llvm.org GIT mirror llvm / 12c73fa lib / Transforms / Scalar / CorrelatedValuePropagation.cpp
12c73fa

Tree @12c73fa (Download .tar.gz)

CorrelatedValuePropagation.cpp @12c73faraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Correlated Value Propagation pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "correlated-value-propagation"

STATISTIC(NumPhis,      "Number of phis propagated");
STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
STATISTIC(NumSelects,   "Number of selects propagated");
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
STATISTIC(NumCmps,      "Number of comparisons propagated");
STATISTIC(NumReturns,   "Number of return values propagated");
STATISTIC(NumDeadCases, "Number of switch cases removed");
STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
STATISTIC(NumUDivs,     "Number of udivs whose width was decreased");
STATISTIC(NumAShrs,     "Number of ashr converted to lshr");
STATISTIC(NumSRems,     "Number of srem converted to urem");
STATISTIC(NumOverflows, "Number of overflow checks removed");
STATISTIC(NumSaturating,
    "Number of saturating arithmetics converted to normal arithmetics");

static cl::opt<bool> DontAddNoWrapFlags("cvp-dont-add-nowrap-flags", cl::init(true));

namespace {

  class CorrelatedValuePropagation : public FunctionPass {
  public:
    static char ID;

    CorrelatedValuePropagation(): FunctionPass(ID) {
     initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addRequired<LazyValueInfoWrapperPass>();
      AU.addPreserved<GlobalsAAWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
    }
  };

} // end anonymous namespace

char CorrelatedValuePropagation::ID = 0;

INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
                "Value Propagation", false, false)

// Public interface to the Value Propagation pass
Pass *llvm::createCorrelatedValuePropagationPass() {
  return new CorrelatedValuePropagation();
}

static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
  if (S->getType()->isVectorTy()) return false;
  if (isa<Constant>(S->getOperand(0))) return false;

  Constant *C = LVI->getConstant(S->getCondition(), S->getParent(), S);
  if (!C) return false;

  ConstantInt *CI = dyn_cast<ConstantInt>(C);
  if (!CI) return false;

  Value *ReplaceWith = S->getTrueValue();
  Value *Other = S->getFalseValue();
  if (!CI->isOne()) std::swap(ReplaceWith, Other);
  if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());

  S->replaceAllUsesWith(ReplaceWith);
  S->eraseFromParent();

  ++NumSelects;

  return true;
}

/// Try to simplify a phi with constant incoming values that match the edge
/// values of a non-constant value on all other edges:
/// bb0:
///   %isnull = icmp eq i8* %x, null
///   br i1 %isnull, label %bb2, label %bb1
/// bb1:
///   br label %bb2
/// bb2:
///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
/// -->
///   %r = %x
static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
                                   DominatorTree *DT) {
  // Collect incoming constants and initialize possible common value.
  SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
  Value *CommonValue = nullptr;
  for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
    Value *Incoming = P->getIncomingValue(i);
    if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
      IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
    } else if (!CommonValue) {
      // The potential common value is initialized to the first non-constant.
      CommonValue = Incoming;
    } else if (Incoming != CommonValue) {
      // There can be only one non-constant common value.
      return false;
    }
  }

  if (!CommonValue || IncomingConstants.empty())
    return false;

  // The common value must be valid in all incoming blocks.
  BasicBlock *ToBB = P->getParent();
  if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
    if (!DT->dominates(CommonInst, ToBB))
      return false;

  // We have a phi with exactly 1 variable incoming value and 1 or more constant
  // incoming values. See if all constant incoming values can be mapped back to
  // the same incoming variable value.
  for (auto &IncomingConstant : IncomingConstants) {
    Constant *C = IncomingConstant.first;
    BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
    if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
      return false;
  }

  // All constant incoming values map to the same variable along the incoming
  // edges of the phi. The phi is unnecessary.
  P->replaceAllUsesWith(CommonValue);
  P->eraseFromParent();
  ++NumPhiCommon;
  return true;
}

static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
                       const SimplifyQuery &SQ) {
  bool Changed = false;

  BasicBlock *BB = P->getParent();
  for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
    Value *Incoming = P->getIncomingValue(i);
    if (isa<Constant>(Incoming)) continue;

    Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);

    // Look if the incoming value is a select with a scalar condition for which
    // LVI can tells us the value. In that case replace the incoming value with
    // the appropriate value of the select. This often allows us to remove the
    // select later.
    if (!V) {
      SelectInst *SI = dyn_cast<SelectInst>(Incoming);
      if (!SI) continue;

      Value *Condition = SI->getCondition();
      if (!Condition->getType()->isVectorTy()) {
        if (Constant *C = LVI->getConstantOnEdge(
                Condition, P->getIncomingBlock(i), BB, P)) {
          if (C->isOneValue()) {
            V = SI->getTrueValue();
          } else if (C->isZeroValue()) {
            V = SI->getFalseValue();
          }
          // Once LVI learns to handle vector types, we could also add support
          // for vector type constants that are not all zeroes or all ones.
        }
      }

      // Look if the select has a constant but LVI tells us that the incoming
      // value can never be that constant. In that case replace the incoming
      // value with the other value of the select. This often allows us to
      // remove the select later.
      if (!V) {
        Constant *C = dyn_cast<Constant>(SI->getFalseValue());
        if (!C) continue;

        if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
              P->getIncomingBlock(i), BB, P) !=
            LazyValueInfo::False)
          continue;
        V = SI->getTrueValue();
      }

      LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
    }

    P->setIncomingValue(i, V);
    Changed = true;
  }

  if (Value *V = SimplifyInstruction(P, SQ)) {
    P->replaceAllUsesWith(V);
    P->eraseFromParent();
    Changed = true;
  }

  if (!Changed)
    Changed = simplifyCommonValuePhi(P, LVI, DT);

  if (Changed)
    ++NumPhis;

  return Changed;
}

static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
  Value *Pointer = nullptr;
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    Pointer = L->getPointerOperand();
  else
    Pointer = cast<StoreInst>(I)->getPointerOperand();

  if (isa<Constant>(Pointer)) return false;

  Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
  if (!C) return false;

  ++NumMemAccess;
  I->replaceUsesOfWith(Pointer, C);
  return true;
}

/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove this comparison. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
  Value *Op0 = Cmp->getOperand(0);
  auto *C = dyn_cast<Constant>(Cmp->getOperand(1));
  if (!C)
    return false;

  // As a policy choice, we choose not to waste compile time on anything where
  // the comparison is testing local values.  While LVI can sometimes reason
  // about such cases, it's not its primary purpose.  We do make sure to do
  // the block local query for uses from terminator instructions, but that's
  // handled in the code for each terminator.
  auto *I = dyn_cast<Instruction>(Op0);
  if (I && I->getParent() == Cmp->getParent())
    return false;

  LazyValueInfo::Tristate Result =
      LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp);
  if (Result == LazyValueInfo::Unknown)
    return false;

  ++NumCmps;
  Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result);
  Cmp->replaceAllUsesWith(TorF);
  Cmp->eraseFromParent();
  return true;
}

/// Simplify a switch instruction by removing cases which can never fire. If the
/// uselessness of a case could be determined locally then constant propagation
/// would already have figured it out. Instead, walk the predecessors and
/// statically evaluate cases based on information available on that edge. Cases
/// that cannot fire no matter what the incoming edge can safely be removed. If
/// a case fires on every incoming edge then the entire switch can be removed
/// and replaced with a branch to the case destination.
static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
                          DominatorTree *DT) {
  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
  Value *Cond = I->getCondition();
  BasicBlock *BB = I->getParent();

  // If the condition was defined in same block as the switch then LazyValueInfo
  // currently won't say anything useful about it, though in theory it could.
  if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
    return false;

  // If the switch is unreachable then trying to improve it is a waste of time.
  pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
  if (PB == PE) return false;

  // Analyse each switch case in turn.
  bool Changed = false;
  DenseMap<BasicBlock*, int> SuccessorsCount;
  for (auto *Succ : successors(BB))
    SuccessorsCount[Succ]++;

  { // Scope for SwitchInstProfUpdateWrapper. It must not live during
    // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
    SwitchInstProfUpdateWrapper SI(*I);

    for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
      ConstantInt *Case = CI->getCaseValue();

      // Check to see if the switch condition is equal to/not equal to the case
      // value on every incoming edge, equal/not equal being the same each time.
      LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
      for (pred_iterator PI = PB; PI != PE; ++PI) {
        // Is the switch condition equal to the case value?
        LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
                                                                Cond, Case, *PI,
                                                                BB, SI);
        // Give up on this case if nothing is known.
        if (Value == LazyValueInfo::Unknown) {
          State = LazyValueInfo::Unknown;
          break;
        }

        // If this was the first edge to be visited, record that all other edges
        // need to give the same result.
        if (PI == PB) {
          State = Value;
          continue;
        }

        // If this case is known to fire for some edges and known not to fire for
        // others then there is nothing we can do - give up.
        if (Value != State) {
          State = LazyValueInfo::Unknown;
          break;
        }
      }

      if (State == LazyValueInfo::False) {
        // This case never fires - remove it.
        BasicBlock *Succ = CI->getCaseSuccessor();
        Succ->removePredecessor(BB);
        CI = SI.removeCase(CI);
        CE = SI->case_end();

        // The condition can be modified by removePredecessor's PHI simplification
        // logic.
        Cond = SI->getCondition();

        ++NumDeadCases;
        Changed = true;
        if (--SuccessorsCount[Succ] == 0)
          DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
        continue;
      }
      if (State == LazyValueInfo::True) {
        // This case always fires.  Arrange for the switch to be turned into an
        // unconditional branch by replacing the switch condition with the case
        // value.
        SI->setCondition(Case);
        NumDeadCases += SI->getNumCases();
        Changed = true;
        break;
      }

      // Increment the case iterator since we didn't delete it.
      ++CI;
    }
  }

  if (Changed)
    // If the switch has been simplified to the point where it can be replaced
    // by a branch then do so now.
    ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
                           /*TLI = */ nullptr, &DTU);
  return Changed;
}

// See if we can prove that the given binary op intrinsic will not overflow.
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
  ConstantRange LRange = LVI->getConstantRange(
      BO->getLHS(), BO->getParent(), BO);
  ConstantRange RRange = LVI->getConstantRange(
      BO->getRHS(), BO->getParent(), BO);
  ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
      BO->getBinaryOp(), RRange, BO->getNoWrapKind());
  return NWRegion.contains(LRange);
}

static void processOverflowIntrinsic(WithOverflowInst *WO) {
  IRBuilder<> B(WO);
  Value *NewOp = B.CreateBinOp(
      WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), WO->getName());
  // Constant-folding could have happened.
  if (auto *Inst = dyn_cast<Instruction>(NewOp)) {
    if (WO->isSigned())
      Inst->setHasNoSignedWrap();
    else
      Inst->setHasNoUnsignedWrap();
  }

  Value *NewI = B.CreateInsertValue(UndefValue::get(WO->getType()), NewOp, 0);
  NewI = B.CreateInsertValue(NewI, ConstantInt::getFalse(WO->getContext()), 1);
  WO->replaceAllUsesWith(NewI);
  WO->eraseFromParent();
  ++NumOverflows;
}

static void processSaturatingInst(SaturatingInst *SI) {
  BinaryOperator *BinOp = BinaryOperator::Create(
      SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
  BinOp->setDebugLoc(SI->getDebugLoc());
  if (SI->isSigned())
    BinOp->setHasNoSignedWrap();
  else
    BinOp->setHasNoUnsignedWrap();

  SI->replaceAllUsesWith(BinOp);
  SI->eraseFromParent();
  ++NumSaturating;
}

/// Infer nonnull attributes for the arguments at the specified callsite.
static bool processCallSite(CallSite CS, LazyValueInfo *LVI) {
  SmallVector<unsigned, 4> ArgNos;
  unsigned ArgNo = 0;

  if (auto *WO = dyn_cast<WithOverflowInst>(CS.getInstruction())) {
    if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
      processOverflowIntrinsic(WO);
      return true;
    }
  }

  if (auto *SI = dyn_cast<SaturatingInst>(CS.getInstruction())) {
    if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
      processSaturatingInst(SI);
      return true;
    }
  }

  // Deopt bundle operands are intended to capture state with minimal
  // perturbance of the code otherwise.  If we can find a constant value for
  // any such operand and remove a use of the original value, that's
  // desireable since it may allow further optimization of that value (e.g. via
  // single use rules in instcombine).  Since deopt uses tend to,
  // idiomatically, appear along rare conditional paths, it's reasonable likely
  // we may have a conditional fact with which LVI can fold.   
  if (auto DeoptBundle = CS.getOperandBundle(LLVMContext::OB_deopt)) {
    bool Progress = false;
    for (const Use &ConstU : DeoptBundle->Inputs) {
      Use &U = const_cast<Use&>(ConstU);
      Value *V = U.get();
      if (V->getType()->isVectorTy()) continue;
      if (isa<Constant>(V)) continue;

      Constant *C = LVI->getConstant(V, CS.getParent(), CS.getInstruction());
      if (!C) continue;
      U.set(C);
      Progress = true;
    }
    if (Progress)
      return true;
  }

  for (Value *V : CS.args()) {
    PointerType *Type = dyn_cast<PointerType>(V->getType());
    // Try to mark pointer typed parameters as non-null.  We skip the
    // relatively expensive analysis for constants which are obviously either
    // null or non-null to start with.
    if (Type && !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
        !isa<Constant>(V) &&
        LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
                            ConstantPointerNull::get(Type),
                            CS.getInstruction()) == LazyValueInfo::False)
      ArgNos.push_back(ArgNo);
    ArgNo++;
  }

  assert(ArgNo == CS.arg_size() && "sanity check");

  if (ArgNos.empty())
    return false;

  AttributeList AS = CS.getAttributes();
  LLVMContext &Ctx = CS.getInstruction()->getContext();
  AS = AS.addParamAttribute(Ctx, ArgNos,
                            Attribute::get(Ctx, Attribute::NonNull));
  CS.setAttributes(AS);

  return true;
}

static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) {
  Constant *Zero = ConstantInt::get(SDI->getType(), 0);
  for (Value *O : SDI->operands()) {
    auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI);
    if (Result != LazyValueInfo::True)
      return false;
  }
  return true;
}

/// Try to shrink a udiv/urem's width down to the smallest power of two that's
/// sufficient to contain its operands.
static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
  assert(Instr->getOpcode() == Instruction::UDiv ||
         Instr->getOpcode() == Instruction::URem);
  if (Instr->getType()->isVectorTy())
    return false;

  // Find the smallest power of two bitwidth that's sufficient to hold Instr's
  // operands.
  auto OrigWidth = Instr->getType()->getIntegerBitWidth();
  ConstantRange OperandRange(OrigWidth, /*isFullset=*/false);
  for (Value *Operand : Instr->operands()) {
    OperandRange = OperandRange.unionWith(
        LVI->getConstantRange(Operand, Instr->getParent()));
  }
  // Don't shrink below 8 bits wide.
  unsigned NewWidth = std::max<unsigned>(
      PowerOf2Ceil(OperandRange.getUnsignedMax().getActiveBits()), 8);
  // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
  // two.
  if (NewWidth >= OrigWidth)
    return false;

  ++NumUDivs;
  IRBuilder<> B{Instr};
  auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
  auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
                                     Instr->getName() + ".lhs.trunc");
  auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
                                     Instr->getName() + ".rhs.trunc");
  auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
  auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
  if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
    if (BinOp->getOpcode() == Instruction::UDiv)
      BinOp->setIsExact(Instr->isExact());

  Instr->replaceAllUsesWith(Zext);
  Instr->eraseFromParent();
  return true;
}

static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI))
    return false;

  ++NumSRems;
  auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1),
                                        SDI->getName(), SDI);
  BO->setDebugLoc(SDI->getDebugLoc());
  SDI->replaceAllUsesWith(BO);
  SDI->eraseFromParent();

  // Try to process our new urem.
  processUDivOrURem(BO, LVI);

  return true;
}

/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove the both operands of this SDiv are
/// positive.  If this is the case, replace the SDiv with a UDiv. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI))
    return false;

  ++NumSDivs;
  auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1),
                                        SDI->getName(), SDI);
  BO->setDebugLoc(SDI->getDebugLoc());
  BO->setIsExact(SDI->isExact());
  SDI->replaceAllUsesWith(BO);
  SDI->eraseFromParent();

  // Try to simplify our new udiv.
  processUDivOrURem(BO, LVI);

  return true;
}

static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
  if (SDI->getType()->isVectorTy())
    return false;

  Constant *Zero = ConstantInt::get(SDI->getType(), 0);
  if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, SDI->getOperand(0), Zero, SDI) !=
      LazyValueInfo::True)
    return false;

  ++NumAShrs;
  auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
                                        SDI->getName(), SDI);
  BO->setDebugLoc(SDI->getDebugLoc());
  BO->setIsExact(SDI->isExact());
  SDI->replaceAllUsesWith(BO);
  SDI->eraseFromParent();

  return true;
}

static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
  using OBO = OverflowingBinaryOperator;

  if (DontAddNoWrapFlags)
    return false;

  if (BinOp->getType()->isVectorTy())
    return false;

  bool NSW = BinOp->hasNoSignedWrap();
  bool NUW = BinOp->hasNoUnsignedWrap();
  if (NSW && NUW)
    return false;

  BasicBlock *BB = BinOp->getParent();

  Value *LHS = BinOp->getOperand(0);
  Value *RHS = BinOp->getOperand(1);

  ConstantRange LRange = LVI->getConstantRange(LHS, BB, BinOp);
  ConstantRange RRange = LVI->getConstantRange(RHS, BB, BinOp);

  bool Changed = false;
  if (!NUW) {
    ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
        BinOp->getOpcode(), RRange, OBO::NoUnsignedWrap);
    bool NewNUW = NUWRange.contains(LRange);
    BinOp->setHasNoUnsignedWrap(NewNUW);
    Changed |= NewNUW;
  }
  if (!NSW) {
    ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
        BinOp->getOpcode(), RRange, OBO::NoSignedWrap);
    bool NewNSW = NSWRange.contains(LRange);
    BinOp->setHasNoSignedWrap(NewNSW);
    Changed |= NewNSW;
  }

  return Changed;
}

static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
  if (Constant *C = LVI->getConstant(V, At->getParent(), At))
    return C;

  // TODO: The following really should be sunk inside LVI's core algorithm, or
  // at least the outer shims around such.
  auto *C = dyn_cast<CmpInst>(V);
  if (!C) return nullptr;

  Value *Op0 = C->getOperand(0);
  Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
  if (!Op1) return nullptr;

  LazyValueInfo::Tristate Result =
    LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
  if (Result == LazyValueInfo::Unknown)
    return nullptr;

  return (Result == LazyValueInfo::True) ?
    ConstantInt::getTrue(C->getContext()) :
    ConstantInt::getFalse(C->getContext());
}

static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
                    const SimplifyQuery &SQ) {
  bool FnChanged = false;
  // Visiting in a pre-order depth-first traversal causes us to simplify early
  // blocks before querying later blocks (which require us to analyze early
  // blocks).  Eagerly simplifying shallow blocks means there is strictly less
  // work to do for deep blocks.  This also means we don't visit unreachable
  // blocks.
  for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
    bool BBChanged = false;
    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
      Instruction *II = &*BI++;
      switch (II->getOpcode()) {
      case Instruction::Select:
        BBChanged |= processSelect(cast<SelectInst>(II), LVI);
        break;
      case Instruction::PHI:
        BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ);
        break;
      case Instruction::ICmp:
      case Instruction::FCmp:
        BBChanged |= processCmp(cast<CmpInst>(II), LVI);
        break;
      case Instruction::Load:
      case Instruction::Store:
        BBChanged |= processMemAccess(II, LVI);
        break;
      case Instruction::Call:
      case Instruction::Invoke:
        BBChanged |= processCallSite(CallSite(II), LVI);
        break;
      case Instruction::SRem:
        BBChanged |= processSRem(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::SDiv:
        BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::UDiv:
      case Instruction::URem:
        BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::AShr:
        BBChanged |= processAShr(cast<BinaryOperator>(II), LVI);
        break;
      case Instruction::Add:
      case Instruction::Sub:
        BBChanged |= processBinOp(cast<BinaryOperator>(II), LVI);
        break;
      }
    }

    Instruction *Term = BB->getTerminator();
    switch (Term->getOpcode()) {
    case Instruction::Switch:
      BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
      break;
    case Instruction::Ret: {
      auto *RI = cast<ReturnInst>(Term);
      // Try to determine the return value if we can.  This is mainly here to
      // simplify the writing of unit tests, but also helps to enable IPO by
      // constant folding the return values of callees.
      auto *RetVal = RI->getReturnValue();
      if (!RetVal) break; // handle "ret void"
      if (isa<Constant>(RetVal)) break; // nothing to do
      if (auto *C = getConstantAt(RetVal, RI, LVI)) {
        ++NumReturns;
        RI->replaceUsesOfWith(RetVal, C);
        BBChanged = true;
      }
    }
    }

    FnChanged |= BBChanged;
  }

  return FnChanged;
}

bool CorrelatedValuePropagation::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F));
}

PreservedAnalyses
CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
  LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);

  bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));

  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}