false;

  // isel is for regular integer GPRs only.
  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
    return false;

  // FIXME: These numbers are for the A2, how well they work for other cores is
  // an open question. On the A2, the isel instruction has a 2-cycle latency
  // but single-cycle throughput. These numbers are used in combination with
  // the MispredictPenalty setting from the active SchedMachineModel.
  CondCycles = 1;
  TrueCycles = 1;
  FalseCycles = 1;

  return true;
}

void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MI,
                                const DebugLoc &dl, unsigned DestReg,
                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
                                unsigned FalseReg) const {
  assert(Cond.size() == 2 &&
         "PPC branch conditions have two components!");

  assert(Subtarget.hasISEL() &&
         "Cannot insert select on target without ISEL support");

  // Get the register classes.
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  const TargetRegisterClass *RC =
    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
  assert(RC && "TrueReg and FalseReg must have overlapping register classes");

  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
  assert((Is64Bit ||
          PPC::GPRCRegClass.hasSubClassEq(RC) ||
          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
         "isel is for regular integer GPRs only");

  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
  auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());

  unsigned SubIdx = 0;
  bool SwapOps = false;
  switch (SelectPred) {
  case PPC::PRED_EQ:
  case PPC::PRED_EQ_MINUS:
  case PPC::PRED_EQ_PLUS:
      SubIdx = PPC::sub_eq; SwapOps = false; break;
  case PPC::PRED_NE:
  case PPC::PRED_NE_MINUS:
  case PPC::PRED_NE_PLUS:
      SubIdx = PPC::sub_eq; SwapOps = true; break;
  case PPC::PRED_LT:
  case PPC::PRED_LT_MINUS:
  case PPC::PRED_LT_PLUS:
      SubIdx = PPC::sub_lt; SwapOps = false; break;
  case PPC::PRED_GE:
  case PPC::PRED_GE_MINUS:
  case PPC::PRED_GE_PLUS:
      SubIdx = PPC::sub_lt; SwapOps = true; break;
  case PPC::PRED_GT:
  case PPC::PRED_GT_MINUS:
  case PPC::PRED_GT_PLUS:
      SubIdx = PPC::sub_gt; SwapOps = false; break;
  case PPC::PRED_LE:
  case PPC::PRED_LE_MINUS:
  case PPC::PRED_LE_PLUS:
      SubIdx = PPC::sub_gt; SwapOps = true; break;
  case PPC::PRED_UN:
  case PPC::PRED_UN_MINUS:
  case PPC::PRED_UN_PLUS:
      SubIdx = PPC::sub_un; SwapOps = false; break;
  case PPC::PRED_NU:
  case PPC::PRED_NU_MINUS:
  case PPC::PRED_NU_PLUS:
      SubIdx = PPC::sub_un; SwapOps = true; break;
  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
  }

  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
           SecondReg = SwapOps ? TrueReg  : FalseReg;

  // The first input register of isel cannot be r0. If it is a member
  // of a register class that can be r0, then copy it first (the
  // register allocator should eliminate the copy).
  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
    const TargetRegisterClass *FirstRC =
      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
    unsigned OldFirstReg = FirstReg;
    FirstReg = MRI.createVirtualRegister(FirstRC);
    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
      .addReg(OldFirstReg);
  }

  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
    .addReg(FirstReg).addReg(SecondReg)
    .addReg(Cond[1].getReg(), 0, SubIdx);
}

static unsigned getCRBitValue(unsigned CRBit) {
  unsigned Ret = 4;
  if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
      CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
      CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
      CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
    Ret = 3;
  if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
      CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
      CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
      CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
    Ret = 2;
  if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
      CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
      CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
      CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
    Ret = 1;
  if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
      CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
      CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
      CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
    Ret = 0;

  assert(Ret != 4 && "Invalid CR bit register");
  return Ret;
}

void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator I,
                               const DebugLoc &DL, unsigned DestReg,
                               unsigned SrcReg, bool KillSrc) const {
  // We can end up with self copies and similar things as a result of VSX copy
  // legalization. Promote them here.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  if (PPC::F8RCRegClass.contains(DestReg) &&
      PPC::VSRCRegClass.contains(SrcReg)) {
    unsigned SuperReg =
      TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);

    if (VSXSelfCopyCrash && SrcReg == SuperReg)
      llvm_unreachable("nop VSX copy");

    DestReg = SuperReg;
  } else if (PPC::VRRCRegClass.contains(DestReg) &&
             PPC::VSRCRegClass.contains(SrcReg)) {
    unsigned SuperReg =
      TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);

    if (VSXSelfCopyCrash && SrcReg == SuperReg)
      llvm_unreachable("nop VSX copy");

    DestReg = SuperReg;
  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
             PPC::VSRCRegClass.contains(DestReg)) {
    unsigned SuperReg =
      TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);

    if (VSXSelfCopyCrash && DestReg == SuperReg)
      llvm_unreachable("nop VSX copy");

    SrcReg = SuperReg;
  } else if (PPC::VRRCRegClass.contains(SrcReg) &&
             PPC::VSRCRegClass.contains(DestReg)) {
    unsigned SuperReg =
      TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);

    if (VSXSelfCopyCrash && DestReg == SuperReg)
      llvm_unreachable("nop VSX copy");

    SrcReg = SuperReg;
  }

  // Different class register copy
  if (PPC::CRBITRCRegClass.contains(SrcReg) &&
      PPC::GPRCRegClass.contains(DestReg)) {
    unsigned CRReg = getCRFromCRBit(SrcReg);
    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
    getKillRegState(KillSrc);
    // Rotate the CR bit in the CR fields to be the least significant bit and
    // then mask with 0x1 (MB = ME = 31).
    BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
       .addReg(DestReg, RegState::Kill)
       .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
       .addImm(31)
       .addImm(31);
    return;
  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
      PPC::G8RCRegClass.contains(DestReg)) {
    BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
    getKillRegState(KillSrc);
    return;
  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
      PPC::GPRCRegClass.contains(DestReg)) {
    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
    getKillRegState(KillSrc);
    return;
   }

  unsigned Opc;
  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::OR;
  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::OR8;
  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::FMR;
  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::MCRF;
  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::VOR;
  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
    // There are two different ways this can be done:
    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
    //      issue in VSU pipeline 0.
    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
    //      can go to either pipeline.
    // We'll always use xxlor here, because in practically all cases where
    // copies are generated, they are close enough to some use that the
    // lower-latency form is preferable.
    Opc = PPC::XXLOR;
  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
           PPC::VSSRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::XXLORf;
  else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::QVFMR;
  else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::QVFMRs;
  else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::QVFMRb;
  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
    Opc = PPC::CROR;
  else
    llvm_unreachable("Impossible reg-to-reg copy");

  const MCInstrDesc &MCID = get(Opc);
  if (MCID.getNumOperands() == 3)
    BuildMI(MBB, I, DL, MCID, DestReg)
      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
  else
    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
}

// This function returns true if a CR spill is necessary and false otherwise.
bool
PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
                                  unsigned SrcReg, bool isKill,
                                  int FrameIdx,
                                  const TargetRegisterClass *RC,
                                  SmallVectorImpl<MachineInstr*> &NewMIs,
                                  bool &NonRI, bool &SpillsVRS) const{
  // Note: If additional store instructions are added here,
  // update isStoreToStackSlot.

  DebugLoc DL;
  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    return true;
  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    return true;
  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
    assert(Subtarget.isDarwin() &&
           "VRSAVE only needs spill/restore on Darwin");
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    SpillsVRS = true;
  } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
                                       .addReg(SrcReg,
                                               getKillRegState(isKill)),
                                       FrameIdx));
    NonRI = true;
  } else {
    llvm_unreachable("Unknown regclass!");
  }

  return false;
}

void
PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator MI,
                                  unsigned SrcReg, bool isKill, int FrameIdx,
                                  const TargetRegisterClass *RC,
                                  const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  SmallVector<MachineInstr*, 4> NewMIs;

  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setHasSpills();

  bool NonRI = false, SpillsVRS = false;
  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
                          NonRI, SpillsVRS))
    FuncInfo->setSpillsCR();

  if (SpillsVRS)
    FuncInfo->setSpillsVRSAVE();

  if (NonRI)
    FuncInfo->setHasNonRISpills();

  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    MBB.insert(MI, NewMIs[i]);

  const MachineFrameInfo &MFI = *MF.getFrameInfo();
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIdx),
      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
      MFI.getObjectAlignment(FrameIdx));
  NewMIs.back()->addMemOperand(MF, MMO);
}

bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
                                        unsigned DestReg, int FrameIdx,
                                        const TargetRegisterClass *RC,
                                        SmallVectorImpl<MachineInstr *> &NewMIs,
                                        bool &NonRI, bool &SpillsVRS) const {
  // Note: If additional load instructions are added here,
  // update isLoadFromStackSlot.

  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
                                               DestReg), FrameIdx));
  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
                                       FrameIdx));
  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
                                       FrameIdx));
  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
                                       FrameIdx));
  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
                                               get(PPC::RESTORE_CR), DestReg),
                                       FrameIdx));
    return true;
  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
                                               get(PPC::RESTORE_CRBIT), DestReg),
                                       FrameIdx));
    return true;
  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
    assert(Subtarget.isDarwin() &&
           "VRSAVE only needs spill/restore on Darwin");
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
                                               get(PPC::RESTORE_VRSAVE),
                                               DestReg),
                                       FrameIdx));
    SpillsVRS = true;
  } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
                                       FrameIdx));
    NonRI = true;
  } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
                                       FrameIdx));
    NonRI = true;
  } else {
    llvm_unreachable("Unknown regclass!");
  }

  return false;
}

void
PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator MI,
                                   unsigned DestReg, int FrameIdx,
                                   const TargetRegisterClass *RC,
                                   const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  SmallVector<MachineInstr*, 4> NewMIs;
  DebugLoc DL;
  if (MI != MBB.end()) DL = MI->getDebugLoc();

  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  FuncInfo->setHasSpills();

  bool NonRI = false, SpillsVRS = false;
  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
                           NonRI, SpillsVRS))
    FuncInfo->setSpillsCR();

  if (SpillsVRS)
    FuncInfo->setSpillsVRSAVE();

  if (NonRI)
    FuncInfo->setHasNonRISpills();

  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    MBB.insert(MI, NewMIs[i]);

  const MachineFrameInfo &MFI = *MF.getFrameInfo();
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIdx),
      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
      MFI.getObjectAlignment(FrameIdx));
  NewMIs.back()->addMemOperand(MF, MMO);
}

bool PPCInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
  else
    // Leave the CR# the same, but invert the condition.
    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
  return false;
}

bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
                                 unsigned Reg, MachineRegisterInfo *MRI) const {
  // For some instructions, it is legal to fold ZERO into the RA register field.
  // A zero immediate should always be loaded with a single li.
  unsigned DefOpc = DefMI.getOpcode();
  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
    return false;
  if (!DefMI.getOperand(1).isImm())
    return false;
  if (DefMI.getOperand(1).getImm() != 0)
    return false;

  // Note that we cannot here invert the arguments of an isel in order to fold
  // a ZERO into what is presented as the second argument. All we have here
  // is the condition bit, and that might come from a CR-logical bit operation.

  const MCInstrDesc &UseMCID = UseMI.getDesc();

  // Only fold into real machine instructions.
  if (UseMCID.isPseudo())
    return false;

  unsigned UseIdx;
  for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
    if (UseMI.getOperand(UseIdx).isReg() &&
        UseMI.getOperand(UseIdx).getReg() == Reg)
      break;

  assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");

  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];

  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
  // register (which might also be specified as a pointer class kind).
  if (UseInfo->isLookupPtrRegClass()) {
    if (UseInfo->RegClass /* Kind */ != 1)
      return false;
  } else {
    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
      return false;
  }

  // Make sure this is not tied to an output register (or otherwise
  // constrained). This is true for ST?UX registers, for example, which
  // are tied to their output registers.
  if (UseInfo->Constraints != 0)
    return false;

  unsigned ZeroReg;
  if (UseInfo->isLookupPtrRegClass()) {
    bool isPPC64 = Subtarget.isPPC64();
    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
  } else {
    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
              PPC::ZERO8 : PPC::ZERO;
  }

  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
  UseMI.getOperand(UseIdx).setReg(ZeroReg);

  if (DeleteDef)
    DefMI.eraseFromParent();

  return true;
}

static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
       I != IE; ++I)
    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
      return true;
  return false;
}

// We should make sure that, if we're going to predicate both sides of a
// condition (a diamond), that both sides don't define the counter register. We
// can predicate counter-decrement-based branches, but while that predicates
// the branching, it does not predicate the counter decrement. If we tried to
// merge the triangle into one predicated block, we'd decrement the counter
// twice.
bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
                     unsigned NumT, unsigned ExtraT,
                     MachineBasicBlock &FMBB,
                     unsigned NumF, unsigned ExtraF,
                     BranchProbability Probability) const {
  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
}


bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
  // The predicated branches are identified by their type, not really by the
  // explicit presence of a predicate. Furthermore, some of them can be
  // predicated more than once. Because if conversion won't try to predicate
  // any instruction which already claims to be predicated (by returning true
  // here), always return false. In doing so, we let isPredicable() be the
  // final word on whether not the instruction can be (further) predicated.

  return false;
}

bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
  if (!MI.isTerminator())
    return false;

  // Conditional branch is a special case.
  if (MI.isBranch() && !MI.isBarrier())
    return true;

  return !isPredicated(MI);
}

bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
                                        ArrayRef<MachineOperand> Pred) const {
  unsigned OpC = MI.getOpcode();
  if (OpC == PPC::BLR || OpC == PPC::BLR8) {
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
      bool isPPC64 = Subtarget.isPPC64();
      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
                                      : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
      MI.setDesc(get(PPC::BCLR));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addReg(Pred[1].getReg());
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
      MI.setDesc(get(PPC::BCLRn));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addReg(Pred[1].getReg());
    } else {
      MI.setDesc(get(PPC::BCCLR));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addImm(Pred[0].getImm())
          .addReg(Pred[1].getReg());
    }

    return true;
  } else if (OpC == PPC::B) {
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
      bool isPPC64 = Subtarget.isPPC64();
      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
                                      : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
      MI.RemoveOperand(0);

      MI.setDesc(get(PPC::BC));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addReg(Pred[1].getReg())
          .addMBB(MBB);
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
      MI.RemoveOperand(0);

      MI.setDesc(get(PPC::BCn));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addReg(Pred[1].getReg())
          .addMBB(MBB);
    } else {
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
      MI.RemoveOperand(0);

      MI.setDesc(get(PPC::BCC));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addImm(Pred[0].getImm())
          .addReg(Pred[1].getReg())
          .addMBB(MBB);
    }

    return true;
  } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
             OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");

    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
    bool isPPC64 = Subtarget.isPPC64();

    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
                             : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addReg(Pred[1].getReg());
      return true;
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
                             : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
          .addReg(Pred[1].getReg());
      return true;
    }

    MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
                           : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
        .addImm(Pred[0].getImm())
        .addReg(Pred[1].getReg());
    return true;
  }

  return false;
}

bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                                     ArrayRef<MachineOperand> Pred2) const {
  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
  assert(Pred2.size() == 2 && "Invalid PPC second predicate");

  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
    return false;
  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
    return false;

  // P1 can only subsume P2 if they test the same condition register.
  if (Pred1[1].getReg() != Pred2[1].getReg())
    return false;

  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();

  if (P1 == P2)
    return true;

  // Does P1 subsume P2, e.g. GE subsumes GT.
  if (P1 == PPC::PRED_LE &&
      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
    return true;
  if (P1 == PPC::PRED_GE &&
      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
    return true;

  return false;
}

bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
                                    std::vector<MachineOperand> &Pred) const {
  // Note: At the present time, the contents of Pred from this function is
  // unused by IfConversion. This implementation follows ARM by pushing the
  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
  // predicate, instructions defining CTR or CTR8 are also included as
  // predicate-defining instructions.

  const TargetRegisterClass *RCs[] =
    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };

  bool Found = false;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
      const TargetRegisterClass *RC = RCs[c];
      if (MO.isReg()) {
        if (MO.isDef() && RC->contains(MO.getReg())) {
          Pred.push_back(MO);
          Found = true;
        }
      } else if (MO.isRegMask()) {
        for (TargetRegisterClass::iterator I = RC->begin(),
             IE = RC->end(); I != IE; ++I)
          if (MO.clobbersPhysReg(*I)) {
            Pred.push_back(MO);
            Found = true;
          }
      }
    }
  }

  return Found;
}

bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
  unsigned OpC = MI.getOpcode();
  switch (OpC) {
  default:
    return false;
  case PPC::B:
  case PPC::BLR:
  case PPC::BLR8:
  case PPC::BCTR:
  case PPC::BCTR8:
  case PPC::BCTRL:
  case PPC::BCTRL8:
    return true;
  }
}

bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                                  unsigned &SrcReg2, int &Mask,
                                  int &Value) const {
  unsigned Opc = MI.getOpcode();

  switch (Opc) {
  default: return false;
  case PPC::CMPWI:
  case PPC::CMPLWI:
  case PPC::CMPDI:
  case PPC::CMPLDI:
    SrcReg = MI.getOperand(1).getReg();
    SrcReg2 = 0;
    Value = MI.getOperand(2).getImm();
    Mask = 0xFFFF;
    return true;
  case PPC::CMPW:
  case PPC::CMPLW:
  case PPC::CMPD:
  case PPC::CMPLD:
  case PPC::FCMPUS:
  case PPC::FCMPUD:
    SrcReg = MI.getOperand(1).getReg();
    SrcReg2 = MI.getOperand(2).getReg();
    return true;
  }
}

bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
                                        unsigned SrcReg2, int Mask, int Value,
                                        const MachineRegisterInfo *MRI) const {
  if (DisableCmpOpt)
    return false;

  int OpC = CmpInstr.getOpcode();
  unsigned CRReg = CmpInstr.getOperand(0).getReg();

  // FP record forms set CR1 based on the execption status bits, not a
  // comparison with zero.
  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
    return false;

  // The record forms set the condition register based on a signed comparison
  // with zero (so says the ISA manual). This is not as straightforward as it
  // seems, however, because this is always a 64-bit comparison on PPC64, even
  // for instructions that are 32-bit in nature (like slw for example).
  // So, on PPC32, for unsigned comparisons, we can use the record forms only
  // for equality checks (as those don't depend on the sign). On PPC64,
  // we are restricted to equality for unsigned 64-bit comparisons and for
  // signed 32-bit comparisons the applicability is more restricted.
  bool isPPC64 = Subtarget.isPPC64();
  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;

  // Get the unique definition of SrcReg.
  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
  if (!MI) return false;
  int MIOpC = MI->getOpcode();

  bool equalityOnly = false;
  bool noSub = false;
  if (isPPC64) {
    if (is32BitSignedCompare) {
      // We can perform this optimization only if MI is sign-extending.
      if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
          MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
          MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
          MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
          MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
        noSub = true;
      } else
        return false;
    } else if (is32BitUnsignedCompare) {
      // 32-bit rotate and mask instructions are zero extending only if MB <= ME
      bool isZeroExtendingRotate  =
          (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
           MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
          && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();

      // We can perform this optimization, equality only, if MI is
      // zero-extending.
      if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
          MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
          MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
          isZeroExtendingRotate) {
        noSub = true;
        equalityOnly = true;
      } else
        return false;
    } else
      equalityOnly = is64BitUnsignedCompare;
  } else
    equalityOnly = is32BitUnsignedCompare;

  if (equalityOnly) {
    // We need to check the uses of the condition register in order to reject
    // non-equality comparisons.
    for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
         IE = MRI->use_instr_end(); I != IE; ++I) {
      MachineInstr *UseMI = &*I;
      if (UseMI->getOpcode() == PPC::BCC) {
        unsigned Pred = UseMI->getOperand(0).getImm();
        if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
          return false;
      } else if (UseMI->getOpcode() == PPC::ISEL ||
                 UseMI->getOpcode() == PPC::ISEL8) {
        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
        if (SubIdx != PPC::sub_eq)
          return false;
      } else
        return false;
    }
  }

  MachineBasicBlock::iterator I = CmpInstr;

  // Scan forward to find the first use of the compare.
  for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
       ++I) {
    bool FoundUse = false;
    for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
         JE = MRI->use_instr_end(); J != JE; ++J)
      if (&*J == &*I) {
        FoundUse = true;
        break;
      }

    if (FoundUse)
      break;
  }

  // There are two possible candidates which can be changed to set CR[01].
  // One is MI, the other is a SUB instruction.
  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
  MachineInstr *Sub = nullptr;
  if (SrcReg2 != 0)
    // MI is not a candidate for CMPrr.
    MI = nullptr;
  // FIXME: Conservatively refuse to convert an instruction which isn't in the
  // same BB as the comparison. This is to allow the check below to avoid calls
  // (and other explicit clobbers); instead we should really check for these
  // more explicitly (in at least a few predecessors).
  else if (MI->getParent() != CmpInstr.getParent() || Value != 0) {
    // PPC does not have a record-form SUBri.
    return false;
  }

  // Search for Sub.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  --I;

  // Get ready to iterate backward from CmpInstr.
  MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();

  for (; I != E && !noSub; --I) {
    const MachineInstr &Instr = *I;
    unsigned IOpC = Instr.getOpcode();

    if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
                             Instr.readsRegister(PPC::CR0, TRI)))
      // This instruction modifies or uses the record condition register after
      // the one we want to change. While we could do this transformation, it
      // would likely not be profitable. This transformation removes one
      // instruction, and so even forcing RA to generate one move probably
      // makes it unprofitable.
      return false;

    // Check whether CmpInstr can be made redundant by the current instruction.
    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
        ((Instr.getOperand(1).getReg() == SrcReg &&
          Instr.getOperand(2).getReg() == SrcReg2) ||
        (Instr.getOperand(1).getReg() == SrcReg2 &&
         Instr.getOperand(2).getReg() == SrcReg))) {
      Sub = &*I;
      break;
    }

    if (I == B)
      // The 'and' is below the comparison instruction.
      return false;
  }

  // Return false if no candidates exist.
  if (!MI && !Sub)
    return false;

  // The single candidate is called MI.
  if (!MI) MI = Sub;

  int NewOpC = -1;
  MIOpC = MI->getOpcode();
  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
    NewOpC = MIOpC;
  else {
    NewOpC = PPC::getRecordFormOpcode(MIOpC);
    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
      NewOpC = MIOpC;
  }

  // FIXME: On the non-embedded POWER architectures, only some of the record
  // forms are fast, and we should use only the fast ones.

  // The defining instruction has a record form (or is already a record
  // form). It is possible, however, that we'll need to reverse the condition
  // code of the users.
  if (NewOpC == -1)
    return false;

  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;

  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
  // needs to be updated to be based on SUB.  Push the condition code
  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
  // condition code of these operands will be modified.
  bool ShouldSwap = false;
  if (Sub) {
    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
      Sub->getOperand(2).getReg() == SrcReg;

    // The operands to subf are the opposite of sub, so only in the fixed-point
    // case, invert the order.
    ShouldSwap = !ShouldSwap;
  }

  if (ShouldSwap)
    for (MachineRegisterInfo::use_instr_iterator
         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
         I != IE; ++I) {
      MachineInstr *UseMI = &*I;
      if (UseMI->getOpcode() == PPC::BCC) {
        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
        assert((!equalityOnly ||
                Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
               "Invalid predicate for equality-only optimization");
        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
                                PPC::getSwappedPredicate(Pred)));
      } else if (UseMI->getOpcode() == PPC::ISEL ||
                 UseMI->getOpcode() == PPC::ISEL8) {
        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
               "Invalid CR bit for equality-only optimization");

        if (NewSubReg == PPC::sub_lt)
          NewSubReg = PPC::sub_gt;
        else if (NewSubReg == PPC::sub_gt)
          NewSubReg = PPC::sub_lt;

        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
                                                 NewSubReg));
      } else // We need to abort on a user we don't understand.
        return false;
    }

  // Create a new virtual register to hold the value of the CR set by the
  // record-form instruction. If the instruction was not previously in
  // record form, then set the kill flag on the CR.
  CmpInstr.eraseFromParent();

  MachineBasicBlock::iterator MII = MI;
  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
          get(TargetOpcode::COPY), CRReg)
    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);

  // Even if CR0 register were dead before, it is alive now since the
  // instruction we just built uses it.
  MI->clearRegisterDeads(PPC::CR0);

  if (MIOpC != NewOpC) {
    // We need to be careful here: we're replacing one instruction with
    // another, and we need to make sure that we get all of the right
    // implicit uses and defs. On the other hand, the caller may be holding
    // an iterator to this instruction, and so we can't delete it (this is
    // specifically the case if this is the instruction directly after the
    // compare).

    const MCInstrDesc &NewDesc = get(NewOpC);
    MI->setDesc(NewDesc);

    if (NewDesc.ImplicitDefs)
      for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
           *ImpDefs; ++ImpDefs)
        if (!MI->definesRegister(*ImpDefs))
          MI->addOperand(*MI->getParent()->getParent(),
                         MachineOperand::CreateReg(*ImpDefs, true, true));
    if (NewDesc.ImplicitUses)
      for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
           *ImpUses; ++ImpUses)
        if (!MI->readsRegister(*ImpUses))
          MI->addOperand(*MI->getParent()->getParent(),
                         MachineOperand::CreateReg(*ImpUses, false, true));
  }
  assert(MI->definesRegister(PPC::CR0) &&
         "Record-form instruction does not define cr0?");

  // Modify the condition code of operands in OperandsToUpdate.
  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);

  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);

  return true;
}

/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be.  This returns the maximum number of bytes.
///
unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();

  if (Opcode == PPC::INLINEASM) {
    const MachineFunction *MF = MI.getParent()->getParent();
    const char *AsmStr = MI.getOperand(0).getSymbolName();
    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
  } else if (Opcode == TargetOpcode::STACKMAP) {
    return MI.getOperand(1).getImm();
  } else if (Opcode == TargetOpcode::PATCHPOINT) {
    PatchPointOpers Opers(&MI);
    return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
  } else {
    const MCInstrDesc &Desc = get(Opcode);
    return Desc.getSize();
  }
}

std::pair<unsigned, unsigned>
PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  const unsigned Mask = PPCII::MO_ACCESS_MASK;
  return std::make_pair(TF & Mask, TF & ~Mask);
}

ArrayRef<std::pair<unsigned, const char *>>
PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  using namespace PPCII;
  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_LO, "ppc-lo"},
      {MO_HA, "ppc-ha"},
      {MO_TPREL_LO, "ppc-tprel-lo"},
      {MO_TPREL_HA, "ppc-tprel-ha"},
      {MO_DTPREL_LO, "ppc-dtprel-lo"},
      {MO_TLSLD_LO, "ppc-tlsld-lo"},
      {MO_TOC_LO, "ppc-toc-lo"},
      {MO_TLS, "ppc-tls"}};
  return makeArrayRef(TargetFlags);
}

ArrayRef<std::pair<unsigned, const char *>>
PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
  using namespace PPCII;
  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_PLT, "ppc-plt"},
      {MO_PIC_FLAG, "ppc-pic"},
      {MO_NLP_FLAG, "ppc-nlp"},
      {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
  return makeArrayRef(TargetFlags);
}

bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::LOAD_STACK_GUARD: {
    assert(Subtarget.isTargetLinux() &&
           "Only Linux target is expected to contain LOAD_STACK_GUARD");
    const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
    const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
    MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
        .addImm(Offset)
        .addReg(Reg);
    return true;
  }
  }
  return false;
}