llvm.org GIT mirror llvm / 15c435a lib / CodeGen / LiveIntervalAnalysis.cpp
15c435a

Tree @15c435a (Download .tar.gz)

LiveIntervalAnalysis.cpp @15c435araw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "LiveRangeCalc.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
#include <cmath>
#include <limits>
using namespace llvm;

char LiveIntervals::ID = 0;
char &llvm::LiveIntervalsID = LiveIntervals::ID;
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
                "Live Interval Analysis", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
                "Live Interval Analysis", false, false)

#ifndef NDEBUG
static cl::opt<bool> EnablePrecomputePhysRegs(
  "precompute-phys-liveness", cl::Hidden,
  cl::desc("Eagerly compute live intervals for all physreg units."));
#else
static bool EnablePrecomputePhysRegs = false;
#endif // NDEBUG

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  // LiveVariables isn't really required by this analysis, it is only required
  // here to make sure it is live during TwoAddressInstructionPass and
  // PHIElimination. This is temporary.
  AU.addRequired<LiveVariables>();
  AU.addPreserved<LiveVariables>();
  AU.addPreservedID(MachineLoopInfoID);
  AU.addRequiredTransitiveID(MachineDominatorsID);
  AU.addPreservedID(MachineDominatorsID);
  AU.addPreserved<SlotIndexes>();
  AU.addRequiredTransitive<SlotIndexes>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
  DomTree(0), LRCalc(0) {
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
}

LiveIntervals::~LiveIntervals() {
  delete LRCalc;
}

void LiveIntervals::releaseMemory() {
  // Free the live intervals themselves.
  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
  VirtRegIntervals.clear();
  RegMaskSlots.clear();
  RegMaskBits.clear();
  RegMaskBlocks.clear();

  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    delete RegUnitRanges[i];
  RegUnitRanges.clear();

  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
  VNInfoAllocator.Reset();
}

/// runOnMachineFunction - calculates LiveIntervals
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  MF = &fn;
  MRI = &MF->getRegInfo();
  TM = &fn.getTarget();
  TRI = TM->getRegisterInfo();
  TII = TM->getInstrInfo();
  AA = &getAnalysis<AliasAnalysis>();
  Indexes = &getAnalysis<SlotIndexes>();
  DomTree = &getAnalysis<MachineDominatorTree>();
  if (!LRCalc)
    LRCalc = new LiveRangeCalc();

  // Allocate space for all virtual registers.
  VirtRegIntervals.resize(MRI->getNumVirtRegs());

  computeVirtRegs();
  computeRegMasks();
  computeLiveInRegUnits();

  if (EnablePrecomputePhysRegs) {
    // For stress testing, precompute live ranges of all physical register
    // units, including reserved registers.
    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
      getRegUnit(i);
  }
  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
  OS << "********** INTERVALS **********\n";

  // Dump the regunits.
  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    if (LiveRange *LR = RegUnitRanges[i])
      OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';

  // Dump the virtregs.
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (hasInterval(Reg))
      OS << getInterval(Reg) << '\n';
  }

  OS << "RegMasks:";
  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
    OS << ' ' << RegMaskSlots[i];
  OS << '\n';

  printInstrs(OS);
}

void LiveIntervals::printInstrs(raw_ostream &OS) const {
  OS << "********** MACHINEINSTRS **********\n";
  MF->print(OS, Indexes);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveIntervals::dumpInstrs() const {
  printInstrs(dbgs());
}
#endif

LiveInterval* LiveIntervals::createInterval(unsigned reg) {
  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
                  llvm::huge_valf : 0.0F;
  return new LiveInterval(reg, Weight);
}


/// computeVirtRegInterval - Compute the live interval of a virtual register,
/// based on defs and uses.
void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
  assert(LRCalc && "LRCalc not initialized.");
  assert(LI.empty() && "Should only compute empty intervals.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
  LRCalc->createDeadDefs(LI);
  LRCalc->extendToUses(LI);
}

void LiveIntervals::computeVirtRegs() {
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    createAndComputeVirtRegInterval(Reg);
  }
}

void LiveIntervals::computeRegMasks() {
  RegMaskBlocks.resize(MF->getNumBlockIDs());

  // Find all instructions with regmask operands.
  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock *MBB = MBBI;
    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
    RMB.first = RegMaskSlots.size();
    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
         MI != ME; ++MI)
      for (MIOperands MO(MI); MO.isValid(); ++MO) {
        if (!MO->isRegMask())
          continue;
          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
          RegMaskBits.push_back(MO->getRegMask());
      }
    // Compute the number of register mask instructions in this block.
    RMB.second = RegMaskSlots.size() - RMB.first;
  }
}

//===----------------------------------------------------------------------===//
//                           Register Unit Liveness
//===----------------------------------------------------------------------===//
//
// Fixed interference typically comes from ABI boundaries: Function arguments
// and return values are passed in fixed registers, and so are exception
// pointers entering landing pads. Certain instructions require values to be
// present in specific registers. That is also represented through fixed
// interference.
//

/// computeRegUnitInterval - Compute the live range of a register unit, based
/// on the uses and defs of aliasing registers.  The range should be empty,
/// or contain only dead phi-defs from ABI blocks.
void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
  assert(LRCalc && "LRCalc not initialized.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());

  // The physregs aliasing Unit are the roots and their super-registers.
  // Create all values as dead defs before extending to uses. Note that roots
  // may share super-registers. That's OK because createDeadDefs() is
  // idempotent. It is very rare for a register unit to have multiple roots, so
  // uniquing super-registers is probably not worthwhile.
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
         Supers.isValid(); ++Supers) {
      if (!MRI->reg_empty(*Supers))
        LRCalc->createDeadDefs(LR, *Supers);
    }
  }

  // Now extend LR to reach all uses.
  // Ignore uses of reserved registers. We only track defs of those.
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
         Supers.isValid(); ++Supers) {
      unsigned Reg = *Supers;
      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
        LRCalc->extendToUses(LR, Reg);
    }
  }
}


/// computeLiveInRegUnits - Precompute the live ranges of any register units
/// that are live-in to an ABI block somewhere. Register values can appear
/// without a corresponding def when entering the entry block or a landing pad.
///
void LiveIntervals::computeLiveInRegUnits() {
  RegUnitRanges.resize(TRI->getNumRegUnits());
  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");

  // Keep track of the live range sets allocated.
  SmallVector<unsigned, 8> NewRanges;

  // Check all basic blocks for live-ins.
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    const MachineBasicBlock *MBB = MFI;

    // We only care about ABI blocks: Entry + landing pads.
    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
      continue;

    // Create phi-defs at Begin for all live-in registers.
    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
         LIE = MBB->livein_end(); LII != LIE; ++LII) {
      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
        unsigned Unit = *Units;
        LiveRange *LR = RegUnitRanges[Unit];
        if (!LR) {
          LR = RegUnitRanges[Unit] = new LiveRange();
          NewRanges.push_back(Unit);
        }
        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
        (void)VNI;
        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
      }
    }
    DEBUG(dbgs() << '\n');
  }
  DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");

  // Compute the 'normal' part of the ranges.
  for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
    unsigned Unit = NewRanges[i];
    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
  }
}


/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
bool LiveIntervals::shrinkToUses(LiveInterval *li,
                                 SmallVectorImpl<MachineInstr*> *dead) {
  DEBUG(dbgs() << "Shrink: " << *li << '\n');
  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
         && "Can only shrink virtual registers");
  // Find all the values used, including PHI kills.
  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;

  // Blocks that have already been added to WorkList as live-out.
  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;

  // Visit all instructions reading li->reg.
  for (MachineRegisterInfo::reg_instr_iterator
       I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
       I != E; ) {
    MachineInstr *UseMI = &*(I++);
    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
      continue;
    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    LiveQueryResult LRQ = li->Query(Idx);
    VNInfo *VNI = LRQ.valueIn();
    if (!VNI) {
      // This shouldn't happen: readsVirtualRegister returns true, but there is
      // no live value. It is likely caused by a target getting <undef> flags
      // wrong.
      DEBUG(dbgs() << Idx << '\t' << *UseMI
                   << "Warning: Instr claims to read non-existent value in "
                    << *li << '\n');
      continue;
    }
    // Special case: An early-clobber tied operand reads and writes the
    // register one slot early.
    if (VNInfo *DefVNI = LRQ.valueDefined())
      Idx = DefVNI->def;

    WorkList.push_back(std::make_pair(Idx, VNI));
  }

  // Create new live ranges with only minimal live segments per def.
  LiveRange NewLR;
  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
       I != E; ++I) {
    VNInfo *VNI = *I;
    if (VNI->isUnused())
      continue;
    NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
  }

  // Keep track of the PHIs that are in use.
  SmallPtrSet<VNInfo*, 8> UsedPHIs;

  // Extend intervals to reach all uses in WorkList.
  while (!WorkList.empty()) {
    SlotIndex Idx = WorkList.back().first;
    VNInfo *VNI = WorkList.back().second;
    WorkList.pop_back();
    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
    SlotIndex BlockStart = getMBBStartIdx(MBB);

    // Extend the live range for VNI to be live at Idx.
    if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
      (void)ExtVNI;
      assert(ExtVNI == VNI && "Unexpected existing value number");
      // Is this a PHIDef we haven't seen before?
      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
        continue;
      // The PHI is live, make sure the predecessors are live-out.
      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
           PE = MBB->pred_end(); PI != PE; ++PI) {
        if (!LiveOut.insert(*PI))
          continue;
        SlotIndex Stop = getMBBEndIdx(*PI);
        // A predecessor is not required to have a live-out value for a PHI.
        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
          WorkList.push_back(std::make_pair(Stop, PVNI));
      }
      continue;
    }

    // VNI is live-in to MBB.
    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
    NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));

    // Make sure VNI is live-out from the predecessors.
    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
      if (!LiveOut.insert(*PI))
        continue;
      SlotIndex Stop = getMBBEndIdx(*PI);
      assert(li->getVNInfoBefore(Stop) == VNI &&
             "Wrong value out of predecessor");
      WorkList.push_back(std::make_pair(Stop, VNI));
    }
  }

  // Handle dead values.
  bool CanSeparate = false;
  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
       I != E; ++I) {
    VNInfo *VNI = *I;
    if (VNI->isUnused())
      continue;
    LiveRange::iterator LRI = NewLR.FindSegmentContaining(VNI->def);
    assert(LRI != NewLR.end() && "Missing segment for PHI");
    if (LRI->end != VNI->def.getDeadSlot())
      continue;
    if (VNI->isPHIDef()) {
      // This is a dead PHI. Remove it.
      VNI->markUnused();
      NewLR.removeSegment(LRI->start, LRI->end);
      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
      CanSeparate = true;
    } else {
      // This is a dead def. Make sure the instruction knows.
      MachineInstr *MI = getInstructionFromIndex(VNI->def);
      assert(MI && "No instruction defining live value");
      MI->addRegisterDead(li->reg, TRI);
      if (dead && MI->allDefsAreDead()) {
        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
        dead->push_back(MI);
      }
    }
  }

  // Move the trimmed segments back.
  li->segments.swap(NewLR.segments);
  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
  return CanSeparate;
}

void LiveIntervals::extendToIndices(LiveRange &LR,
                                    ArrayRef<SlotIndex> Indices) {
  assert(LRCalc && "LRCalc not initialized.");
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    LRCalc->extend(LR, Indices[i]);
}

void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
                               SmallVectorImpl<SlotIndex> *EndPoints) {
  LiveQueryResult LRQ = LI->Query(Kill);
  VNInfo *VNI = LRQ.valueOut();
  if (!VNI)
    return;

  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
  SlotIndex MBBStart, MBBEnd;
  std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);

  // If VNI isn't live out from KillMBB, the value is trivially pruned.
  if (LRQ.endPoint() < MBBEnd) {
    LI->removeSegment(Kill, LRQ.endPoint());
    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    return;
  }

  // VNI is live out of KillMBB.
  LI->removeSegment(Kill, MBBEnd);
  if (EndPoints) EndPoints->push_back(MBBEnd);

  // Find all blocks that are reachable from KillMBB without leaving VNI's live
  // range. It is possible that KillMBB itself is reachable, so start a DFS
  // from each successor.
  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
  VisitedTy Visited;
  for (MachineBasicBlock::succ_iterator
       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
       SuccI != SuccE; ++SuccI) {
    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
         I != E;) {
      MachineBasicBlock *MBB = *I;

      // Check if VNI is live in to MBB.
      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
      LiveQueryResult LRQ = LI->Query(MBBStart);
      if (LRQ.valueIn() != VNI) {
        // This block isn't part of the VNI segment. Prune the search.
        I.skipChildren();
        continue;
      }

      // Prune the search if VNI is killed in MBB.
      if (LRQ.endPoint() < MBBEnd) {
        LI->removeSegment(MBBStart, LRQ.endPoint());
        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
        I.skipChildren();
        continue;
      }

      // VNI is live through MBB.
      LI->removeSegment(MBBStart, MBBEnd);
      if (EndPoints) EndPoints->push_back(MBBEnd);
      ++I;
    }
  }
}

//===----------------------------------------------------------------------===//
// Register allocator hooks.
//

void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
  // Keep track of regunit ranges.
  SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;

  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    LiveInterval *LI = &getInterval(Reg);
    if (LI->empty())
      continue;

    // Find the regunit intervals for the assigned register. They may overlap
    // the virtual register live range, cancelling any kills.
    RU.clear();
    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
         ++Units) {
      LiveRange &RURanges = getRegUnit(*Units);
      if (RURanges.empty())
        continue;
      RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
    }

    // Every instruction that kills Reg corresponds to a segment range end
    // point.
    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
         ++RI) {
      // A block index indicates an MBB edge.
      if (RI->end.isBlock())
        continue;
      MachineInstr *MI = getInstructionFromIndex(RI->end);
      if (!MI)
        continue;

      // Check if any of the regunits are live beyond the end of RI. That could
      // happen when a physreg is defined as a copy of a virtreg:
      //
      //   %EAX = COPY %vreg5
      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
      //   BAR %EAX<kill>
      //
      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
      bool CancelKill = false;
      for (unsigned u = 0, e = RU.size(); u != e; ++u) {
        LiveRange &RRanges = *RU[u].first;
        LiveRange::iterator &I = RU[u].second;
        if (I == RRanges.end())
          continue;
        I = RRanges.advanceTo(I, RI->end);
        if (I == RRanges.end() || I->start >= RI->end)
          continue;
        // I is overlapping RI.
        CancelKill = true;
        break;
      }
      if (CancelKill)
        MI->clearRegisterKills(Reg, NULL);
      else
        MI->addRegisterKilled(Reg, NULL);
    }
  }
}

MachineBasicBlock*
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
  // A local live range must be fully contained inside the block, meaning it is
  // defined and killed at instructions, not at block boundaries. It is not
  // live in or or out of any block.
  //
  // It is technically possible to have a PHI-defined live range identical to a
  // single block, but we are going to return false in that case.

  SlotIndex Start = LI.beginIndex();
  if (Start.isBlock())
    return NULL;

  SlotIndex Stop = LI.endIndex();
  if (Stop.isBlock())
    return NULL;

  // getMBBFromIndex doesn't need to search the MBB table when both indexes
  // belong to proper instructions.
  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
  return MBB1 == MBB2 ? MBB1 : NULL;
}

bool
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
       I != E; ++I) {
    const VNInfo *PHI = *I;
    if (PHI->isUnused() || !PHI->isPHIDef())
      continue;
    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
    // Conservatively return true instead of scanning huge predecessor lists.
    if (PHIMBB->pred_size() > 100)
      return true;
    for (MachineBasicBlock::const_pred_iterator
         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
        return true;
  }
  return false;
}

float
LiveIntervals::getSpillWeight(bool isDef, bool isUse,
                              const MachineBlockFrequencyInfo *MBFI,
                              const MachineInstr *MI) {
  BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
  const float Scale = 1.0f / MBFI->getEntryFreq();
  return (isDef + isUse) * (Freq.getFrequency() * Scale);
}

LiveRange::Segment
LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
  LiveInterval& Interval = createEmptyInterval(reg);
  VNInfo* VN = Interval.getNextValue(
    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    getVNInfoAllocator());
  LiveRange::Segment S(
     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
     getMBBEndIdx(startInst->getParent()), VN);
  Interval.addSegment(S);

  return S;
}


//===----------------------------------------------------------------------===//
//                          Register mask functions
//===----------------------------------------------------------------------===//

bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
                                             BitVector &UsableRegs) {
  if (LI.empty())
    return false;
  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();

  // Use a smaller arrays for local live ranges.
  ArrayRef<SlotIndex> Slots;
  ArrayRef<const uint32_t*> Bits;
  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
    Bits = getRegMaskBitsInBlock(MBB->getNumber());
  } else {
    Slots = getRegMaskSlots();
    Bits = getRegMaskBits();
  }

  // We are going to enumerate all the register mask slots contained in LI.
  // Start with a binary search of RegMaskSlots to find a starting point.
  ArrayRef<SlotIndex>::iterator SlotI =
    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();

  // No slots in range, LI begins after the last call.
  if (SlotI == SlotE)
    return false;

  bool Found = false;
  for (;;) {
    assert(*SlotI >= LiveI->start);
    // Loop over all slots overlapping this segment.
    while (*SlotI < LiveI->end) {
      // *SlotI overlaps LI. Collect mask bits.
      if (!Found) {
        // This is the first overlap. Initialize UsableRegs to all ones.
        UsableRegs.clear();
        UsableRegs.resize(TRI->getNumRegs(), true);
        Found = true;
      }
      // Remove usable registers clobbered by this mask.
      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
      if (++SlotI == SlotE)
        return Found;
    }
    // *SlotI is beyond the current LI segment.
    LiveI = LI.advanceTo(LiveI, *SlotI);
    if (LiveI == LiveE)
      return Found;
    // Advance SlotI until it overlaps.
    while (*SlotI < LiveI->start)
      if (++SlotI == SlotE)
        return Found;
  }
}

//===----------------------------------------------------------------------===//
//                         IntervalUpdate class.
//===----------------------------------------------------------------------===//

// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
class LiveIntervals::HMEditor {
private:
  LiveIntervals& LIS;
  const MachineRegisterInfo& MRI;
  const TargetRegisterInfo& TRI;
  SlotIndex OldIdx;
  SlotIndex NewIdx;
  SmallPtrSet<LiveRange*, 8> Updated;
  bool UpdateFlags;

public:
  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
           const TargetRegisterInfo& TRI,
           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
      UpdateFlags(UpdateFlags) {}

  // FIXME: UpdateFlags is a workaround that creates live intervals for all
  // physregs, even those that aren't needed for regalloc, in order to update
  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
  // flags, and postRA passes will use a live register utility instead.
  LiveRange *getRegUnitLI(unsigned Unit) {
    if (UpdateFlags)
      return &LIS.getRegUnit(Unit);
    return LIS.getCachedRegUnit(Unit);
  }

  /// Update all live ranges touched by MI, assuming a move from OldIdx to
  /// NewIdx.
  void updateAllRanges(MachineInstr *MI) {
    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
    bool hasRegMask = false;
    for (MIOperands MO(MI); MO.isValid(); ++MO) {
      if (MO->isRegMask())
        hasRegMask = true;
      if (!MO->isReg())
        continue;
      // Aggressively clear all kill flags.
      // They are reinserted by VirtRegRewriter.
      if (MO->isUse())
        MO->setIsKill(false);

      unsigned Reg = MO->getReg();
      if (!Reg)
        continue;
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        LiveInterval &LI = LIS.getInterval(Reg);
        updateRange(LI, Reg);
        continue;
      }

      // For physregs, only update the regunits that actually have a
      // precomputed live range.
      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
        if (LiveRange *LR = getRegUnitLI(*Units))
          updateRange(*LR, *Units);
    }
    if (hasRegMask)
      updateRegMaskSlots();
  }

private:
  /// Update a single live range, assuming an instruction has been moved from
  /// OldIdx to NewIdx.
  void updateRange(LiveRange &LR, unsigned Reg) {
    if (!Updated.insert(&LR))
      return;
    DEBUG({
      dbgs() << "     ";
      if (TargetRegisterInfo::isVirtualRegister(Reg))
        dbgs() << PrintReg(Reg);
      else
        dbgs() << PrintRegUnit(Reg, &TRI);
      dbgs() << ":\t" << LR << '\n';
    });
    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
      handleMoveDown(LR);
    else
      handleMoveUp(LR, Reg);
    DEBUG(dbgs() << "        -->\t" << LR << '\n');
    LR.verify();
  }

  /// Update LR to reflect an instruction has been moved downwards from OldIdx
  /// to NewIdx.
  ///
  /// 1. Live def at OldIdx:
  ///    Move def to NewIdx, assert endpoint after NewIdx.
  ///
  /// 2. Live def at OldIdx, killed at NewIdx:
  ///    Change to dead def at NewIdx.
  ///    (Happens when bundling def+kill together).
  ///
  /// 3. Dead def at OldIdx:
  ///    Move def to NewIdx, possibly across another live value.
  ///
  /// 4. Def at OldIdx AND at NewIdx:
  ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
  ///    (Happens when bundling multiple defs together).
  ///
  /// 5. Value read at OldIdx, killed before NewIdx:
  ///    Extend kill to NewIdx.
  ///
  void handleMoveDown(LiveRange &LR) {
    // First look for a kill at OldIdx.
    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
    LiveRange::iterator E = LR.end();
    // Is LR even live at OldIdx?
    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
      return;

    // Handle a live-in value.
    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
      bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
      // If the live-in value already extends to NewIdx, there is nothing to do.
      if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
        return;
      // Aggressively remove all kill flags from the old kill point.
      // Kill flags shouldn't be used while live intervals exist, they will be
      // reinserted by VirtRegRewriter.
      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
        for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
          if (MO->isReg() && MO->isUse())
            MO->setIsKill(false);
      // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
      // overlapping ranges. Case 5 above.
      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
      // If this was a kill, there may also be a def. Otherwise we're done.
      if (!isKill)
        return;
      ++I;
    }

    // Check for a def at OldIdx.
    if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
      return;
    // We have a def at OldIdx.
    VNInfo *DefVNI = I->valno;
    assert(DefVNI->def == I->start && "Inconsistent def");
    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
    // If the defined value extends beyond NewIdx, just move the def down.
    // This is case 1 above.
    if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
      I->start = DefVNI->def;
      return;
    }
    // The remaining possibilities are now:
    // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
    // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
    // In either case, it is possible that there is an existing def at NewIdx.
    assert((I->end == OldIdx.getDeadSlot() ||
            SlotIndex::isSameInstr(I->end, NewIdx)) &&
            "Cannot move def below kill");
    LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
    if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
      // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
      // coalesced into that value.
      assert(NewI->valno != DefVNI && "Multiple defs of value?");
      LR.removeValNo(DefVNI);
      return;
    }
    // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
    // If the def at OldIdx was dead, we allow it to be moved across other LR
    // values. The new range should be placed immediately before NewI, move any
    // intermediate ranges up.
    assert(NewI != I && "Inconsistent iterators");
    std::copy(std::next(I), NewI, I);
    *std::prev(NewI)
      = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
  }

  /// Update LR to reflect an instruction has been moved upwards from OldIdx
  /// to NewIdx.
  ///
  /// 1. Live def at OldIdx:
  ///    Hoist def to NewIdx.
  ///
  /// 2. Dead def at OldIdx:
  ///    Hoist def+end to NewIdx, possibly move across other values.
  ///
  /// 3. Dead def at OldIdx AND existing def at NewIdx:
  ///    Remove value defined at OldIdx, coalescing it with existing value.
  ///
  /// 4. Live def at OldIdx AND existing def at NewIdx:
  ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
  ///    (Happens when bundling multiple defs together).
  ///
  /// 5. Value killed at OldIdx:
  ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
  ///    OldIdx.
  ///
  void handleMoveUp(LiveRange &LR, unsigned Reg) {
    // First look for a kill at OldIdx.
    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
    LiveRange::iterator E = LR.end();
    // Is LR even live at OldIdx?
    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
      return;

    // Handle a live-in value.
    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
      // If the live-in value isn't killed here, there is nothing to do.
      if (!SlotIndex::isSameInstr(OldIdx, I->end))
        return;
      // Adjust I->end to end at NewIdx. If we are hoisting a kill above
      // another use, we need to search for that use. Case 5 above.
      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
      ++I;
      // If OldIdx also defines a value, there couldn't have been another use.
      if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
        // No def, search for the new kill.
        // This can never be an early clobber kill since there is no def.
        std::prev(I)->end = findLastUseBefore(Reg).getRegSlot();
        return;
      }
    }

    // Now deal with the def at OldIdx.
    assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
    VNInfo *DefVNI = I->valno;
    assert(DefVNI->def == I->start && "Inconsistent def");
    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());

    // Check for an existing def at NewIdx.
    LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
    if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
      assert(NewI->valno != DefVNI && "Same value defined more than once?");
      // There is an existing def at NewIdx.
      if (I->end.isDead()) {
        // Case 3: Remove the dead def at OldIdx.
        LR.removeValNo(DefVNI);
        return;
      }
      // Case 4: Replace def at NewIdx with live def at OldIdx.
      I->start = DefVNI->def;
      LR.removeValNo(NewI->valno);
      return;
    }

    // There is no existing def at NewIdx. Hoist DefVNI.
    if (!I->end.isDead()) {
      // Leave the end point of a live def.
      I->start = DefVNI->def;
      return;
    }

    // DefVNI is a dead def. It may have been moved across other values in LR,
    // so move I up to NewI. Slide [NewI;I) down one position.
    std::copy_backward(NewI, I, std::next(I));
    *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
  }

  void updateRegMaskSlots() {
    SmallVectorImpl<SlotIndex>::iterator RI =
      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
                       OldIdx);
    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
           "No RegMask at OldIdx.");
    *RI = NewIdx.getRegSlot();
    assert((RI == LIS.RegMaskSlots.begin() ||
            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
           "Cannot move regmask instruction above another call");
    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
           "Cannot move regmask instruction below another call");
  }

  // Return the last use of reg between NewIdx and OldIdx.
  SlotIndex findLastUseBefore(unsigned Reg) {

    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
      SlotIndex LastUse = NewIdx;
      for (MachineRegisterInfo::use_instr_nodbg_iterator
             UI = MRI.use_instr_nodbg_begin(Reg),
             UE = MRI.use_instr_nodbg_end();
           UI != UE; ++UI) {
        const MachineInstr* MI = &*UI;
        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
        if (InstSlot > LastUse && InstSlot < OldIdx)
          LastUse = InstSlot;
      }
      return LastUse;
    }

    // This is a regunit interval, so scanning the use list could be very
    // expensive. Scan upwards from OldIdx instead.
    assert(NewIdx < OldIdx && "Expected upwards move");
    SlotIndexes *Indexes = LIS.getSlotIndexes();
    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);

    // OldIdx may not correspond to an instruction any longer, so set MII to
    // point to the next instruction after OldIdx, or MBB->end().
    MachineBasicBlock::iterator MII = MBB->end();
    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
                           Indexes->getNextNonNullIndex(OldIdx)))
      if (MI->getParent() == MBB)
        MII = MI;

    MachineBasicBlock::iterator Begin = MBB->begin();
    while (MII != Begin) {
      if ((--MII)->isDebugValue())
        continue;
      SlotIndex Idx = Indexes->getInstructionIndex(MII);

      // Stop searching when NewIdx is reached.
      if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
        return NewIdx;

      // Check if MII uses Reg.
      for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
        if (MO->isReg() &&
            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
            TRI.hasRegUnit(MO->getReg(), Reg))
          return Idx;
    }
    // Didn't reach NewIdx. It must be the first instruction in the block.
    return NewIdx;
  }
};

void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
  Indexes->removeMachineInstrFromMaps(MI);
  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
         OldIndex < getMBBEndIdx(MI->getParent()) &&
         "Cannot handle moves across basic block boundaries.");

  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
  HME.updateAllRanges(MI);
}

void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
                                         MachineInstr* BundleStart,
                                         bool UpdateFlags) {
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
  HME.updateAllRanges(MI);
}

void
LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator Begin,
                                      MachineBasicBlock::iterator End,
                                      ArrayRef<unsigned> OrigRegs) {
  // Find anchor points, which are at the beginning/end of blocks or at
  // instructions that already have indexes.
  while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
    --Begin;
  while (End != MBB->end() && !Indexes->hasIndex(End))
    ++End;

  SlotIndex endIdx;
  if (End == MBB->end())
    endIdx = getMBBEndIdx(MBB).getPrevSlot();
  else
    endIdx = getInstructionIndex(End);

  Indexes->repairIndexesInRange(MBB, Begin, End);

  for (MachineBasicBlock::iterator I = End; I != Begin;) {
    --I;
    MachineInstr *MI = I;
    if (MI->isDebugValue())
      continue;
    for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
      if (MOI->isReg() &&
          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
          !hasInterval(MOI->getReg())) {
        createAndComputeVirtRegInterval(MOI->getReg());
      }
    }
  }

  for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
    unsigned Reg = OrigRegs[i];
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;

    LiveInterval &LI = getInterval(Reg);
    // FIXME: Should we support undefs that gain defs?
    if (!LI.hasAtLeastOneValue())
      continue;

    LiveInterval::iterator LII = LI.find(endIdx);
    SlotIndex lastUseIdx;
    if (LII != LI.end() && LII->start < endIdx)
      lastUseIdx = LII->end;
    else
      --LII;

    for (MachineBasicBlock::iterator I = End; I != Begin;) {
      --I;
      MachineInstr *MI = I;
      if (MI->isDebugValue())
        continue;

      SlotIndex instrIdx = getInstructionIndex(MI);
      bool isStartValid = getInstructionFromIndex(LII->start);
      bool isEndValid = getInstructionFromIndex(LII->end);

      // FIXME: This doesn't currently handle early-clobber or multiple removed
      // defs inside of the region to repair.
      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        const MachineOperand &MO = *OI;
        if (!MO.isReg() || MO.getReg() != Reg)
          continue;

        if (MO.isDef()) {
          if (!isStartValid) {
            if (LII->end.isDead()) {
              SlotIndex prevStart;
              if (LII != LI.begin())
                prevStart = std::prev(LII)->start;

              // FIXME: This could be more efficient if there was a
              // removeSegment method that returned an iterator.
              LI.removeSegment(*LII, true);
              if (prevStart.isValid())
                LII = LI.find(prevStart);
              else
                LII = LI.begin();
            } else {
              LII->start = instrIdx.getRegSlot();
              LII->valno->def = instrIdx.getRegSlot();
              if (MO.getSubReg() && !MO.isUndef())
                lastUseIdx = instrIdx.getRegSlot();
              else
                lastUseIdx = SlotIndex();
              continue;
            }
          }

          if (!lastUseIdx.isValid()) {
            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
                                          VNInfoAllocator);
            LiveRange::Segment S(instrIdx.getRegSlot(),
                                 instrIdx.getDeadSlot(), VNI);
            LII = LI.addSegment(S);
          } else if (LII->start != instrIdx.getRegSlot()) {
            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
                                          VNInfoAllocator);
            LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
            LII = LI.addSegment(S);
          }

          if (MO.getSubReg() && !MO.isUndef())
            lastUseIdx = instrIdx.getRegSlot();
          else
            lastUseIdx = SlotIndex();
        } else if (MO.isUse()) {
          // FIXME: This should probably be handled outside of this branch,
          // either as part of the def case (for defs inside of the region) or
          // after the loop over the region.
          if (!isEndValid && !LII->end.isBlock())
            LII->end = instrIdx.getRegSlot();
          if (!lastUseIdx.isValid())
            lastUseIdx = instrIdx.getRegSlot();
        }
      }
    }
  }
}