llvm.org GIT mirror llvm / 19a9621 lib / Transforms / IPO / MergeFunctions.cpp
19a9621

Tree @19a9621 (Download .tar.gz)

MergeFunctions.cpp @19a9621raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass looks for equivalent functions that are mergable and folds them.
//
// Order relation is defined on set of functions. It was made through
// special function comparison procedure that returns
// 0 when functions are equal,
// -1 when Left function is less than right function, and
// 1 for opposite case. We need total-ordering, so we need to maintain
// four properties on the functions set:
// a <= a (reflexivity)
// if a <= b and b <= a then a = b (antisymmetry)
// if a <= b and b <= c then a <= c (transitivity).
// for all a and b: a <= b or b <= a (totality).
//
// Comparison iterates through each instruction in each basic block.
// Functions are kept on binary tree. For each new function F we perform
// lookup in binary tree.
// In practice it works the following way:
// -- We define Function* container class with custom "operator<" (FunctionPtr).
// -- "FunctionPtr" instances are stored in std::set collection, so every
//    std::set::insert operation will give you result in log(N) time.
//
// As an optimization, a hash of the function structure is calculated first, and
// two functions are only compared if they have the same hash. This hash is
// cheap to compute, and has the property that if function F == G according to
// the comparison function, then hash(F) == hash(G). This consistency property
// is critical to ensuring all possible merging opportunities are exploited.
// Collisions in the hash affect the speed of the pass but not the correctness
// or determinism of the resulting transformation.
//
// When a match is found the functions are folded. If both functions are
// overridable, we move the functionality into a new internal function and
// leave two overridable thunks to it.
//
//===----------------------------------------------------------------------===//
//
// Future work:
//
// * virtual functions.
//
// Many functions have their address taken by the virtual function table for
// the object they belong to. However, as long as it's only used for a lookup
// and call, this is irrelevant, and we'd like to fold such functions.
//
// * be smarter about bitcasts.
//
// In order to fold functions, we will sometimes add either bitcast instructions
// or bitcast constant expressions. Unfortunately, this can confound further
// analysis since the two functions differ where one has a bitcast and the
// other doesn't. We should learn to look through bitcasts.
//
// * Compare complex types with pointer types inside.
// * Compare cross-reference cases.
// * Compare complex expressions.
//
// All the three issues above could be described as ability to prove that
// fA == fB == fC == fE == fF == fG in example below:
//
//  void fA() {
//    fB();
//  }
//  void fB() {
//    fA();
//  }
//
//  void fE() {
//    fF();
//  }
//  void fF() {
//    fG();
//  }
//  void fG() {
//    fE();
//  }
//
// Simplest cross-reference case (fA <--> fB) was implemented in previous
// versions of MergeFunctions, though it presented only in two function pairs
// in test-suite (that counts >50k functions)
// Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
// could cover much more cases.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/FunctionComparator.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "mergefunc"

STATISTIC(NumFunctionsMerged, "Number of functions merged");
STATISTIC(NumThunksWritten, "Number of thunks generated");
STATISTIC(NumDoubleWeak, "Number of new functions created");

static cl::opt<unsigned> NumFunctionsForSanityCheck(
    "mergefunc-sanity",
    cl::desc("How many functions in module could be used for "
             "MergeFunctions pass sanity check. "
             "'0' disables this check. Works only with '-debug' key."),
    cl::init(0), cl::Hidden);

// Under option -mergefunc-preserve-debug-info we:
// - Do not create a new function for a thunk.
// - Retain the debug info for a thunk's parameters (and associated
//   instructions for the debug info) from the entry block.
//   Note: -debug will display the algorithm at work.
// - Create debug-info for the call (to the shared implementation) made by
//   a thunk and its return value.
// - Erase the rest of the function, retaining the (minimally sized) entry
//   block to create a thunk.
// - Preserve a thunk's call site to point to the thunk even when both occur
//   within the same translation unit, to aid debugability. Note that this
//   behaviour differs from the underlying -mergefunc implementation which
//   modifies the thunk's call site to point to the shared implementation
//   when both occur within the same translation unit.
static cl::opt<bool>
    MergeFunctionsPDI("mergefunc-preserve-debug-info", cl::Hidden,
                      cl::init(false),
                      cl::desc("Preserve debug info in thunk when mergefunc "
                               "transformations are made."));

namespace {

class FunctionNode {
  mutable AssertingVH<Function> F;
  FunctionComparator::FunctionHash Hash;

public:
  // Note the hash is recalculated potentially multiple times, but it is cheap.
  FunctionNode(Function *F)
    : F(F), Hash(FunctionComparator::functionHash(*F))  {}

  Function *getFunc() const { return F; }
  FunctionComparator::FunctionHash getHash() const { return Hash; }

  /// Replace the reference to the function F by the function G, assuming their
  /// implementations are equal.
  void replaceBy(Function *G) const {
    F = G;
  }

  void release() { F = nullptr; }
};

/// MergeFunctions finds functions which will generate identical machine code,
/// by considering all pointer types to be equivalent. Once identified,
/// MergeFunctions will fold them by replacing a call to one to a call to a
/// bitcast of the other.
class MergeFunctions : public ModulePass {
public:
  static char ID;

  MergeFunctions()
    : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)) {
    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override;

private:
  // The function comparison operator is provided here so that FunctionNodes do
  // not need to become larger with another pointer.
  class FunctionNodeCmp {
    GlobalNumberState* GlobalNumbers;

  public:
    FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}

    bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
      // Order first by hashes, then full function comparison.
      if (LHS.getHash() != RHS.getHash())
        return LHS.getHash() < RHS.getHash();
      FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
      return FCmp.compare() == -1;
    }
  };
  using FnTreeType = std::set<FunctionNode, FunctionNodeCmp>;

  GlobalNumberState GlobalNumbers;

  /// A work queue of functions that may have been modified and should be
  /// analyzed again.
  std::vector<WeakTrackingVH> Deferred;

#ifndef NDEBUG
  /// Checks the rules of order relation introduced among functions set.
  /// Returns true, if sanity check has been passed, and false if failed.
  bool doSanityCheck(std::vector<WeakTrackingVH> &Worklist);
#endif

  /// Insert a ComparableFunction into the FnTree, or merge it away if it's
  /// equal to one that's already present.
  bool insert(Function *NewFunction);

  /// Remove a Function from the FnTree and queue it up for a second sweep of
  /// analysis.
  void remove(Function *F);

  /// Find the functions that use this Value and remove them from FnTree and
  /// queue the functions.
  void removeUsers(Value *V);

  /// Replace all direct calls of Old with calls of New. Will bitcast New if
  /// necessary to make types match.
  void replaceDirectCallers(Function *Old, Function *New);

  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
  /// be converted into a thunk. In either case, it should never be visited
  /// again.
  void mergeTwoFunctions(Function *F, Function *G);

  /// Fill PDIUnrelatedWL with instructions from the entry block that are
  /// unrelated to parameter related debug info.
  void filterInstsUnrelatedToPDI(BasicBlock *GEntryBlock,
                                 std::vector<Instruction *> &PDIUnrelatedWL);

  /// Erase the rest of the CFG (i.e. barring the entry block).
  void eraseTail(Function *G);

  /// Erase the instructions in PDIUnrelatedWL as they are unrelated to the
  /// parameter debug info, from the entry block.
  void eraseInstsUnrelatedToPDI(std::vector<Instruction *> &PDIUnrelatedWL);

  /// Replace G with a simple tail call to bitcast(F). Also (unless
  /// MergeFunctionsPDI holds) replace direct uses of G with bitcast(F),
  /// delete G.
  void writeThunk(Function *F, Function *G);

  /// Replace function F with function G in the function tree.
  void replaceFunctionInTree(const FunctionNode &FN, Function *G);

  /// The set of all distinct functions. Use the insert() and remove() methods
  /// to modify it. The map allows efficient lookup and deferring of Functions.
  FnTreeType FnTree;

  // Map functions to the iterators of the FunctionNode which contains them
  // in the FnTree. This must be updated carefully whenever the FnTree is
  // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
  // dangling iterators into FnTree. The invariant that preserves this is that
  // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
  DenseMap<AssertingVH<Function>, FnTreeType::iterator> FNodesInTree;
};

} // end anonymous namespace

char MergeFunctions::ID = 0;

INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)

ModulePass *llvm::createMergeFunctionsPass() {
  return new MergeFunctions();
}

#ifndef NDEBUG
bool MergeFunctions::doSanityCheck(std::vector<WeakTrackingVH> &Worklist) {
  if (const unsigned Max = NumFunctionsForSanityCheck) {
    unsigned TripleNumber = 0;
    bool Valid = true;

    dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";

    unsigned i = 0;
    for (std::vector<WeakTrackingVH>::iterator I = Worklist.begin(),
                                               E = Worklist.end();
         I != E && i < Max; ++I, ++i) {
      unsigned j = i;
      for (std::vector<WeakTrackingVH>::iterator J = I; J != E && j < Max;
           ++J, ++j) {
        Function *F1 = cast<Function>(*I);
        Function *F2 = cast<Function>(*J);
        int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
        int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();

        // If F1 <= F2, then F2 >= F1, otherwise report failure.
        if (Res1 != -Res2) {
          dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
                 << "\n";
          dbgs() << *F1 << '\n' << *F2 << '\n';
          Valid = false;
        }

        if (Res1 == 0)
          continue;

        unsigned k = j;
        for (std::vector<WeakTrackingVH>::iterator K = J; K != E && k < Max;
             ++k, ++K, ++TripleNumber) {
          if (K == J)
            continue;

          Function *F3 = cast<Function>(*K);
          int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
          int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();

          bool Transitive = true;

          if (Res1 != 0 && Res1 == Res4) {
            // F1 > F2, F2 > F3 => F1 > F3
            Transitive = Res3 == Res1;
          } else if (Res3 != 0 && Res3 == -Res4) {
            // F1 > F3, F3 > F2 => F1 > F2
            Transitive = Res3 == Res1;
          } else if (Res4 != 0 && -Res3 == Res4) {
            // F2 > F3, F3 > F1 => F2 > F1
            Transitive = Res4 == -Res1;
          }

          if (!Transitive) {
            dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
                   << TripleNumber << "\n";
            dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
                   << Res4 << "\n";
            dbgs() << *F1 << '\n' << *F2 << '\n' << *F3 << '\n';
            Valid = false;
          }
        }
      }
    }

    dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
    return Valid;
  }
  return true;
}
#endif

bool MergeFunctions::runOnModule(Module &M) {
  if (skipModule(M))
    return false;

  bool Changed = false;

  // All functions in the module, ordered by hash. Functions with a unique
  // hash value are easily eliminated.
  std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
    HashedFuncs;
  for (Function &Func : M) {
    if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
      HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
    }
  }

  std::stable_sort(
      HashedFuncs.begin(), HashedFuncs.end(),
      [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
         const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
        return a.first < b.first;
      });

  auto S = HashedFuncs.begin();
  for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
    // If the hash value matches the previous value or the next one, we must
    // consider merging it. Otherwise it is dropped and never considered again.
    if ((I != S && std::prev(I)->first == I->first) ||
        (std::next(I) != IE && std::next(I)->first == I->first) ) {
      Deferred.push_back(WeakTrackingVH(I->second));
    }
  }

  do {
    std::vector<WeakTrackingVH> Worklist;
    Deferred.swap(Worklist);

    LLVM_DEBUG(doSanityCheck(Worklist));

    LLVM_DEBUG(dbgs() << "size of module: " << M.size() << '\n');
    LLVM_DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');

    // Insert functions and merge them.
    for (WeakTrackingVH &I : Worklist) {
      if (!I)
        continue;
      Function *F = cast<Function>(I);
      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) {
        Changed |= insert(F);
      }
    }
    LLVM_DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
  } while (!Deferred.empty());

  FnTree.clear();
  FNodesInTree.clear();
  GlobalNumbers.clear();

  return Changed;
}

// Replace direct callers of Old with New.
void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
  for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
    Use *U = &*UI;
    ++UI;
    CallSite CS(U->getUser());
    if (CS && CS.isCallee(U)) {
      // Transfer the called function's attributes to the call site. Due to the
      // bitcast we will 'lose' ABI changing attributes because the 'called
      // function' is no longer a Function* but the bitcast. Code that looks up
      // the attributes from the called function will fail.

      // FIXME: This is not actually true, at least not anymore. The callsite
      // will always have the same ABI affecting attributes as the callee,
      // because otherwise the original input has UB. Note that Old and New
      // always have matching ABI, so no attributes need to be changed.
      // Transferring other attributes may help other optimizations, but that
      // should be done uniformly and not in this ad-hoc way.
      auto &Context = New->getContext();
      auto NewPAL = New->getAttributes();
      SmallVector<AttributeSet, 4> NewArgAttrs;
      for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++)
        NewArgAttrs.push_back(NewPAL.getParamAttributes(argIdx));
      // Don't transfer attributes from the function to the callee. Function
      // attributes typically aren't relevant to the calling convention or ABI.
      CS.setAttributes(AttributeList::get(Context, /*FnAttrs=*/AttributeSet(),
                                          NewPAL.getRetAttributes(),
                                          NewArgAttrs));

      remove(CS.getInstruction()->getParent()->getParent());
      U->set(BitcastNew);
    }
  }
}

// Helper for writeThunk,
// Selects proper bitcast operation,
// but a bit simpler then CastInst::getCastOpcode.
static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) {
  Type *SrcTy = V->getType();
  if (SrcTy->isStructTy()) {
    assert(DestTy->isStructTy());
    assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
    Value *Result = UndefValue::get(DestTy);
    for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
      Value *Element = createCast(
          Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
          DestTy->getStructElementType(I));

      Result =
          Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
    }
    return Result;
  }
  assert(!DestTy->isStructTy());
  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
    return Builder.CreateIntToPtr(V, DestTy);
  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
    return Builder.CreatePtrToInt(V, DestTy);
  else
    return Builder.CreateBitCast(V, DestTy);
}

// Erase the instructions in PDIUnrelatedWL as they are unrelated to the
// parameter debug info, from the entry block.
void MergeFunctions::eraseInstsUnrelatedToPDI(
    std::vector<Instruction *> &PDIUnrelatedWL) {
  LLVM_DEBUG(
      dbgs() << " Erasing instructions (in reverse order of appearance in "
                "entry block) unrelated to parameter debug info from entry "
                "block: {\n");
  while (!PDIUnrelatedWL.empty()) {
    Instruction *I = PDIUnrelatedWL.back();
    LLVM_DEBUG(dbgs() << "  Deleting Instruction: ");
    LLVM_DEBUG(I->print(dbgs()));
    LLVM_DEBUG(dbgs() << "\n");
    I->eraseFromParent();
    PDIUnrelatedWL.pop_back();
  }
  LLVM_DEBUG(dbgs() << " } // Done erasing instructions unrelated to parameter "
                       "debug info from entry block. \n");
}

// Reduce G to its entry block.
void MergeFunctions::eraseTail(Function *G) {
  std::vector<BasicBlock *> WorklistBB;
  for (Function::iterator BBI = std::next(G->begin()), BBE = G->end();
       BBI != BBE; ++BBI) {
    BBI->dropAllReferences();
    WorklistBB.push_back(&*BBI);
  }
  while (!WorklistBB.empty()) {
    BasicBlock *BB = WorklistBB.back();
    BB->eraseFromParent();
    WorklistBB.pop_back();
  }
}

// We are interested in the following instructions from the entry block as being
// related to parameter debug info:
// - @llvm.dbg.declare
// - stores from the incoming parameters to locations on the stack-frame
// - allocas that create these locations on the stack-frame
// - @llvm.dbg.value
// - the entry block's terminator
// The rest are unrelated to debug info for the parameters; fill up
// PDIUnrelatedWL with such instructions.
void MergeFunctions::filterInstsUnrelatedToPDI(
    BasicBlock *GEntryBlock, std::vector<Instruction *> &PDIUnrelatedWL) {
  std::set<Instruction *> PDIRelated;
  for (BasicBlock::iterator BI = GEntryBlock->begin(), BIE = GEntryBlock->end();
       BI != BIE; ++BI) {
    if (auto *DVI = dyn_cast<DbgValueInst>(&*BI)) {
      LLVM_DEBUG(dbgs() << " Deciding: ");
      LLVM_DEBUG(BI->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\n");
      DILocalVariable *DILocVar = DVI->getVariable();
      if (DILocVar->isParameter()) {
        LLVM_DEBUG(dbgs() << "  Include (parameter): ");
        LLVM_DEBUG(BI->print(dbgs()));
        LLVM_DEBUG(dbgs() << "\n");
        PDIRelated.insert(&*BI);
      } else {
        LLVM_DEBUG(dbgs() << "  Delete (!parameter): ");
        LLVM_DEBUG(BI->print(dbgs()));
        LLVM_DEBUG(dbgs() << "\n");
      }
    } else if (auto *DDI = dyn_cast<DbgDeclareInst>(&*BI)) {
      LLVM_DEBUG(dbgs() << " Deciding: ");
      LLVM_DEBUG(BI->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\n");
      DILocalVariable *DILocVar = DDI->getVariable();
      if (DILocVar->isParameter()) {
        LLVM_DEBUG(dbgs() << "  Parameter: ");
        LLVM_DEBUG(DILocVar->print(dbgs()));
        AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
        if (AI) {
          LLVM_DEBUG(dbgs() << "  Processing alloca users: ");
          LLVM_DEBUG(dbgs() << "\n");
          for (User *U : AI->users()) {
            if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
              if (Value *Arg = SI->getValueOperand()) {
                if (dyn_cast<Argument>(Arg)) {
                  LLVM_DEBUG(dbgs() << "  Include: ");
                  LLVM_DEBUG(AI->print(dbgs()));
                  LLVM_DEBUG(dbgs() << "\n");
                  PDIRelated.insert(AI);
                  LLVM_DEBUG(dbgs() << "   Include (parameter): ");
                  LLVM_DEBUG(SI->print(dbgs()));
                  LLVM_DEBUG(dbgs() << "\n");
                  PDIRelated.insert(SI);
                  LLVM_DEBUG(dbgs() << "  Include: ");
                  LLVM_DEBUG(BI->print(dbgs()));
                  LLVM_DEBUG(dbgs() << "\n");
                  PDIRelated.insert(&*BI);
                } else {
                  LLVM_DEBUG(dbgs() << "   Delete (!parameter): ");
                  LLVM_DEBUG(SI->print(dbgs()));
                  LLVM_DEBUG(dbgs() << "\n");
                }
              }
            } else {
              LLVM_DEBUG(dbgs() << "   Defer: ");
              LLVM_DEBUG(U->print(dbgs()));
              LLVM_DEBUG(dbgs() << "\n");
            }
          }
        } else {
          LLVM_DEBUG(dbgs() << "  Delete (alloca NULL): ");
          LLVM_DEBUG(BI->print(dbgs()));
          LLVM_DEBUG(dbgs() << "\n");
        }
      } else {
        LLVM_DEBUG(dbgs() << "  Delete (!parameter): ");
        LLVM_DEBUG(BI->print(dbgs()));
        LLVM_DEBUG(dbgs() << "\n");
      }
    } else if (BI->isTerminator() && &*BI == GEntryBlock->getTerminator()) {
      LLVM_DEBUG(dbgs() << " Will Include Terminator: ");
      LLVM_DEBUG(BI->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\n");
      PDIRelated.insert(&*BI);
    } else {
      LLVM_DEBUG(dbgs() << " Defer: ");
      LLVM_DEBUG(BI->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\n");
    }
  }
  LLVM_DEBUG(
      dbgs()
      << " Report parameter debug info related/related instructions: {\n");
  for (BasicBlock::iterator BI = GEntryBlock->begin(), BE = GEntryBlock->end();
       BI != BE; ++BI) {

    Instruction *I = &*BI;
    if (PDIRelated.find(I) == PDIRelated.end()) {
      LLVM_DEBUG(dbgs() << "  !PDIRelated: ");
      LLVM_DEBUG(I->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\n");
      PDIUnrelatedWL.push_back(I);
    } else {
      LLVM_DEBUG(dbgs() << "   PDIRelated: ");
      LLVM_DEBUG(I->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\n");
    }
  }
  LLVM_DEBUG(dbgs() << " }\n");
}

// Don't merge tiny functions using a thunk, since it can just end up
// making the function larger.
static bool isThunkProfitable(Function * F) {
  if (F->size() == 1) {
    if (F->front().size() <= 2) {
      LLVM_DEBUG(dbgs() << "isThunkProfitable: " << F->getName()
                        << " is too small to bother creating a thunk for\n");
      return false;
    }
  }
  return true;
}

// Replace G with a simple tail call to bitcast(F). Also (unless
// MergeFunctionsPDI holds) replace direct uses of G with bitcast(F),
// delete G. Under MergeFunctionsPDI, we use G itself for creating
// the thunk as we preserve the debug info (and associated instructions)
// from G's entry block pertaining to G's incoming arguments which are
// passed on as corresponding arguments in the call that G makes to F.
// For better debugability, under MergeFunctionsPDI, we do not modify G's
// call sites to point to F even when within the same translation unit.
void MergeFunctions::writeThunk(Function *F, Function *G) {
  BasicBlock *GEntryBlock = nullptr;
  std::vector<Instruction *> PDIUnrelatedWL;
  BasicBlock *BB = nullptr;
  Function *NewG = nullptr;
  if (MergeFunctionsPDI) {
    LLVM_DEBUG(dbgs() << "writeThunk: (MergeFunctionsPDI) Do not create a new "
                         "function as thunk; retain original: "
                      << G->getName() << "()\n");
    GEntryBlock = &G->getEntryBlock();
    LLVM_DEBUG(
        dbgs() << "writeThunk: (MergeFunctionsPDI) filter parameter related "
                  "debug info for "
               << G->getName() << "() {\n");
    filterInstsUnrelatedToPDI(GEntryBlock, PDIUnrelatedWL);
    GEntryBlock->getTerminator()->eraseFromParent();
    BB = GEntryBlock;
  } else {
    NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
                            G->getParent());
    BB = BasicBlock::Create(F->getContext(), "", NewG);
  }

  IRBuilder<> Builder(BB);
  Function *H = MergeFunctionsPDI ? G : NewG;
  SmallVector<Value *, 16> Args;
  unsigned i = 0;
  FunctionType *FFTy = F->getFunctionType();
  for (Argument &AI : H->args()) {
    Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
    ++i;
  }

  CallInst *CI = Builder.CreateCall(F, Args);
  ReturnInst *RI = nullptr;
  CI->setTailCall();
  CI->setCallingConv(F->getCallingConv());
  CI->setAttributes(F->getAttributes());
  if (H->getReturnType()->isVoidTy()) {
    RI = Builder.CreateRetVoid();
  } else {
    RI = Builder.CreateRet(createCast(Builder, CI, H->getReturnType()));
  }

  if (MergeFunctionsPDI) {
    DISubprogram *DIS = G->getSubprogram();
    if (DIS) {
      DebugLoc CIDbgLoc = DebugLoc::get(DIS->getScopeLine(), 0, DIS);
      DebugLoc RIDbgLoc = DebugLoc::get(DIS->getScopeLine(), 0, DIS);
      CI->setDebugLoc(CIDbgLoc);
      RI->setDebugLoc(RIDbgLoc);
    } else {
      LLVM_DEBUG(
          dbgs() << "writeThunk: (MergeFunctionsPDI) No DISubprogram for "
                 << G->getName() << "()\n");
    }
    eraseTail(G);
    eraseInstsUnrelatedToPDI(PDIUnrelatedWL);
    LLVM_DEBUG(
        dbgs() << "} // End of parameter related debug info filtering for: "
               << G->getName() << "()\n");
  } else {
    NewG->copyAttributesFrom(G);
    NewG->takeName(G);
    removeUsers(G);
    G->replaceAllUsesWith(NewG);
    G->eraseFromParent();
  }

  LLVM_DEBUG(dbgs() << "writeThunk: " << H->getName() << '\n');
  ++NumThunksWritten;
}

// Merge two equivalent functions. Upon completion, Function G is deleted.
void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
  if (F->isInterposable()) {
    assert(G->isInterposable());

    if (!isThunkProfitable(F)) {
      return;
    }

    // Make them both thunks to the same internal function.
    Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
                                   F->getParent());
    H->copyAttributesFrom(F);
    H->takeName(F);
    removeUsers(F);
    F->replaceAllUsesWith(H);

    unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());

    writeThunk(F, G);
    writeThunk(F, H);

    F->setAlignment(MaxAlignment);
    F->setLinkage(GlobalValue::PrivateLinkage);
    ++NumDoubleWeak;
    ++NumFunctionsMerged;
  } else {
    // For better debugability, under MergeFunctionsPDI, we do not modify G's
    // call sites to point to F even when within the same translation unit.
    if (!G->isInterposable() && !MergeFunctionsPDI) {
      if (G->hasGlobalUnnamedAddr()) {
        // G might have been a key in our GlobalNumberState, and it's illegal
        // to replace a key in ValueMap<GlobalValue *> with a non-global.
        GlobalNumbers.erase(G);
        // If G's address is not significant, replace it entirely.
        Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
        removeUsers(G);
        G->replaceAllUsesWith(BitcastF);
      } else {
        // Redirect direct callers of G to F. (See note on MergeFunctionsPDI
        // above).
        replaceDirectCallers(G, F);
      }
    }

    // If G was internal then we may have replaced all uses of G with F. If so,
    // stop here and delete G. There's no need for a thunk. (See note on
    // MergeFunctionsPDI above).
    if (G->hasLocalLinkage() && G->use_empty() && !MergeFunctionsPDI) {
      G->eraseFromParent();
      ++NumFunctionsMerged;
      return;
    }

    if (!isThunkProfitable(F)) {
      return;
    }

    writeThunk(F, G);
    ++NumFunctionsMerged;
  }
}

/// Replace function F by function G.
void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
                                           Function *G) {
  Function *F = FN.getFunc();
  assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
         "The two functions must be equal");

  auto I = FNodesInTree.find(F);
  assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
  assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");

  FnTreeType::iterator IterToFNInFnTree = I->second;
  assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
  // Remove F -> FN and insert G -> FN
  FNodesInTree.erase(I);
  FNodesInTree.insert({G, IterToFNInFnTree});
  // Replace F with G in FN, which is stored inside the FnTree.
  FN.replaceBy(G);
}

// Ordering for functions that are equal under FunctionComparator
static bool isFuncOrderCorrect(const Function *F, const Function *G) {
  if (F->isInterposable() != G->isInterposable()) {
    // Strong before weak, because the weak function may call the strong
    // one, but not the other way around.
    return !F->isInterposable();
  }
  if (F->hasLocalLinkage() != G->hasLocalLinkage()) {
    // External before local, because we definitely have to keep the external
    // function, but may be able to drop the local one.
    return !F->hasLocalLinkage();
  }
  // Impose a total order (by name) on the replacement of functions. This is
  // important when operating on more than one module independently to prevent
  // cycles of thunks calling each other when the modules are linked together.
  return F->getName() <= G->getName();
}

// Insert a ComparableFunction into the FnTree, or merge it away if equal to one
// that was already inserted.
bool MergeFunctions::insert(Function *NewFunction) {
  std::pair<FnTreeType::iterator, bool> Result =
      FnTree.insert(FunctionNode(NewFunction));

  if (Result.second) {
    assert(FNodesInTree.count(NewFunction) == 0);
    FNodesInTree.insert({NewFunction, Result.first});
    LLVM_DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName()
                      << '\n');
    return false;
  }

  const FunctionNode &OldF = *Result.first;

  if (!isFuncOrderCorrect(OldF.getFunc(), NewFunction)) {
    // Swap the two functions.
    Function *F = OldF.getFunc();
    replaceFunctionInTree(*Result.first, NewFunction);
    NewFunction = F;
    assert(OldF.getFunc() != F && "Must have swapped the functions.");
  }

  LLVM_DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
                    << " == " << NewFunction->getName() << '\n');

  Function *DeleteF = NewFunction;
  mergeTwoFunctions(OldF.getFunc(), DeleteF);
  return true;
}

// Remove a function from FnTree. If it was already in FnTree, add
// it to Deferred so that we'll look at it in the next round.
void MergeFunctions::remove(Function *F) {
  auto I = FNodesInTree.find(F);
  if (I != FNodesInTree.end()) {
    LLVM_DEBUG(dbgs() << "Deferred " << F->getName() << ".\n");
    FnTree.erase(I->second);
    // I->second has been invalidated, remove it from the FNodesInTree map to
    // preserve the invariant.
    FNodesInTree.erase(I);
    Deferred.emplace_back(F);
  }
}

// For each instruction used by the value, remove() the function that contains
// the instruction. This should happen right before a call to RAUW.
void MergeFunctions::removeUsers(Value *V) {
  std::vector<Value *> Worklist;
  Worklist.push_back(V);
  SmallPtrSet<Value*, 8> Visited;
  Visited.insert(V);
  while (!Worklist.empty()) {
    Value *V = Worklist.back();
    Worklist.pop_back();

    for (User *U : V->users()) {
      if (Instruction *I = dyn_cast<Instruction>(U)) {
        remove(I->getParent()->getParent());
      } else if (isa<GlobalValue>(U)) {
        // do nothing
      } else if (Constant *C = dyn_cast<Constant>(U)) {
        for (User *UU : C->users()) {
          if (!Visited.insert(UU).second)
            Worklist.push_back(UU);
        }
      }
    }
  }
}