llvm.org GIT mirror llvm / 15c435a lib / CodeGen / PrologEpilogInserter.cpp
15c435a

Tree @15c435a (Download .tar.gz)

PrologEpilogInserter.cpp @15c435araw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation.  After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pei"
#include "PrologEpilogInserter.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <climits>

using namespace llvm;

char PEI::ID = 0;
char &llvm::PrologEpilogCodeInserterID = PEI::ID;

static cl::opt<unsigned>
WarnStackSize("warn-stack-size", cl::Hidden, cl::init((unsigned)-1),
              cl::desc("Warn for stack size bigger than the given"
                       " number"));

INITIALIZE_PASS_BEGIN(PEI, "prologepilog",
                "Prologue/Epilogue Insertion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(StackProtector)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(PEI, "prologepilog",
                    "Prologue/Epilogue Insertion & Frame Finalization",
                    false, false)

STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");
STATISTIC(NumBytesStackSpace,
          "Number of bytes used for stack in all functions");

void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addPreserved<MachineLoopInfo>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<StackProtector>();
  AU.addRequired<TargetPassConfig>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool PEI::isReturnBlock(MachineBasicBlock* MBB) {
  return (MBB && !MBB->empty() && MBB->back().isReturn());
}

/// Compute the set of return blocks
void PEI::calculateSets(MachineFunction &Fn) {
  // Sets used to compute spill, restore placement sets.
  const std::vector<CalleeSavedInfo> &CSI =
    Fn.getFrameInfo()->getCalleeSavedInfo();

  // If no CSRs used, we are done.
  if (CSI.empty())
    return;

  // Save refs to entry and return blocks.
  EntryBlock = Fn.begin();
  for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end();
       MBB != E; ++MBB)
    if (isReturnBlock(MBB))
      ReturnBlocks.push_back(MBB);

  return;
}

/// StackObjSet - A set of stack object indexes
typedef SmallSetVector<int, 8> StackObjSet;

/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
///
bool PEI::runOnMachineFunction(MachineFunction &Fn) {
  const Function* F = Fn.getFunction();
  const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
  const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();

  assert(!Fn.getRegInfo().getNumVirtRegs() && "Regalloc must assign all vregs");

  RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL;
  FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);

  // Calculate the MaxCallFrameSize and AdjustsStack variables for the
  // function's frame information. Also eliminates call frame pseudo
  // instructions.
  calculateCallsInformation(Fn);

  // Allow the target machine to make some adjustments to the function
  // e.g. UsedPhysRegs before calculateCalleeSavedRegisters.
  TFI->processFunctionBeforeCalleeSavedScan(Fn, RS);

  // Scan the function for modified callee saved registers and insert spill code
  // for any callee saved registers that are modified.
  calculateCalleeSavedRegisters(Fn);

  // Determine placement of CSR spill/restore code:
  // place all spills in the entry block, all restores in return blocks.
  calculateSets(Fn);

  // Add the code to save and restore the callee saved registers
  if (!F->hasFnAttribute(Attribute::Naked))
    insertCSRSpillsAndRestores(Fn);

  // Allow the target machine to make final modifications to the function
  // before the frame layout is finalized.
  TFI->processFunctionBeforeFrameFinalized(Fn, RS);

  // Calculate actual frame offsets for all abstract stack objects...
  calculateFrameObjectOffsets(Fn);

  // Add prolog and epilog code to the function.  This function is required
  // to align the stack frame as necessary for any stack variables or
  // called functions.  Because of this, calculateCalleeSavedRegisters()
  // must be called before this function in order to set the AdjustsStack
  // and MaxCallFrameSize variables.
  if (!F->hasFnAttribute(Attribute::Naked))
    insertPrologEpilogCode(Fn);

  // Replace all MO_FrameIndex operands with physical register references
  // and actual offsets.
  //
  replaceFrameIndices(Fn);

  // If register scavenging is needed, as we've enabled doing it as a
  // post-pass, scavenge the virtual registers that frame index elimiation
  // inserted.
  if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging)
    scavengeFrameVirtualRegs(Fn);

  // Clear any vregs created by virtual scavenging.
  Fn.getRegInfo().clearVirtRegs();

  // Warn on stack size when we exceeds the given limit.
  MachineFrameInfo *MFI = Fn.getFrameInfo();
  uint64_t StackSize = MFI->getStackSize();
  if (WarnStackSize.getNumOccurrences() > 0 && WarnStackSize < StackSize) {
    DiagnosticInfoStackSize DiagStackSize(*F, StackSize);
    F->getContext().diagnose(DiagStackSize);
  }

  delete RS;
  ReturnBlocks.clear();
  return true;
}

/// calculateCallsInformation - Calculate the MaxCallFrameSize and AdjustsStack
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallsInformation(MachineFunction &Fn) {
  const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
  const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
  MachineFrameInfo *MFI = Fn.getFrameInfo();

  unsigned MaxCallFrameSize = 0;
  bool AdjustsStack = MFI->adjustsStack();

  // Get the function call frame set-up and tear-down instruction opcode
  int FrameSetupOpcode   = TII.getCallFrameSetupOpcode();
  int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();

  // Early exit for targets which have no call frame setup/destroy pseudo
  // instructions.
  if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1)
    return;

  std::vector<MachineBasicBlock::iterator> FrameSDOps;
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB)
    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
      if (I->getOpcode() == FrameSetupOpcode ||
          I->getOpcode() == FrameDestroyOpcode) {
        assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo"
               " instructions should have a single immediate argument!");
        unsigned Size = I->getOperand(0).getImm();
        if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
        AdjustsStack = true;
        FrameSDOps.push_back(I);
      } else if (I->isInlineAsm()) {
        // Some inline asm's need a stack frame, as indicated by operand 1.
        unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
        if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
          AdjustsStack = true;
      }

  MFI->setAdjustsStack(AdjustsStack);
  MFI->setMaxCallFrameSize(MaxCallFrameSize);

  for (std::vector<MachineBasicBlock::iterator>::iterator
         i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
    MachineBasicBlock::iterator I = *i;

    // If call frames are not being included as part of the stack frame, and
    // the target doesn't indicate otherwise, remove the call frame pseudos
    // here. The sub/add sp instruction pairs are still inserted, but we don't
    // need to track the SP adjustment for frame index elimination.
    if (TFI->canSimplifyCallFramePseudos(Fn))
      TFI->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I);
  }
}


/// calculateCalleeSavedRegisters - Scan the function for modified callee saved
/// registers.
void PEI::calculateCalleeSavedRegisters(MachineFunction &F) {
  const TargetRegisterInfo *RegInfo = F.getTarget().getRegisterInfo();
  const TargetFrameLowering *TFI = F.getTarget().getFrameLowering();
  MachineFrameInfo *MFI = F.getFrameInfo();

  // Get the callee saved register list...
  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&F);

  // These are used to keep track the callee-save area. Initialize them.
  MinCSFrameIndex = INT_MAX;
  MaxCSFrameIndex = 0;

  // Early exit for targets which have no callee saved registers.
  if (CSRegs == 0 || CSRegs[0] == 0)
    return;

  // In Naked functions we aren't going to save any registers.
  if (F.getFunction()->hasFnAttribute(Attribute::Naked))
    return;

  std::vector<CalleeSavedInfo> CSI;
  for (unsigned i = 0; CSRegs[i]; ++i) {
    unsigned Reg = CSRegs[i];
    // Functions which call __builtin_unwind_init get all their registers saved.
    if (F.getRegInfo().isPhysRegUsed(Reg) || F.getMMI().callsUnwindInit()) {
      // If the reg is modified, save it!
      CSI.push_back(CalleeSavedInfo(Reg));
    }
  }

  if (CSI.empty())
    return;   // Early exit if no callee saved registers are modified!

  unsigned NumFixedSpillSlots;
  const TargetFrameLowering::SpillSlot *FixedSpillSlots =
    TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);

  // Now that we know which registers need to be saved and restored, allocate
  // stack slots for them.
  for (std::vector<CalleeSavedInfo>::iterator
         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    unsigned Reg = I->getReg();
    const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);

    int FrameIdx;
    if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) {
      I->setFrameIdx(FrameIdx);
      continue;
    }

    // Check to see if this physreg must be spilled to a particular stack slot
    // on this target.
    const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots;
    while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots &&
           FixedSlot->Reg != Reg)
      ++FixedSlot;

    if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
      // Nope, just spill it anywhere convenient.
      unsigned Align = RC->getAlignment();
      unsigned StackAlign = TFI->getStackAlignment();

      // We may not be able to satisfy the desired alignment specification of
      // the TargetRegisterClass if the stack alignment is smaller. Use the
      // min.
      Align = std::min(Align, StackAlign);
      FrameIdx = MFI->CreateStackObject(RC->getSize(), Align, true);
      if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
      if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
    } else {
      // Spill it to the stack where we must.
      FrameIdx = MFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset, true);
    }

    I->setFrameIdx(FrameIdx);
  }

  MFI->setCalleeSavedInfo(CSI);
}

/// insertCSRSpillsAndRestores - Insert spill and restore code for
/// callee saved registers used in the function.
///
void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
  // Get callee saved register information.
  MachineFrameInfo *MFI = Fn.getFrameInfo();
  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();

  MFI->setCalleeSavedInfoValid(true);

  // Early exit if no callee saved registers are modified!
  if (CSI.empty())
    return;

  const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
  const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
  const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
  MachineBasicBlock::iterator I;

  // Spill using target interface.
  I = EntryBlock->begin();
  if (!TFI->spillCalleeSavedRegisters(*EntryBlock, I, CSI, TRI)) {
    for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
      // Add the callee-saved register as live-in.
      // It's killed at the spill.
      EntryBlock->addLiveIn(CSI[i].getReg());

      // Insert the spill to the stack frame.
      unsigned Reg = CSI[i].getReg();
      const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
      TII.storeRegToStackSlot(*EntryBlock, I, Reg, true, CSI[i].getFrameIdx(),
                              RC, TRI);
    }
  }

  // Restore using target interface.
  for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) {
    MachineBasicBlock *MBB = ReturnBlocks[ri];
    I = MBB->end();
    --I;

    // Skip over all terminator instructions, which are part of the return
    // sequence.
    MachineBasicBlock::iterator I2 = I;
    while (I2 != MBB->begin() && (--I2)->isTerminator())
      I = I2;

    bool AtStart = I == MBB->begin();
    MachineBasicBlock::iterator BeforeI = I;
    if (!AtStart)
      --BeforeI;

    // Restore all registers immediately before the return and any
    // terminators that precede it.
    if (!TFI->restoreCalleeSavedRegisters(*MBB, I, CSI, TRI)) {
      for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
        unsigned Reg = CSI[i].getReg();
        const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
        TII.loadRegFromStackSlot(*MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
        assert(I != MBB->begin() &&
               "loadRegFromStackSlot didn't insert any code!");
        // Insert in reverse order.  loadRegFromStackSlot can insert
        // multiple instructions.
        if (AtStart)
          I = MBB->begin();
        else {
          I = BeforeI;
          ++I;
        }
      }
    }
  }
}

/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void
AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
                  bool StackGrowsDown, int64_t &Offset,
                  unsigned &MaxAlign) {
  // If the stack grows down, add the object size to find the lowest address.
  if (StackGrowsDown)
    Offset += MFI->getObjectSize(FrameIdx);

  unsigned Align = MFI->getObjectAlignment(FrameIdx);

  // If the alignment of this object is greater than that of the stack, then
  // increase the stack alignment to match.
  MaxAlign = std::max(MaxAlign, Align);

  // Adjust to alignment boundary.
  Offset = (Offset + Align - 1) / Align * Align;

  if (StackGrowsDown) {
    DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n");
    MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset
  } else {
    DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n");
    MFI->setObjectOffset(FrameIdx, Offset);
    Offset += MFI->getObjectSize(FrameIdx);
  }
}

/// AssignProtectedObjSet - Helper function to assign large stack objects (i.e.,
/// those required to be close to the Stack Protector) to stack offsets.
static void
AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
                      SmallSet<int, 16> &ProtectedObjs,
                      MachineFrameInfo *MFI, bool StackGrowsDown,
                      int64_t &Offset, unsigned &MaxAlign) {

  for (StackObjSet::const_iterator I = UnassignedObjs.begin(),
        E = UnassignedObjs.end(); I != E; ++I) {
    int i = *I;
    AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign);
    ProtectedObjs.insert(i);
  }
}

/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
///
void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
  const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
  StackProtector *SP = &getAnalysis<StackProtector>();

  bool StackGrowsDown =
    TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;

  // Loop over all of the stack objects, assigning sequential addresses...
  MachineFrameInfo *MFI = Fn.getFrameInfo();

  // Start at the beginning of the local area.
  // The Offset is the distance from the stack top in the direction
  // of stack growth -- so it's always nonnegative.
  int LocalAreaOffset = TFI.getOffsetOfLocalArea();
  if (StackGrowsDown)
    LocalAreaOffset = -LocalAreaOffset;
  assert(LocalAreaOffset >= 0
         && "Local area offset should be in direction of stack growth");
  int64_t Offset = LocalAreaOffset;

  // If there are fixed sized objects that are preallocated in the local area,
  // non-fixed objects can't be allocated right at the start of local area.
  // We currently don't support filling in holes in between fixed sized
  // objects, so we adjust 'Offset' to point to the end of last fixed sized
  // preallocated object.
  for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) {
    int64_t FixedOff;
    if (StackGrowsDown) {
      // The maximum distance from the stack pointer is at lower address of
      // the object -- which is given by offset. For down growing stack
      // the offset is negative, so we negate the offset to get the distance.
      FixedOff = -MFI->getObjectOffset(i);
    } else {
      // The maximum distance from the start pointer is at the upper
      // address of the object.
      FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i);
    }
    if (FixedOff > Offset) Offset = FixedOff;
  }

  // First assign frame offsets to stack objects that are used to spill
  // callee saved registers.
  if (StackGrowsDown) {
    for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
      // If the stack grows down, we need to add the size to find the lowest
      // address of the object.
      Offset += MFI->getObjectSize(i);

      unsigned Align = MFI->getObjectAlignment(i);
      // Adjust to alignment boundary
      Offset = (Offset+Align-1)/Align*Align;

      MFI->setObjectOffset(i, -Offset);        // Set the computed offset
    }
  } else {
    int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex;
    for (int i = MaxCSFI; i >= MinCSFI ; --i) {
      unsigned Align = MFI->getObjectAlignment(i);
      // Adjust to alignment boundary
      Offset = (Offset+Align-1)/Align*Align;

      MFI->setObjectOffset(i, Offset);
      Offset += MFI->getObjectSize(i);
    }
  }

  unsigned MaxAlign = MFI->getMaxAlignment();

  // Make sure the special register scavenging spill slot is closest to the
  // incoming stack pointer if a frame pointer is required and is closer
  // to the incoming rather than the final stack pointer.
  const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
  bool EarlyScavengingSlots = (TFI.hasFP(Fn) &&
                               TFI.isFPCloseToIncomingSP() &&
                               RegInfo->useFPForScavengingIndex(Fn) &&
                               !RegInfo->needsStackRealignment(Fn));
  if (RS && EarlyScavengingSlots) {
    SmallVector<int, 2> SFIs;
    RS->getScavengingFrameIndices(SFIs);
    for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
           IE = SFIs.end(); I != IE; ++I)
      AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign);
  }

  // FIXME: Once this is working, then enable flag will change to a target
  // check for whether the frame is large enough to want to use virtual
  // frame index registers. Functions which don't want/need this optimization
  // will continue to use the existing code path.
  if (MFI->getUseLocalStackAllocationBlock()) {
    unsigned Align = MFI->getLocalFrameMaxAlign();

    // Adjust to alignment boundary.
    Offset = (Offset + Align - 1) / Align * Align;

    DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");

    // Resolve offsets for objects in the local block.
    for (unsigned i = 0, e = MFI->getLocalFrameObjectCount(); i != e; ++i) {
      std::pair<int, int64_t> Entry = MFI->getLocalFrameObjectMap(i);
      int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
      DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" <<
            FIOffset << "]\n");
      MFI->setObjectOffset(Entry.first, FIOffset);
    }
    // Allocate the local block
    Offset += MFI->getLocalFrameSize();

    MaxAlign = std::max(Align, MaxAlign);
  }

  // Make sure that the stack protector comes before the local variables on the
  // stack.
  SmallSet<int, 16> ProtectedObjs;
  if (MFI->getStackProtectorIndex() >= 0) {
    StackObjSet LargeArrayObjs;
    StackObjSet SmallArrayObjs;
    StackObjSet AddrOfObjs;

    AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), StackGrowsDown,
                      Offset, MaxAlign);

    // Assign large stack objects first.
    for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
      if (MFI->isObjectPreAllocated(i) &&
          MFI->getUseLocalStackAllocationBlock())
        continue;
      if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
        continue;
      if (RS && RS->isScavengingFrameIndex((int)i))
        continue;
      if (MFI->isDeadObjectIndex(i))
        continue;
      if (MFI->getStackProtectorIndex() == (int)i)
        continue;

      switch (SP->getSSPLayout(MFI->getObjectAllocation(i))) {
      case StackProtector::SSPLK_None:
        continue;
      case StackProtector::SSPLK_SmallArray:
        SmallArrayObjs.insert(i);
        continue;
      case StackProtector::SSPLK_AddrOf:
        AddrOfObjs.insert(i);
        continue;
      case StackProtector::SSPLK_LargeArray:
        LargeArrayObjs.insert(i);
        continue;
      }
      llvm_unreachable("Unexpected SSPLayoutKind.");
    }

    AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
                          Offset, MaxAlign);
    AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
                          Offset, MaxAlign);
    AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown,
                          Offset, MaxAlign);
  }

  // Then assign frame offsets to stack objects that are not used to spill
  // callee saved registers.
  for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
    if (MFI->isObjectPreAllocated(i) &&
        MFI->getUseLocalStackAllocationBlock())
      continue;
    if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
      continue;
    if (RS && RS->isScavengingFrameIndex((int)i))
      continue;
    if (MFI->isDeadObjectIndex(i))
      continue;
    if (MFI->getStackProtectorIndex() == (int)i)
      continue;
    if (ProtectedObjs.count(i))
      continue;

    AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign);
  }

  // Make sure the special register scavenging spill slot is closest to the
  // stack pointer.
  if (RS && !EarlyScavengingSlots) {
    SmallVector<int, 2> SFIs;
    RS->getScavengingFrameIndices(SFIs);
    for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
           IE = SFIs.end(); I != IE; ++I)
      AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign);
  }

  if (!TFI.targetHandlesStackFrameRounding()) {
    // If we have reserved argument space for call sites in the function
    // immediately on entry to the current function, count it as part of the
    // overall stack size.
    if (MFI->adjustsStack() && TFI.hasReservedCallFrame(Fn))
      Offset += MFI->getMaxCallFrameSize();

    // Round up the size to a multiple of the alignment.  If the function has
    // any calls or alloca's, align to the target's StackAlignment value to
    // ensure that the callee's frame or the alloca data is suitably aligned;
    // otherwise, for leaf functions, align to the TransientStackAlignment
    // value.
    unsigned StackAlign;
    if (MFI->adjustsStack() || MFI->hasVarSizedObjects() ||
        (RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0))
      StackAlign = TFI.getStackAlignment();
    else
      StackAlign = TFI.getTransientStackAlignment();

    // If the frame pointer is eliminated, all frame offsets will be relative to
    // SP not FP. Align to MaxAlign so this works.
    StackAlign = std::max(StackAlign, MaxAlign);
    unsigned AlignMask = StackAlign - 1;
    Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
  }

  // Update frame info to pretend that this is part of the stack...
  int64_t StackSize = Offset - LocalAreaOffset;
  MFI->setStackSize(StackSize);
  NumBytesStackSpace += StackSize;
}

/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
///
void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
  const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();

  // Add prologue to the function...
  TFI.emitPrologue(Fn);

  // Add epilogue to restore the callee-save registers in each exiting block
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
    // If last instruction is a return instruction, add an epilogue
    if (!I->empty() && I->back().isReturn())
      TFI.emitEpilogue(Fn, *I);
  }

  // Emit additional code that is required to support segmented stacks, if
  // we've been asked for it.  This, when linked with a runtime with support
  // for segmented stacks (libgcc is one), will result in allocating stack
  // space in small chunks instead of one large contiguous block.
  if (Fn.shouldSplitStack())
    TFI.adjustForSegmentedStacks(Fn);

  // Emit additional code that is required to explicitly handle the stack in
  // HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
  // approach is rather similar to that of Segmented Stacks, but it uses a
  // different conditional check and another BIF for allocating more stack
  // space.
  if (Fn.getFunction()->getCallingConv() == CallingConv::HiPE)
    TFI.adjustForHiPEPrologue(Fn);
}

/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
///
void PEI::replaceFrameIndices(MachineFunction &Fn) {
  if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do?

  // Store SPAdj at exit of a basic block.
  SmallVector<int, 8> SPState;
  SPState.resize(Fn.getNumBlockIDs());
  SmallPtrSet<MachineBasicBlock*, 8> Reachable;

  // Iterate over the reachable blocks in DFS order.
  for (df_ext_iterator<MachineFunction*, SmallPtrSet<MachineBasicBlock*, 8> >
       DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable);
       DFI != DFE; ++DFI) {
    int SPAdj = 0;
    // Check the exit state of the DFS stack predecessor.
    if (DFI.getPathLength() >= 2) {
      MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
      assert(Reachable.count(StackPred) &&
             "DFS stack predecessor is already visited.\n");
      SPAdj = SPState[StackPred->getNumber()];
    }
    MachineBasicBlock *BB = *DFI;
    replaceFrameIndices(BB, Fn, SPAdj);
    SPState[BB->getNumber()] = SPAdj;
  }

  // Handle the unreachable blocks.
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    if (Reachable.count(BB))
      // Already handled in DFS traversal.
      continue;
    int SPAdj = 0;
    replaceFrameIndices(BB, Fn, SPAdj);
  }
}

void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
                              int &SPAdj) {
  const TargetMachine &TM = Fn.getTarget();
  assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!");
  const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
  const TargetFrameLowering *TFI = TM.getFrameLowering();
  bool StackGrowsDown =
    TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
  int FrameSetupOpcode   = TII.getCallFrameSetupOpcode();
  int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();

  if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB);

  for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {

    if (I->getOpcode() == FrameSetupOpcode ||
        I->getOpcode() == FrameDestroyOpcode) {
      // Remember how much SP has been adjusted to create the call
      // frame.
      int Size = I->getOperand(0).getImm();

      if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) ||
          (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode))
        Size = -Size;

      SPAdj += Size;

      MachineBasicBlock::iterator PrevI = BB->end();
      if (I != BB->begin()) PrevI = std::prev(I);
      TFI->eliminateCallFramePseudoInstr(Fn, *BB, I);

      // Visit the instructions created by eliminateCallFramePseudoInstr().
      if (PrevI == BB->end())
        I = BB->begin();     // The replaced instr was the first in the block.
      else
        I = std::next(PrevI);
      continue;
    }

    MachineInstr *MI = I;
    bool DoIncr = true;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      if (!MI->getOperand(i).isFI())
        continue;

      // Frame indicies in debug values are encoded in a target independent
      // way with simply the frame index and offset rather than any
      // target-specific addressing mode.
      if (MI->isDebugValue()) {
        assert(i == 0 && "Frame indicies can only appear as the first "
                         "operand of a DBG_VALUE machine instruction");
        unsigned Reg;
        MachineOperand &Offset = MI->getOperand(1);
        Offset.setImm(Offset.getImm() +
                      TFI->getFrameIndexReference(
                          Fn, MI->getOperand(0).getIndex(), Reg));
        MI->getOperand(0).ChangeToRegister(Reg, false /*isDef*/);
        continue;
      }

      // Some instructions (e.g. inline asm instructions) can have
      // multiple frame indices and/or cause eliminateFrameIndex
      // to insert more than one instruction. We need the register
      // scavenger to go through all of these instructions so that
      // it can update its register information. We keep the
      // iterator at the point before insertion so that we can
      // revisit them in full.
      bool AtBeginning = (I == BB->begin());
      if (!AtBeginning) --I;

      // If this instruction has a FrameIndex operand, we need to
      // use that target machine register info object to eliminate
      // it.
      TRI.eliminateFrameIndex(MI, SPAdj, i,
                              FrameIndexVirtualScavenging ?  NULL : RS);

      // Reset the iterator if we were at the beginning of the BB.
      if (AtBeginning) {
        I = BB->begin();
        DoIncr = false;
      }

      MI = 0;
      break;
    }

    if (DoIncr && I != BB->end()) ++I;

    // Update register states.
    if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI);
  }
}

/// scavengeFrameVirtualRegs - Replace all frame index virtual registers
/// with physical registers. Use the register scavenger to find an
/// appropriate register to use.
///
/// FIXME: Iterating over the instruction stream is unnecessary. We can simply
/// iterate over the vreg use list, which at this point only contains machine
/// operands for which eliminateFrameIndex need a new scratch reg.
void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
  // Run through the instructions and find any virtual registers.
  for (MachineFunction::iterator BB = Fn.begin(),
       E = Fn.end(); BB != E; ++BB) {
    RS->enterBasicBlock(BB);

    int SPAdj = 0;

    // The instruction stream may change in the loop, so check BB->end()
    // directly.
    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
      // We might end up here again with a NULL iterator if we scavenged a
      // register for which we inserted spill code for definition by what was
      // originally the first instruction in BB.
      if (I == MachineBasicBlock::iterator(NULL))
        I = BB->begin();

      MachineInstr *MI = I;
      MachineBasicBlock::iterator J = std::next(I);
      MachineBasicBlock::iterator P =
          I == BB->begin() ? MachineBasicBlock::iterator(NULL) : std::prev(I);

      // RS should process this instruction before we might scavenge at this
      // location. This is because we might be replacing a virtual register
      // defined by this instruction, and if so, registers killed by this
      // instruction are available, and defined registers are not.
      RS->forward(I);

      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        if (MI->getOperand(i).isReg()) {
          MachineOperand &MO = MI->getOperand(i);
          unsigned Reg = MO.getReg();
          if (Reg == 0)
            continue;
          if (!TargetRegisterInfo::isVirtualRegister(Reg))
            continue;

          // When we first encounter a new virtual register, it
          // must be a definition.
          assert(MI->getOperand(i).isDef() &&
                 "frame index virtual missing def!");
          // Scavenge a new scratch register
          const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg);
          unsigned ScratchReg = RS->scavengeRegister(RC, J, SPAdj);

          ++NumScavengedRegs;

          // Replace this reference to the virtual register with the
          // scratch register.
          assert (ScratchReg && "Missing scratch register!");
          Fn.getRegInfo().replaceRegWith(Reg, ScratchReg);

          // Because this instruction was processed by the RS before this
          // register was allocated, make sure that the RS now records the
          // register as being used.
          RS->setUsed(ScratchReg);
        }
      }

      // If the scavenger needed to use one of its spill slots, the
      // spill code will have been inserted in between I and J. This is a
      // problem because we need the spill code before I: Move I to just
      // prior to J.
      if (I != std::prev(J)) {
        BB->splice(J, BB, I);

        // Before we move I, we need to prepare the RS to visit I again.
        // Specifically, RS will assert if it sees uses of registers that
        // it believes are undefined. Because we have already processed
        // register kills in I, when it visits I again, it will believe that
        // those registers are undefined. To avoid this situation, unprocess
        // the instruction I.
        assert(RS->getCurrentPosition() == I &&
          "The register scavenger has an unexpected position");
        I = P;
        RS->unprocess(P);
      } else
        ++I;
    }
  }
}