llvm.org GIT mirror llvm / 14d1db9 tools / yaml2obj / yaml2elf.cpp
14d1db9

Tree @14d1db9 (Download .tar.gz)

yaml2elf.cpp @14d1db9raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
//===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief The ELF component of yaml2obj.
///
//===----------------------------------------------------------------------===//

#include "yaml2obj.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ELFYAML.h"
#include "llvm/Object/StringTableBuilder.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

// This class is used to build up a contiguous binary blob while keeping
// track of an offset in the output (which notionally begins at
// `InitialOffset`).
namespace {
class ContiguousBlobAccumulator {
  const uint64_t InitialOffset;
  SmallVector<char, 128> Buf;
  raw_svector_ostream OS;

  /// \returns The new offset.
  uint64_t padToAlignment(unsigned Align) {
    uint64_t CurrentOffset = InitialOffset + OS.tell();
    uint64_t AlignedOffset = RoundUpToAlignment(CurrentOffset, Align);
    for (; CurrentOffset != AlignedOffset; ++CurrentOffset)
      OS.write('\0');
    return AlignedOffset; // == CurrentOffset;
  }

public:
  ContiguousBlobAccumulator(uint64_t InitialOffset_)
      : InitialOffset(InitialOffset_), Buf(), OS(Buf) {}
  template <class Integer>
  raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align = 16) {
    Offset = padToAlignment(Align);
    return OS;
  }
  void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); }
};
} // end anonymous namespace

// Used to keep track of section and symbol names, so that in the YAML file
// sections and symbols can be referenced by name instead of by index.
namespace {
class NameToIdxMap {
  StringMap<int> Map;
public:
  /// \returns true if name is already present in the map.
  bool addName(StringRef Name, unsigned i) {
    StringMapEntry<int> &Entry = Map.GetOrCreateValue(Name, -1);
    if (Entry.getValue() != -1)
      return true;
    Entry.setValue((int)i);
    return false;
  }
  /// \returns true if name is not present in the map
  bool lookup(StringRef Name, unsigned &Idx) const {
    StringMap<int>::const_iterator I = Map.find(Name);
    if (I == Map.end())
      return true;
    Idx = I->getValue();
    return false;
  }
};
} // end anonymous namespace

template <class T>
static size_t arrayDataSize(ArrayRef<T> A) {
  return A.size() * sizeof(T);
}

template <class T>
static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
  OS.write((const char *)A.data(), arrayDataSize(A));
}

template <class T>
static void zero(T &Obj) {
  memset(&Obj, 0, sizeof(Obj));
}

namespace {
/// \brief "Single point of truth" for the ELF file construction.
/// TODO: This class still has a ways to go before it is truly a "single
/// point of truth".
template <class ELFT>
class ELFState {
  typedef typename object::ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr;
  typedef typename object::ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
  typedef typename object::ELFFile<ELFT>::Elf_Sym Elf_Sym;
  typedef typename object::ELFFile<ELFT>::Elf_Rel Elf_Rel;
  typedef typename object::ELFFile<ELFT>::Elf_Rela Elf_Rela;

  /// \brief The future ".strtab" section.
  StringTableBuilder DotStrtab;

  /// \brief The future ".shstrtab" section.
  StringTableBuilder DotShStrtab;

  NameToIdxMap SN2I;
  NameToIdxMap SymN2I;
  const ELFYAML::Object &Doc;

  bool buildSectionIndex();
  bool buildSymbolIndex(std::size_t &StartIndex,
                        const std::vector<ELFYAML::Symbol> &Symbols);
  void initELFHeader(Elf_Ehdr &Header);
  bool initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
                          ContiguousBlobAccumulator &CBA);
  void initSymtabSectionHeader(Elf_Shdr &SHeader,
                               ContiguousBlobAccumulator &CBA);
  void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
                               StringTableBuilder &STB,
                               ContiguousBlobAccumulator &CBA);
  void addSymbols(const std::vector<ELFYAML::Symbol> &Symbols,
                  std::vector<Elf_Sym> &Syms, unsigned SymbolBinding);
  void writeSectionContent(Elf_Shdr &SHeader,
                           const ELFYAML::RawContentSection &Section,
                           ContiguousBlobAccumulator &CBA);
  bool writeSectionContent(Elf_Shdr &SHeader,
                           const ELFYAML::RelocationSection &Section,
                           ContiguousBlobAccumulator &CBA);

  // - SHT_NULL entry (placed first, i.e. 0'th entry)
  // - symbol table (.symtab) (placed third to last)
  // - string table (.strtab) (placed second to last)
  // - section header string table (.shstrtab) (placed last)
  unsigned getDotSymTabSecNo() const { return Doc.Sections.size() + 1; }
  unsigned getDotStrTabSecNo() const { return Doc.Sections.size() + 2; }
  unsigned getDotShStrTabSecNo() const { return Doc.Sections.size() + 3; }
  unsigned getSectionCount() const { return Doc.Sections.size() + 4; }

  ELFState(const ELFYAML::Object &D) : Doc(D) {}

public:
  static int writeELF(raw_ostream &OS, const ELFYAML::Object &Doc);
};
} // end anonymous namespace

template <class ELFT>
void ELFState<ELFT>::initELFHeader(Elf_Ehdr &Header) {
  using namespace llvm::ELF;
  zero(Header);
  Header.e_ident[EI_MAG0] = 0x7f;
  Header.e_ident[EI_MAG1] = 'E';
  Header.e_ident[EI_MAG2] = 'L';
  Header.e_ident[EI_MAG3] = 'F';
  Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
  bool IsLittleEndian = ELFT::TargetEndianness == support::little;
  Header.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
  Header.e_ident[EI_VERSION] = EV_CURRENT;
  Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
  Header.e_ident[EI_ABIVERSION] = 0;
  Header.e_type = Doc.Header.Type;
  Header.e_machine = Doc.Header.Machine;
  Header.e_version = EV_CURRENT;
  Header.e_entry = Doc.Header.Entry;
  Header.e_flags = Doc.Header.Flags;
  Header.e_ehsize = sizeof(Elf_Ehdr);
  Header.e_shentsize = sizeof(Elf_Shdr);
  // Immediately following the ELF header.
  Header.e_shoff = sizeof(Header);
  Header.e_shnum = getSectionCount();
  Header.e_shstrndx = getDotShStrTabSecNo();
}

template <class ELFT>
bool ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders,
                                        ContiguousBlobAccumulator &CBA) {
  // Ensure SHN_UNDEF entry is present. An all-zero section header is a
  // valid SHN_UNDEF entry since SHT_NULL == 0.
  Elf_Shdr SHeader;
  zero(SHeader);
  SHeaders.push_back(SHeader);

  for (const auto &Sec : Doc.Sections)
    DotShStrtab.add(Sec->Name);
  DotShStrtab.finalize();

  for (const auto &Sec : Doc.Sections) {
    zero(SHeader);
    SHeader.sh_name = DotShStrtab.getOffset(Sec->Name);
    SHeader.sh_type = Sec->Type;
    SHeader.sh_flags = Sec->Flags;
    SHeader.sh_addr = Sec->Address;
    SHeader.sh_addralign = Sec->AddressAlign;

    if (!Sec->Link.empty()) {
      unsigned Index;
      if (SN2I.lookup(Sec->Link, Index)) {
        errs() << "error: Unknown section referenced: '" << Sec->Link
               << "' at YAML section '" << Sec->Name << "'.\n";
        return false;
      }
      SHeader.sh_link = Index;
    }

    if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec.get()))
      writeSectionContent(SHeader, *S, CBA);
    else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec.get())) {
      if (S->Link.empty())
        // For relocation section set link to .symtab by default.
        SHeader.sh_link = getDotSymTabSecNo();

      unsigned Index;
      if (SN2I.lookup(S->Info, Index)) {
        errs() << "error: Unknown section referenced: '" << S->Info
               << "' at YAML section '" << S->Name << "'.\n";
        return false;
      }
      SHeader.sh_info = Index;

      if (!writeSectionContent(SHeader, *S, CBA))
        return false;
    } else
      llvm_unreachable("Unknown section type");

    SHeaders.push_back(SHeader);
  }
  return true;
}

template <class ELFT>
void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
                                             ContiguousBlobAccumulator &CBA) {
  zero(SHeader);
  SHeader.sh_name = DotShStrtab.getOffset(".symtab");
  SHeader.sh_type = ELF::SHT_SYMTAB;
  SHeader.sh_link = getDotStrTabSecNo();
  // One greater than symbol table index of the last local symbol.
  SHeader.sh_info = Doc.Symbols.Local.size() + 1;
  SHeader.sh_entsize = sizeof(Elf_Sym);

  std::vector<Elf_Sym> Syms;
  {
    // Ensure STN_UNDEF is present
    Elf_Sym Sym;
    zero(Sym);
    Syms.push_back(Sym);
  }

  // Add symbol names to .strtab.
  for (const auto &Sym : Doc.Symbols.Local)
    DotStrtab.add(Sym.Name);
  for (const auto &Sym : Doc.Symbols.Global)
    DotStrtab.add(Sym.Name);
  for (const auto &Sym : Doc.Symbols.Weak)
    DotStrtab.add(Sym.Name);
  DotStrtab.finalize();

  addSymbols(Doc.Symbols.Local, Syms, ELF::STB_LOCAL);
  addSymbols(Doc.Symbols.Global, Syms, ELF::STB_GLOBAL);
  addSymbols(Doc.Symbols.Weak, Syms, ELF::STB_WEAK);

  writeArrayData(CBA.getOSAndAlignedOffset(SHeader.sh_offset),
                 makeArrayRef(Syms));
  SHeader.sh_size = arrayDataSize(makeArrayRef(Syms));
}

template <class ELFT>
void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
                                             StringTableBuilder &STB,
                                             ContiguousBlobAccumulator &CBA) {
  zero(SHeader);
  SHeader.sh_name = DotShStrtab.getOffset(Name);
  SHeader.sh_type = ELF::SHT_STRTAB;
  CBA.getOSAndAlignedOffset(SHeader.sh_offset) << STB.data();
  SHeader.sh_size = STB.data().size();
  SHeader.sh_addralign = 1;
}

template <class ELFT>
void ELFState<ELFT>::addSymbols(const std::vector<ELFYAML::Symbol> &Symbols,
                                std::vector<Elf_Sym> &Syms,
                                unsigned SymbolBinding) {
  for (const auto &Sym : Symbols) {
    Elf_Sym Symbol;
    zero(Symbol);
    if (!Sym.Name.empty())
      Symbol.st_name = DotStrtab.getOffset(Sym.Name);
    Symbol.setBindingAndType(SymbolBinding, Sym.Type);
    if (!Sym.Section.empty()) {
      unsigned Index;
      if (SN2I.lookup(Sym.Section, Index)) {
        errs() << "error: Unknown section referenced: '" << Sym.Section
               << "' by YAML symbol " << Sym.Name << ".\n";
        exit(1);
      }
      Symbol.st_shndx = Index;
    } // else Symbol.st_shndex == SHN_UNDEF (== 0), since it was zero'd earlier.
    Symbol.st_value = Sym.Value;
    Symbol.st_size = Sym.Size;
    Syms.push_back(Symbol);
  }
}

template <class ELFT>
void
ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
                                    const ELFYAML::RawContentSection &Section,
                                    ContiguousBlobAccumulator &CBA) {
  Section.Content.writeAsBinary(CBA.getOSAndAlignedOffset(SHeader.sh_offset));
  SHeader.sh_entsize = 0;
  SHeader.sh_size = Section.Content.binary_size();
}

template <class ELFT>
bool
ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
                                    const ELFYAML::RelocationSection &Section,
                                    ContiguousBlobAccumulator &CBA) {
  if (Section.Type != llvm::ELF::SHT_REL &&
      Section.Type != llvm::ELF::SHT_RELA) {
    errs() << "error: Invalid relocation section type.\n";
    return false;
  }

  bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
  SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
  SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size();

  auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset);

  for (const auto &Rel : Section.Relocations) {
    unsigned SymIdx;
    if (SymN2I.lookup(Rel.Symbol, SymIdx)) {
      errs() << "error: Unknown symbol referenced: '" << Rel.Symbol
             << "' at YAML relocation.\n";
      return false;
    }

    if (IsRela) {
      Elf_Rela REntry;
      zero(REntry);
      REntry.r_offset = Rel.Offset;
      REntry.r_addend = Rel.Addend;
      REntry.setSymbolAndType(SymIdx, Rel.Type);
      OS.write((const char *)&REntry, sizeof(REntry));
    } else {
      Elf_Rel REntry;
      zero(REntry);
      REntry.r_offset = Rel.Offset;
      REntry.setSymbolAndType(SymIdx, Rel.Type);
      OS.write((const char *)&REntry, sizeof(REntry));
    }
  }
  return true;
}

template <class ELFT> bool ELFState<ELFT>::buildSectionIndex() {
  SN2I.addName(".symtab", getDotSymTabSecNo());
  SN2I.addName(".strtab", getDotStrTabSecNo());
  SN2I.addName(".shstrtab", getDotShStrTabSecNo());

  for (unsigned i = 0, e = Doc.Sections.size(); i != e; ++i) {
    StringRef Name = Doc.Sections[i]->Name;
    if (Name.empty())
      continue;
    // "+ 1" to take into account the SHT_NULL entry.
    if (SN2I.addName(Name, i + 1)) {
      errs() << "error: Repeated section name: '" << Name
             << "' at YAML section number " << i << ".\n";
      return false;
    }
  }
  return true;
}

template <class ELFT>
bool
ELFState<ELFT>::buildSymbolIndex(std::size_t &StartIndex,
                                 const std::vector<ELFYAML::Symbol> &Symbols) {
  for (const auto &Sym : Symbols) {
    ++StartIndex;
    if (Sym.Name.empty())
      continue;
    if (SymN2I.addName(Sym.Name, StartIndex)) {
      errs() << "error: Repeated symbol name: '" << Sym.Name << "'.\n";
      return false;
    }
  }
  return true;
}

template <class ELFT>
int ELFState<ELFT>::writeELF(raw_ostream &OS, const ELFYAML::Object &Doc) {
  ELFState<ELFT> State(Doc);
  if (!State.buildSectionIndex())
    return 1;

  std::size_t StartSymIndex = 0;
  if (!State.buildSymbolIndex(StartSymIndex, Doc.Symbols.Local) ||
      !State.buildSymbolIndex(StartSymIndex, Doc.Symbols.Global) ||
      !State.buildSymbolIndex(StartSymIndex, Doc.Symbols.Weak))
    return 1;

  Elf_Ehdr Header;
  State.initELFHeader(Header);

  // TODO: Flesh out section header support.
  // TODO: Program headers.

  // XXX: This offset is tightly coupled with the order that we write
  // things to `OS`.
  const size_t SectionContentBeginOffset =
      Header.e_ehsize + Header.e_shentsize * Header.e_shnum;
  ContiguousBlobAccumulator CBA(SectionContentBeginOffset);

  // Doc might not contain .symtab, .strtab and .shstrtab sections,
  // but we will emit them, so make sure to add them to ShStrTabSHeader.
  State.DotShStrtab.add(".symtab");
  State.DotShStrtab.add(".strtab");
  State.DotShStrtab.add(".shstrtab");

  std::vector<Elf_Shdr> SHeaders;
  if(!State.initSectionHeaders(SHeaders, CBA))
    return 1;

  // .symtab section.
  Elf_Shdr SymtabSHeader;
  State.initSymtabSectionHeader(SymtabSHeader, CBA);
  SHeaders.push_back(SymtabSHeader);

  // .strtab string table header.
  Elf_Shdr DotStrTabSHeader;
  State.initStrtabSectionHeader(DotStrTabSHeader, ".strtab", State.DotStrtab,
                                CBA);
  SHeaders.push_back(DotStrTabSHeader);

  // .shstrtab string table header.
  Elf_Shdr ShStrTabSHeader;
  State.initStrtabSectionHeader(ShStrTabSHeader, ".shstrtab", State.DotShStrtab,
                                CBA);
  SHeaders.push_back(ShStrTabSHeader);

  OS.write((const char *)&Header, sizeof(Header));
  writeArrayData(OS, makeArrayRef(SHeaders));
  CBA.writeBlobToStream(OS);
  return 0;
}

static bool is64Bit(const ELFYAML::Object &Doc) {
  return Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
}

static bool isLittleEndian(const ELFYAML::Object &Doc) {
  return Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
}

int yaml2elf(llvm::raw_ostream &Out, llvm::MemoryBuffer *Buf) {
  yaml::Input YIn(Buf->getBuffer());
  ELFYAML::Object Doc;
  YIn >> Doc;
  if (YIn.error()) {
    errs() << "yaml2obj: Failed to parse YAML file!\n";
    return 1;
  }
  using object::ELFType;
  typedef ELFType<support::little, 8, true> LE64;
  typedef ELFType<support::big, 8, true> BE64;
  typedef ELFType<support::little, 4, false> LE32;
  typedef ELFType<support::big, 4, false> BE32;
  if (is64Bit(Doc)) {
    if (isLittleEndian(Doc))
      return ELFState<LE64>::writeELF(outs(), Doc);
    else
      return ELFState<BE64>::writeELF(outs(), Doc);
  } else {
    if (isLittleEndian(Doc))
      return ELFState<LE32>::writeELF(outs(), Doc);
    else
      return ELFState<BE32>::writeELF(outs(), Doc);
  }
}