llvm.org GIT mirror llvm / 1095f2a utils / TableGen / CodeGenDAGPatterns.cpp
1095f2a

Tree @1095f2a (Download .tar.gz)

CodeGenDAGPatterns.cpp @1095f2araw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenDAGPatterns.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include <set>
#include <algorithm>
#include <iostream>
using namespace llvm;

//===----------------------------------------------------------------------===//
// Helpers for working with extended types.

/// FilterVTs - Filter a list of VT's according to a predicate.
///
template<typename T>
static std::vector<MVT::SimpleValueType>
FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
  std::vector<MVT::SimpleValueType> Result;
  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
    if (Filter(InVTs[i]))
      Result.push_back(InVTs[i]);
  return Result;
}

template<typename T>
static std::vector<unsigned char> 
FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
  std::vector<unsigned char> Result;
  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
    if (Filter((MVT::SimpleValueType)InVTs[i]))
      Result.push_back(InVTs[i]);
  return Result;
}

static std::vector<unsigned char>
ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
  std::vector<unsigned char> Result;
  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
    Result.push_back(InVTs[i]);
  return Result;
}

static inline bool isInteger(MVT::SimpleValueType VT) {
  return EVT(VT).isInteger();
}

static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
  return EVT(VT).isFloatingPoint();
}

static inline bool isVector(MVT::SimpleValueType VT) {
  return EVT(VT).isVector();
}

static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
                             const std::vector<unsigned char> &RHS) {
  if (LHS.size() > RHS.size()) return false;
  for (unsigned i = 0, e = LHS.size(); i != e; ++i)
    if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
      return false;
  return true;
}

namespace llvm {
namespace EEVT {
/// isExtIntegerInVTs - Return true if the specified extended value type vector
/// contains isInt or an integer value type.
bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
  return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
}

/// isExtFloatingPointInVTs - Return true if the specified extended value type
/// vector contains isFP or a FP value type.
bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
  assert(!EVTs.empty() && "Cannot check for FP in empty ExtVT list!");
  return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
}

/// isExtVectorInVTs - Return true if the specified extended value type
/// vector contains a vector value type.
bool isExtVectorInVTs(const std::vector<unsigned char> &EVTs) {
  assert(!EVTs.empty() && "Cannot check for vector in empty ExtVT list!");
  return !(FilterEVTs(EVTs, isVector).empty());
}
} // end namespace EEVT.
} // end namespace llvm.


/// Dependent variable map for CodeGenDAGPattern variant generation
typedef std::map<std::string, int> DepVarMap;

/// Const iterator shorthand for DepVarMap
typedef DepVarMap::const_iterator DepVarMap_citer;

namespace {
void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
  if (N->isLeaf()) {
    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
      DepMap[N->getName()]++;
    }
  } else {
    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
      FindDepVarsOf(N->getChild(i), DepMap);
  }
}

//! Find dependent variables within child patterns
/*!
 */
void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
  DepVarMap depcounts;
  FindDepVarsOf(N, depcounts);
  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
    if (i->second > 1) {            // std::pair<std::string, int>
      DepVars.insert(i->first);
    }
  }
}

//! Dump the dependent variable set:
void DumpDepVars(MultipleUseVarSet &DepVars) {
  if (DepVars.empty()) {
    DOUT << "<empty set>";
  } else {
    DOUT << "[ ";
    for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
         i != e; ++i) {
      DOUT << (*i) << " ";
    }
    DOUT << "]";
  }
}
}

//===----------------------------------------------------------------------===//
// PatternToMatch implementation
//

/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
std::string PatternToMatch::getPredicateCheck() const {
  std::string PredicateCheck;
  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
      Record *Def = Pred->getDef();
      if (!Def->isSubClassOf("Predicate")) {
#ifndef NDEBUG
        Def->dump();
#endif
        assert(0 && "Unknown predicate type!");
      }
      if (!PredicateCheck.empty())
        PredicateCheck += " && ";
      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
    }
  }

  return PredicateCheck;
}

//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//

SDTypeConstraint::SDTypeConstraint(Record *R) {
  OperandNo = R->getValueAsInt("OperandNum");
  
  if (R->isSubClassOf("SDTCisVT")) {
    ConstraintType = SDTCisVT;
    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
  } else if (R->isSubClassOf("SDTCisPtrTy")) {
    ConstraintType = SDTCisPtrTy;
  } else if (R->isSubClassOf("SDTCisInt")) {
    ConstraintType = SDTCisInt;
  } else if (R->isSubClassOf("SDTCisFP")) {
    ConstraintType = SDTCisFP;
  } else if (R->isSubClassOf("SDTCisSameAs")) {
    ConstraintType = SDTCisSameAs;
    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
    ConstraintType = SDTCisVTSmallerThanOp;
    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 
      R->getValueAsInt("OtherOperandNum");
  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
    ConstraintType = SDTCisOpSmallerThanOp;
    x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 
      R->getValueAsInt("BigOperandNum");
  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
    ConstraintType = SDTCisEltOfVec;
    x.SDTCisEltOfVec_Info.OtherOperandNum =
      R->getValueAsInt("OtherOpNum");
  } else {
    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
    exit(1);
  }
}

/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, which has NumResults results.
TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
                                                 TreePatternNode *N,
                                                 unsigned NumResults) const {
  assert(NumResults <= 1 &&
         "We only work with nodes with zero or one result so far!");
  
  if (OpNo >= (NumResults + N->getNumChildren())) {
    errs() << "Invalid operand number " << OpNo << " ";
    N->dump();
    errs() << '\n';
    exit(1);
  }

  if (OpNo < NumResults)
    return N;  // FIXME: need value #
  else
    return N->getChild(OpNo-NumResults);
}

/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, throw an
/// exception.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
                                           const SDNodeInfo &NodeInfo,
                                           TreePattern &TP) const {
  unsigned NumResults = NodeInfo.getNumResults();
  assert(NumResults <= 1 &&
         "We only work with nodes with zero or one result so far!");
  
  // Check that the number of operands is sane.  Negative operands -> varargs.
  if (NodeInfo.getNumOperands() >= 0) {
    if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
      TP.error(N->getOperator()->getName() + " node requires exactly " +
               itostr(NodeInfo.getNumOperands()) + " operands!");
  }

  const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
  
  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
  
  switch (ConstraintType) {
  default: assert(0 && "Unknown constraint type!");
  case SDTCisVT:
    // Operand must be a particular type.
    return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
  case SDTCisPtrTy: {
    // Operand must be same as target pointer type.
    return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
  }
  case SDTCisInt: {
    // If there is only one integer type supported, this must be it.
    std::vector<MVT::SimpleValueType> IntVTs =
      FilterVTs(CGT.getLegalValueTypes(), isInteger);

    // If we found exactly one supported integer type, apply it.
    if (IntVTs.size() == 1)
      return NodeToApply->UpdateNodeType(IntVTs[0], TP);
    return NodeToApply->UpdateNodeType(EEVT::isInt, TP);
  }
  case SDTCisFP: {
    // If there is only one FP type supported, this must be it.
    std::vector<MVT::SimpleValueType> FPVTs =
      FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
        
    // If we found exactly one supported FP type, apply it.
    if (FPVTs.size() == 1)
      return NodeToApply->UpdateNodeType(FPVTs[0], TP);
    return NodeToApply->UpdateNodeType(EEVT::isFP, TP);
  }
  case SDTCisSameAs: {
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
    return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
           OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
  }
  case SDTCisVTSmallerThanOp: {
    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
    // have an integer type that is smaller than the VT.
    if (!NodeToApply->isLeaf() ||
        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
               ->isSubClassOf("ValueType"))
      TP.error(N->getOperator()->getName() + " expects a VT operand!");
    MVT::SimpleValueType VT =
     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
    if (!isInteger(VT))
      TP.error(N->getOperator()->getName() + " VT operand must be integer!");
    
    TreePatternNode *OtherNode =
      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
    
    // It must be integer.
    bool MadeChange = false;
    MadeChange |= OtherNode->UpdateNodeType(EEVT::isInt, TP);
    
    // This code only handles nodes that have one type set.  Assert here so
    // that we can change this if we ever need to deal with multiple value
    // types at this point.
    assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
    if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
      OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
    return false;
  }
  case SDTCisOpSmallerThanOp: {
    TreePatternNode *BigOperand =
      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);

    // Both operands must be integer or FP, but we don't care which.
    bool MadeChange = false;
    
    // This code does not currently handle nodes which have multiple types,
    // where some types are integer, and some are fp.  Assert that this is not
    // the case.
    assert(!(EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
             EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
           !(EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
             EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
    if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
      MadeChange |= BigOperand->UpdateNodeType(EEVT::isInt, TP);
    else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
      MadeChange |= BigOperand->UpdateNodeType(EEVT::isFP, TP);
    if (EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
      MadeChange |= NodeToApply->UpdateNodeType(EEVT::isInt, TP);
    else if (EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
      MadeChange |= NodeToApply->UpdateNodeType(EEVT::isFP, TP);

    std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();

    if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
      VTs = FilterVTs(VTs, isInteger);
    } else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
      VTs = FilterVTs(VTs, isFloatingPoint);
    } else {
      VTs.clear();
    }

    switch (VTs.size()) {
    default:         // Too many VT's to pick from.
    case 0: break;   // No info yet.
    case 1: 
      // Only one VT of this flavor.  Cannot ever satisfy the constraints.
      return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
    case 2:
      // If we have exactly two possible types, the little operand must be the
      // small one, the big operand should be the big one.  Common with 
      // float/double for example.
      assert(VTs[0] < VTs[1] && "Should be sorted!");
      MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
      MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
      break;
    }    
    return MadeChange;
  }
  case SDTCisEltOfVec: {
    TreePatternNode *OtherOperand =
      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum,
                    N, NumResults);
    if (OtherOperand->hasTypeSet()) {
      if (!isVector(OtherOperand->getTypeNum(0)))
        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
      EVT IVT = OtherOperand->getTypeNum(0);
      IVT = IVT.getVectorElementType();
      return NodeToApply->UpdateNodeType(IVT.getSimpleVT().SimpleTy, TP);
    }
    return false;
  }
  }  
  return false;
}

//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
  EnumName    = R->getValueAsString("Opcode");
  SDClassName = R->getValueAsString("SDClass");
  Record *TypeProfile = R->getValueAsDef("TypeProfile");
  NumResults = TypeProfile->getValueAsInt("NumResults");
  NumOperands = TypeProfile->getValueAsInt("NumOperands");
  
  // Parse the properties.
  Properties = 0;
  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
    if (PropList[i]->getName() == "SDNPCommutative") {
      Properties |= 1 << SDNPCommutative;
    } else if (PropList[i]->getName() == "SDNPAssociative") {
      Properties |= 1 << SDNPAssociative;
    } else if (PropList[i]->getName() == "SDNPHasChain") {
      Properties |= 1 << SDNPHasChain;
    } else if (PropList[i]->getName() == "SDNPOutFlag") {
      Properties |= 1 << SDNPOutFlag;
    } else if (PropList[i]->getName() == "SDNPInFlag") {
      Properties |= 1 << SDNPInFlag;
    } else if (PropList[i]->getName() == "SDNPOptInFlag") {
      Properties |= 1 << SDNPOptInFlag;
    } else if (PropList[i]->getName() == "SDNPMayStore") {
      Properties |= 1 << SDNPMayStore;
    } else if (PropList[i]->getName() == "SDNPMayLoad") {
      Properties |= 1 << SDNPMayLoad;
    } else if (PropList[i]->getName() == "SDNPSideEffect") {
      Properties |= 1 << SDNPSideEffect;
    } else if (PropList[i]->getName() == "SDNPMemOperand") {
      Properties |= 1 << SDNPMemOperand;
    } else {
      errs() << "Unknown SD Node property '" << PropList[i]->getName()
             << "' on node '" << R->getName() << "'!\n";
      exit(1);
    }
  }
  
  
  // Parse the type constraints.
  std::vector<Record*> ConstraintList =
    TypeProfile->getValueAsListOfDefs("Constraints");
  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
}

//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//

TreePatternNode::~TreePatternNode() {
#if 0 // FIXME: implement refcounted tree nodes!
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    delete getChild(i);
#endif
}

/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information.  If N already contains a conflicting type, then throw an
/// exception.  This returns true if any information was updated.
///
bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
                                     TreePattern &TP) {
  assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
  
  if (ExtVTs[0] == EEVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
    return false;
  if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
    setTypes(ExtVTs);
    return true;
  }

  if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) {
    if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny ||
        ExtVTs[0] == EEVT::isInt)
      return false;
    if (EEVT::isExtIntegerInVTs(ExtVTs)) {
      std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
      if (FVTs.size()) {
        setTypes(ExtVTs);
        return true;
      }
    }
  }

  if ((ExtVTs[0] == EEVT::isInt || ExtVTs[0] == MVT::iAny) &&
      EEVT::isExtIntegerInVTs(getExtTypes())) {
    assert(hasTypeSet() && "should be handled above!");
    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
    if (getExtTypes() == FVTs)
      return false;
    setTypes(FVTs);
    return true;
  }
  if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) &&
      EEVT::isExtIntegerInVTs(getExtTypes())) {
    //assert(hasTypeSet() && "should be handled above!");
    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
    if (getExtTypes() == FVTs)
      return false;
    if (FVTs.size()) {
      setTypes(FVTs);
      return true;
    }
  }      
  if ((ExtVTs[0] == EEVT::isFP || ExtVTs[0] == MVT::fAny) &&
      EEVT::isExtFloatingPointInVTs(getExtTypes())) {
    assert(hasTypeSet() && "should be handled above!");
    std::vector<unsigned char> FVTs =
      FilterEVTs(getExtTypes(), isFloatingPoint);
    if (getExtTypes() == FVTs)
      return false;
    setTypes(FVTs);
    return true;
  }
  if (ExtVTs[0] == MVT::vAny && EEVT::isExtVectorInVTs(getExtTypes())) {
    assert(hasTypeSet() && "should be handled above!");
    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isVector);
    if (getExtTypes() == FVTs)
      return false;
    setTypes(FVTs);
    return true;
  }
      
  // If we know this is an int or fp type, and we are told it is a specific one,
  // take the advice.
  //
  // Similarly, we should probably set the type here to the intersection of
  // {isInt|isFP} and ExtVTs
  if (((getExtTypeNum(0) == EEVT::isInt || getExtTypeNum(0) == MVT::iAny) &&
       EEVT::isExtIntegerInVTs(ExtVTs)) ||
      ((getExtTypeNum(0) == EEVT::isFP || getExtTypeNum(0) == MVT::fAny) &&
       EEVT::isExtFloatingPointInVTs(ExtVTs)) ||
      (getExtTypeNum(0) == MVT::vAny &&
       EEVT::isExtVectorInVTs(ExtVTs))) {
    setTypes(ExtVTs);
    return true;
  }
  if (getExtTypeNum(0) == EEVT::isInt &&
      (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) {
    setTypes(ExtVTs);
    return true;
  }

  if (isLeaf()) {
    dump();
    errs() << " ";
    TP.error("Type inference contradiction found in node!");
  } else {
    TP.error("Type inference contradiction found in node " + 
             getOperator()->getName() + "!");
  }
  return true; // unreachable
}


void TreePatternNode::print(raw_ostream &OS) const {
  if (isLeaf()) {
    OS << *getLeafValue();
  } else {
    OS << "(" << getOperator()->getName();
  }
  
  // FIXME: At some point we should handle printing all the value types for 
  // nodes that are multiply typed.
  switch (getExtTypeNum(0)) {
  case MVT::Other: OS << ":Other"; break;
  case EEVT::isInt: OS << ":isInt"; break;
  case EEVT::isFP : OS << ":isFP"; break;
  case EEVT::isUnknown: ; /*OS << ":?";*/ break;
  case MVT::iPTR:  OS << ":iPTR"; break;
  case MVT::iPTRAny:  OS << ":iPTRAny"; break;
  default: {
    std::string VTName = llvm::getName(getTypeNum(0));
    // Strip off EVT:: prefix if present.
    if (VTName.substr(0,5) == "MVT::")
      VTName = VTName.substr(5);
    OS << ":" << VTName;
    break;
  }
  }

  if (!isLeaf()) {
    if (getNumChildren() != 0) {
      OS << " ";
      getChild(0)->print(OS);
      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
        OS << ", ";
        getChild(i)->print(OS);
      }
    }
    OS << ")";
  }
  
  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
    OS << "<<P:" << PredicateFns[i] << ">>";
  if (TransformFn)
    OS << "<<X:" << TransformFn->getName() << ">>";
  if (!getName().empty())
    OS << ":$" << getName();

}
void TreePatternNode::dump() const {
  print(errs());
}

/// isIsomorphicTo - Return true if this node is recursively
/// isomorphic to the specified node.  For this comparison, the node's
/// entire state is considered. The assigned name is ignored, since
/// nodes with differing names are considered isomorphic. However, if
/// the assigned name is present in the dependent variable set, then
/// the assigned name is considered significant and the node is
/// isomorphic if the names match.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
                                     const MultipleUseVarSet &DepVars) const {
  if (N == this) return true;
  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
      getPredicateFns() != N->getPredicateFns() ||
      getTransformFn() != N->getTransformFn())
    return false;

  if (isLeaf()) {
    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
        return ((DI->getDef() == NDI->getDef())
                && (DepVars.find(getName()) == DepVars.end()
                    || getName() == N->getName()));
      }
    }
    return getLeafValue() == N->getLeafValue();
  }
  
  if (N->getOperator() != getOperator() ||
      N->getNumChildren() != getNumChildren()) return false;
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
      return false;
  return true;
}

/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
  TreePatternNode *New;
  if (isLeaf()) {
    New = new TreePatternNode(getLeafValue());
  } else {
    std::vector<TreePatternNode*> CChildren;
    CChildren.reserve(Children.size());
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      CChildren.push_back(getChild(i)->clone());
    New = new TreePatternNode(getOperator(), CChildren);
  }
  New->setName(getName());
  New->setTypes(getExtTypes());
  New->setPredicateFns(getPredicateFns());
  New->setTransformFn(getTransformFn());
  return New;
}

/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
  if (isLeaf()) return;
  
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
    TreePatternNode *Child = getChild(i);
    if (Child->isLeaf()) {
      Init *Val = Child->getLeafValue();
      if (dynamic_cast<DefInit*>(Val) &&
          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
        // We found a use of a formal argument, replace it with its value.
        TreePatternNode *NewChild = ArgMap[Child->getName()];
        assert(NewChild && "Couldn't find formal argument!");
        assert((Child->getPredicateFns().empty() ||
                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
               "Non-empty child predicate clobbered!");
        setChild(i, NewChild);
      }
    } else {
      getChild(i)->SubstituteFormalArguments(ArgMap);
    }
  }
}


/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
  if (isLeaf()) return this;  // nothing to do.
  Record *Op = getOperator();
  
  if (!Op->isSubClassOf("PatFrag")) {
    // Just recursively inline children nodes.
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
      TreePatternNode *Child = getChild(i);
      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);

      assert((Child->getPredicateFns().empty() ||
              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
             "Non-empty child predicate clobbered!");

      setChild(i, NewChild);
    }
    return this;
  }

  // Otherwise, we found a reference to a fragment.  First, look up its
  // TreePattern record.
  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
  
  // Verify that we are passing the right number of operands.
  if (Frag->getNumArgs() != Children.size())
    TP.error("'" + Op->getName() + "' fragment requires " +
             utostr(Frag->getNumArgs()) + " operands!");

  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();

  std::string Code = Op->getValueAsCode("Predicate");
  if (!Code.empty())
    FragTree->addPredicateFn("Predicate_"+Op->getName());

  // Resolve formal arguments to their actual value.
  if (Frag->getNumArgs()) {
    // Compute the map of formal to actual arguments.
    std::map<std::string, TreePatternNode*> ArgMap;
    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
  
    FragTree->SubstituteFormalArguments(ArgMap);
  }
  
  FragTree->setName(getName());
  FragTree->UpdateNodeType(getExtTypes(), TP);

  // Transfer in the old predicates.
  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
    FragTree->addPredicateFn(getPredicateFns()[i]);

  // Get a new copy of this fragment to stitch into here.
  //delete this;    // FIXME: implement refcounting!
  
  // The fragment we inlined could have recursive inlining that is needed.  See
  // if there are any pattern fragments in it and inline them as needed.
  return FragTree->InlinePatternFragments(TP);
}

/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it.  This will infer the type of register
/// references from the register file information, for example.
///
static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
                                      TreePattern &TP) {
  // Some common return values
  std::vector<unsigned char> Unknown(1, EEVT::isUnknown);
  std::vector<unsigned char> Other(1, MVT::Other);

  // Check to see if this is a register or a register class...
  if (R->isSubClassOf("RegisterClass")) {
    if (NotRegisters) 
      return Unknown;
    const CodeGenRegisterClass &RC = 
      TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
    return ConvertVTs(RC.getValueTypes());
  } else if (R->isSubClassOf("PatFrag")) {
    // Pattern fragment types will be resolved when they are inlined.
    return Unknown;
  } else if (R->isSubClassOf("Register")) {
    if (NotRegisters) 
      return Unknown;
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
    return T.getRegisterVTs(R);
  } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
    // Using a VTSDNode or CondCodeSDNode.
    return Other;
  } else if (R->isSubClassOf("ComplexPattern")) {
    if (NotRegisters) 
      return Unknown;
    std::vector<unsigned char>
    ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
    return ComplexPat;
  } else if (R->isSubClassOf("PointerLikeRegClass")) {
    Other[0] = MVT::iPTR;
    return Other;
  } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
             R->getName() == "zero_reg") {
    // Placeholder.
    return Unknown;
  }
  
  TP.error("Unknown node flavor used in pattern: " + R->getName());
  return Other;
}


/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
    return 0;
    
  unsigned IID = 
    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
  return &CDP.getIntrinsicInfo(IID);
}

/// isCommutativeIntrinsic - Return true if the node corresponds to a
/// commutative intrinsic.
bool
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
    return Int->isCommutative;
  return false;
}


/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree.  This returns true if it makes a
/// change, false otherwise.  If a type contradiction is found, throw an
/// exception.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
  if (isLeaf()) {
    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
      // If it's a regclass or something else known, include the type.
      return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
    } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
      // Int inits are always integers. :)
      bool MadeChange = UpdateNodeType(EEVT::isInt, TP);
      
      if (hasTypeSet()) {
        // At some point, it may make sense for this tree pattern to have
        // multiple types.  Assert here that it does not, so we revisit this
        // code when appropriate.
        assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
        MVT::SimpleValueType VT = getTypeNum(0);
        for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
          assert(getTypeNum(i) == VT && "TreePattern has too many types!");
        
        VT = getTypeNum(0);
        if (VT != MVT::iPTR && VT != MVT::iPTRAny) {
          unsigned Size = EVT(VT).getSizeInBits();
          // Make sure that the value is representable for this type.
          if (Size < 32) {
            int Val = (II->getValue() << (32-Size)) >> (32-Size);
            if (Val != II->getValue()) {
              // If sign-extended doesn't fit, does it fit as unsigned?
              unsigned ValueMask;
              unsigned UnsignedVal;
              ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
              UnsignedVal = unsigned(II->getValue());

              if ((ValueMask & UnsignedVal) != UnsignedVal) {
                TP.error("Integer value '" + itostr(II->getValue())+
                         "' is out of range for type '" + 
                         getEnumName(getTypeNum(0)) + "'!");
              }
            }
          }
        }
      }
      
      return MadeChange;
    }
    return false;
  }
  
  // special handling for set, which isn't really an SDNode.
  if (getOperator()->getName() == "set") {
    assert (getNumChildren() >= 2 && "Missing RHS of a set?");
    unsigned NC = getNumChildren();
    bool MadeChange = false;
    for (unsigned i = 0; i < NC-1; ++i) {
      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
      MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
    
      // Types of operands must match.
      MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
                                                TP);
      MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
                                                   TP);
      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
    }
    return MadeChange;
  } else if (getOperator()->getName() == "implicit" ||
             getOperator()->getName() == "parallel") {
    bool MadeChange = false;
    for (unsigned i = 0; i < getNumChildren(); ++i)
      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    MadeChange |= UpdateNodeType(MVT::isVoid, TP);
    return MadeChange;
  } else if (getOperator()->getName() == "COPY_TO_REGCLASS") {
    bool MadeChange = false;
    MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
    MadeChange |= UpdateNodeType(getChild(1)->getTypeNum(0), TP);
    return MadeChange;
  } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
    bool MadeChange = false;

    // Apply the result type to the node.
    unsigned NumRetVTs = Int->IS.RetVTs.size();
    unsigned NumParamVTs = Int->IS.ParamVTs.size();

    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
      MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);

    if (getNumChildren() != NumParamVTs + NumRetVTs)
      TP.error("Intrinsic '" + Int->Name + "' expects " +
               utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
               utostr(getNumChildren() - 1) + " operands!");

    // Apply type info to the intrinsic ID.
    MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
    
    for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
      MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    }
    return MadeChange;
  } else if (getOperator()->isSubClassOf("SDNode")) {
    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
    
    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
    // Branch, etc. do not produce results and top-level forms in instr pattern
    // must have void types.
    if (NI.getNumResults() == 0)
      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
    
    return MadeChange;  
  } else if (getOperator()->isSubClassOf("Instruction")) {
    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
    bool MadeChange = false;
    unsigned NumResults = Inst.getNumResults();
    
    assert(NumResults <= 1 &&
           "Only supports zero or one result instrs!");

    CodeGenInstruction &InstInfo =
      CDP.getTargetInfo().getInstruction(getOperator()->getName());
    // Apply the result type to the node
    if (NumResults == 0 || InstInfo.NumDefs == 0) {
      MadeChange = UpdateNodeType(MVT::isVoid, TP);
    } else {
      Record *ResultNode = Inst.getResult(0);
      
      if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
        std::vector<unsigned char> VT;
        VT.push_back(MVT::iPTR);
        MadeChange = UpdateNodeType(VT, TP);
      } else if (ResultNode->getName() == "unknown") {
        std::vector<unsigned char> VT;
        VT.push_back(EEVT::isUnknown);
        MadeChange = UpdateNodeType(VT, TP);
      } else {
        assert(ResultNode->isSubClassOf("RegisterClass") &&
               "Operands should be register classes!");

        const CodeGenRegisterClass &RC = 
          CDP.getTargetInfo().getRegisterClass(ResultNode);
        MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
      }
    }

    unsigned ChildNo = 0;
    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
      Record *OperandNode = Inst.getOperand(i);
      
      // If the instruction expects a predicate or optional def operand, we
      // codegen this by setting the operand to it's default value if it has a
      // non-empty DefaultOps field.
      if ((OperandNode->isSubClassOf("PredicateOperand") ||
           OperandNode->isSubClassOf("OptionalDefOperand")) &&
          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
        continue;
       
      // Verify that we didn't run out of provided operands.
      if (ChildNo >= getNumChildren())
        TP.error("Instruction '" + getOperator()->getName() +
                 "' expects more operands than were provided.");
      
      MVT::SimpleValueType VT;
      TreePatternNode *Child = getChild(ChildNo++);
      if (OperandNode->isSubClassOf("RegisterClass")) {
        const CodeGenRegisterClass &RC = 
          CDP.getTargetInfo().getRegisterClass(OperandNode);
        MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
      } else if (OperandNode->isSubClassOf("Operand")) {
        VT = getValueType(OperandNode->getValueAsDef("Type"));
        MadeChange |= Child->UpdateNodeType(VT, TP);
      } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
        MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
      } else if (OperandNode->getName() == "unknown") {
        MadeChange |= Child->UpdateNodeType(EEVT::isUnknown, TP);
      } else {
        assert(0 && "Unknown operand type!");
        abort();
      }
      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
    }

    if (ChildNo != getNumChildren())
      TP.error("Instruction '" + getOperator()->getName() +
               "' was provided too many operands!");
    
    return MadeChange;
  } else {
    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
    
    // Node transforms always take one operand.
    if (getNumChildren() != 1)
      TP.error("Node transform '" + getOperator()->getName() +
               "' requires one operand!");

    // If either the output or input of the xform does not have exact
    // type info. We assume they must be the same. Otherwise, it is perfectly
    // legal to transform from one type to a completely different type.
    if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
      bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
      MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
      return MadeChange;
    }
    return false;
  }
}

/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
    return true;
  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
    return true;
  return false;
}


/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false.  Otherwise, return true.  This is
/// used as a sanity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason, 
                                      const CodeGenDAGPatterns &CDP) {
  if (isLeaf()) return true;

  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
    if (!getChild(i)->canPatternMatch(Reason, CDP))
      return false;

  // If this is an intrinsic, handle cases that would make it not match.  For
  // example, if an operand is required to be an immediate.
  if (getOperator()->isSubClassOf("Intrinsic")) {
    // TODO:
    return true;
  }
  
  // If this node is a commutative operator, check that the LHS isn't an
  // immediate.
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
    // Scan all of the operands of the node and make sure that only the last one
    // is a constant node, unless the RHS also is.
    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
        if (OnlyOnRHSOfCommutative(getChild(i))) {
          Reason="Immediate value must be on the RHS of commutative operators!";
          return false;
        }
    }
  }
  
  return true;
}

//===----------------------------------------------------------------------===//
// TreePattern implementation
//

TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
   isInputPattern = isInput;
   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
     Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
}

TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
  isInputPattern = isInput;
  Trees.push_back(ParseTreePattern(Pat));
}

TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
  isInputPattern = isInput;
  Trees.push_back(Pat);
}



void TreePattern::error(const std::string &Msg) const {
  dump();
  throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
}

TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
  if (!OpDef) error("Pattern has unexpected operator type!");
  Record *Operator = OpDef->getDef();
  
  if (Operator->isSubClassOf("ValueType")) {
    // If the operator is a ValueType, then this must be "type cast" of a leaf
    // node.
    if (Dag->getNumArgs() != 1)
      error("Type cast only takes one operand!");
    
    Init *Arg = Dag->getArg(0);
    TreePatternNode *New;
    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
      Record *R = DI->getDef();
      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
        Dag->setArg(0, new DagInit(DI, "",
                                std::vector<std::pair<Init*, std::string> >()));
        return ParseTreePattern(Dag);
      }
      New = new TreePatternNode(DI);
    } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
      New = ParseTreePattern(DI);
    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
      New = new TreePatternNode(II);
      if (!Dag->getArgName(0).empty())
        error("Constant int argument should not have a name!");
    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
      // Turn this into an IntInit.
      Init *II = BI->convertInitializerTo(new IntRecTy());
      if (II == 0 || !dynamic_cast<IntInit*>(II))
        error("Bits value must be constants!");
      
      New = new TreePatternNode(dynamic_cast<IntInit*>(II));
      if (!Dag->getArgName(0).empty())
        error("Constant int argument should not have a name!");
    } else {
      Arg->dump();
      error("Unknown leaf value for tree pattern!");
      return 0;
    }
    
    // Apply the type cast.
    New->UpdateNodeType(getValueType(Operator), *this);
    if (New->getNumChildren() == 0)
      New->setName(Dag->getArgName(0));
    return New;
  }
  
  // Verify that this is something that makes sense for an operator.
  if (!Operator->isSubClassOf("PatFrag") && 
      !Operator->isSubClassOf("SDNode") &&
      !Operator->isSubClassOf("Instruction") && 
      !Operator->isSubClassOf("SDNodeXForm") &&
      !Operator->isSubClassOf("Intrinsic") &&
      Operator->getName() != "set" &&
      Operator->getName() != "implicit" &&
      Operator->getName() != "parallel")
    error("Unrecognized node '" + Operator->getName() + "'!");
  
  //  Check to see if this is something that is illegal in an input pattern.
  if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
                         Operator->isSubClassOf("SDNodeXForm")))
    error("Cannot use '" + Operator->getName() + "' in an input pattern!");
  
  std::vector<TreePatternNode*> Children;
  
  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
    Init *Arg = Dag->getArg(i);
    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
      Children.push_back(ParseTreePattern(DI));
      if (Children.back()->getName().empty())
        Children.back()->setName(Dag->getArgName(i));
    } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
      Record *R = DefI->getDef();
      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
      // TreePatternNode if its own.
      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
        Dag->setArg(i, new DagInit(DefI, "",
                              std::vector<std::pair<Init*, std::string> >()));
        --i;  // Revisit this node...
      } else {
        TreePatternNode *Node = new TreePatternNode(DefI);
        Node->setName(Dag->getArgName(i));
        Children.push_back(Node);
        
        // Input argument?
        if (R->getName() == "node") {
          if (Dag->getArgName(i).empty())
            error("'node' argument requires a name to match with operand list");
          Args.push_back(Dag->getArgName(i));
        }
      }
    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
      TreePatternNode *Node = new TreePatternNode(II);
      if (!Dag->getArgName(i).empty())
        error("Constant int argument should not have a name!");
      Children.push_back(Node);
    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
      // Turn this into an IntInit.
      Init *II = BI->convertInitializerTo(new IntRecTy());
      if (II == 0 || !dynamic_cast<IntInit*>(II))
        error("Bits value must be constants!");
      
      TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
      if (!Dag->getArgName(i).empty())
        error("Constant int argument should not have a name!");
      Children.push_back(Node);
    } else {
      errs() << '"';
      Arg->dump();
      errs() << "\": ";
      error("Unknown leaf value for tree pattern!");
    }
  }
  
  // If the operator is an intrinsic, then this is just syntactic sugar for for
  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and 
  // convert the intrinsic name to a number.
  if (Operator->isSubClassOf("Intrinsic")) {
    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;

    // If this intrinsic returns void, it must have side-effects and thus a
    // chain.
    if (Int.IS.RetVTs[0] == MVT::isVoid) {
      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
    } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
      // Has side-effects, requires chain.
      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
    } else {
      // Otherwise, no chain.
      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
    }
    
    TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
    Children.insert(Children.begin(), IIDNode);
  }
  
  TreePatternNode *Result = new TreePatternNode(Operator, Children);
  Result->setName(Dag->getName());
  return Result;
}

/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible.  Return true if all types are inferred, false
/// otherwise.  Throw an exception if a type contradiction is found.
bool TreePattern::InferAllTypes() {
  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
  }
  
  bool HasUnresolvedTypes = false;
  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
  return !HasUnresolvedTypes;
}

void TreePattern::print(raw_ostream &OS) const {
  OS << getRecord()->getName();
  if (!Args.empty()) {
    OS << "(" << Args[0];
    for (unsigned i = 1, e = Args.size(); i != e; ++i)
      OS << ", " << Args[i];
    OS << ")";
  }
  OS << ": ";
  
  if (Trees.size() > 1)
    OS << "[\n";
  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
    OS << "\t";
    Trees[i]->print(OS);
    OS << "\n";
  }

  if (Trees.size() > 1)
    OS << "]\n";
}

void TreePattern::dump() const { print(errs()); }

//===----------------------------------------------------------------------===//
// CodeGenDAGPatterns implementation
//

// FIXME: REMOVE OSTREAM ARGUMENT
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
  Intrinsics = LoadIntrinsics(Records, false);
  TgtIntrinsics = LoadIntrinsics(Records, true);
  ParseNodeInfo();
  ParseNodeTransforms();
  ParseComplexPatterns();
  ParsePatternFragments();
  ParseDefaultOperands();
  ParseInstructions();
  ParsePatterns();
  
  // Generate variants.  For example, commutative patterns can match
  // multiple ways.  Add them to PatternsToMatch as well.
  GenerateVariants();

  // Infer instruction flags.  For example, we can detect loads,
  // stores, and side effects in many cases by examining an
  // instruction's pattern.
  InferInstructionFlags();
}

CodeGenDAGPatterns::~CodeGenDAGPatterns() {
  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
       E = PatternFragments.end(); I != E; ++I)
    delete I->second;
}


Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
  Record *N = Records.getDef(Name);
  if (!N || !N->isSubClassOf("SDNode")) {
    errs() << "Error getting SDNode '" << Name << "'!\n";
    exit(1);
  }
  return N;
}

// Parse all of the SDNode definitions for the target, populating SDNodes.
void CodeGenDAGPatterns::ParseNodeInfo() {
  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
  while (!Nodes.empty()) {
    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
    Nodes.pop_back();
  }

  // Get the builtin intrinsic nodes.
  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}

/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void CodeGenDAGPatterns::ParseNodeTransforms() {
  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
  while (!Xforms.empty()) {
    Record *XFormNode = Xforms.back();
    Record *SDNode = XFormNode->getValueAsDef("Opcode");
    std::string Code = XFormNode->getValueAsCode("XFormFunction");
    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));

    Xforms.pop_back();
  }
}

void CodeGenDAGPatterns::ParseComplexPatterns() {
  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
  while (!AMs.empty()) {
    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
    AMs.pop_back();
  }
}


/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map.  After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
void CodeGenDAGPatterns::ParsePatternFragments() {
  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
  
  // First step, parse all of the fragments.
  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
    PatternFragments[Fragments[i]] = P;
    
    // Validate the argument list, converting it to set, to discard duplicates.
    std::vector<std::string> &Args = P->getArgList();
    std::set<std::string> OperandsSet(Args.begin(), Args.end());
    
    if (OperandsSet.count(""))
      P->error("Cannot have unnamed 'node' values in pattern fragment!");
    
    // Parse the operands list.
    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
    // Special cases: ops == outs == ins. Different names are used to
    // improve readability.
    if (!OpsOp ||
        (OpsOp->getDef()->getName() != "ops" &&
         OpsOp->getDef()->getName() != "outs" &&
         OpsOp->getDef()->getName() != "ins"))
      P->error("Operands list should start with '(ops ... '!");
    
    // Copy over the arguments.       
    Args.clear();
    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
          static_cast<DefInit*>(OpsList->getArg(j))->
          getDef()->getName() != "node")
        P->error("Operands list should all be 'node' values.");
      if (OpsList->getArgName(j).empty())
        P->error("Operands list should have names for each operand!");
      if (!OperandsSet.count(OpsList->getArgName(j)))
        P->error("'" + OpsList->getArgName(j) +
                 "' does not occur in pattern or was multiply specified!");
      OperandsSet.erase(OpsList->getArgName(j));
      Args.push_back(OpsList->getArgName(j));
    }
    
    if (!OperandsSet.empty())
      P->error("Operands list does not contain an entry for operand '" +
               *OperandsSet.begin() + "'!");

    // If there is a code init for this fragment, keep track of the fact that
    // this fragment uses it.
    std::string Code = Fragments[i]->getValueAsCode("Predicate");
    if (!Code.empty())
      P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
    
    // If there is a node transformation corresponding to this, keep track of
    // it.
    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
      P->getOnlyTree()->setTransformFn(Transform);
  }
  
  // Now that we've parsed all of the tree fragments, do a closure on them so
  // that there are not references to PatFrags left inside of them.
  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
    TreePattern *ThePat = PatternFragments[Fragments[i]];
    ThePat->InlinePatternFragments();
        
    // Infer as many types as possible.  Don't worry about it if we don't infer
    // all of them, some may depend on the inputs of the pattern.
    try {
      ThePat->InferAllTypes();
    } catch (...) {
      // If this pattern fragment is not supported by this target (no types can
      // satisfy its constraints), just ignore it.  If the bogus pattern is
      // actually used by instructions, the type consistency error will be
      // reported there.
    }
    
    // If debugging, print out the pattern fragment result.
    DEBUG(ThePat->dump());
  }
}

void CodeGenDAGPatterns::ParseDefaultOperands() {
  std::vector<Record*> DefaultOps[2];
  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");

  // Find some SDNode.
  assert(!SDNodes.empty() && "No SDNodes parsed?");
  Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
  
  for (unsigned iter = 0; iter != 2; ++iter) {
    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
    
      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
      // SomeSDnode so that we can parse this.
      std::vector<std::pair<Init*, std::string> > Ops;
      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
                                     DefaultInfo->getArgName(op)));
      DagInit *DI = new DagInit(SomeSDNode, "", Ops);
    
      // Create a TreePattern to parse this.
      TreePattern P(DefaultOps[iter][i], DI, false, *this);
      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");

      // Copy the operands over into a DAGDefaultOperand.
      DAGDefaultOperand DefaultOpInfo;
    
      TreePatternNode *T = P.getTree(0);
      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
        TreePatternNode *TPN = T->getChild(op);
        while (TPN->ApplyTypeConstraints(P, false))
          /* Resolve all types */;
      
        if (TPN->ContainsUnresolvedType()) {
          if (iter == 0)
            throw "Value #" + utostr(i) + " of PredicateOperand '" +
              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
          else
            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
        }
        DefaultOpInfo.DefaultOps.push_back(TPN);
      }

      // Insert it into the DefaultOperands map so we can find it later.
      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
    }
  }
}

/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input.  Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
                      std::map<std::string, TreePatternNode*> &InstInputs,
                      std::vector<Record*> &InstImpInputs) {
  // No name -> not interesting.
  if (Pat->getName().empty()) {
    if (Pat->isLeaf()) {
      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
        I->error("Input " + DI->getDef()->getName() + " must be named!");
      else if (DI && DI->getDef()->isSubClassOf("Register")) 
        InstImpInputs.push_back(DI->getDef());
    }
    return false;
  }

  Record *Rec;
  if (Pat->isLeaf()) {
    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
    Rec = DI->getDef();
  } else {
    Rec = Pat->getOperator();
  }

  // SRCVALUE nodes are ignored.
  if (Rec->getName() == "srcvalue")
    return false;

  TreePatternNode *&Slot = InstInputs[Pat->getName()];
  if (!Slot) {
    Slot = Pat;
  } else {
    Record *SlotRec;
    if (Slot->isLeaf()) {
      SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
    } else {
      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
      SlotRec = Slot->getOperator();
    }
    
    // Ensure that the inputs agree if we've already seen this input.
    if (Rec != SlotRec)
      I->error("All $" + Pat->getName() + " inputs must agree with each other");
    if (Slot->getExtTypes() != Pat->getExtTypes())
      I->error("All $" + Pat->getName() + " inputs must agree with each other");
  }
  return true;
}

/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern.  Report errors if we see anything naughty.
void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
                            std::map<std::string, TreePatternNode*> &InstInputs,
                            std::map<std::string, TreePatternNode*>&InstResults,
                            std::vector<Record*> &InstImpInputs,
                            std::vector<Record*> &InstImpResults) {
  if (Pat->isLeaf()) {
    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
    if (!isUse && Pat->getTransformFn())
      I->error("Cannot specify a transform function for a non-input value!");
    return;
  } else if (Pat->getOperator()->getName() == "implicit") {
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
      TreePatternNode *Dest = Pat->getChild(i);
      if (!Dest->isLeaf())
        I->error("implicitly defined value should be a register!");
    
      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
      if (!Val || !Val->getDef()->isSubClassOf("Register"))
        I->error("implicitly defined value should be a register!");
      InstImpResults.push_back(Val->getDef());
    }
    return;
  } else if (Pat->getOperator()->getName() != "set") {
    // If this is not a set, verify that the children nodes are not void typed,
    // and recurse.
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
      if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
        I->error("Cannot have void nodes inside of patterns!");
      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
                                  InstImpInputs, InstImpResults);
    }
    
    // If this is a non-leaf node with no children, treat it basically as if
    // it were a leaf.  This handles nodes like (imm).
    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
    
    if (!isUse && Pat->getTransformFn())
      I->error("Cannot specify a transform function for a non-input value!");
    return;
  } 
  
  // Otherwise, this is a set, validate and collect instruction results.
  if (Pat->getNumChildren() == 0)
    I->error("set requires operands!");
  
  if (Pat->getTransformFn())
    I->error("Cannot specify a transform function on a set node!");
  
  // Check the set destinations.
  unsigned NumDests = Pat->getNumChildren()-1;
  for (unsigned i = 0; i != NumDests; ++i) {
    TreePatternNode *Dest = Pat->getChild(i);
    if (!Dest->isLeaf())
      I->error("set destination should be a register!");
    
    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
    if (!Val)
      I->error("set destination should be a register!");

    if (Val->getDef()->isSubClassOf("RegisterClass") ||
        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
      if (Dest->getName().empty())
        I->error("set destination must have a name!");
      if (InstResults.count(Dest->getName()))
        I->error("cannot set '" + Dest->getName() +"' multiple times");
      InstResults[Dest->getName()] = Dest;
    } else if (Val->getDef()->isSubClassOf("Register")) {
      InstImpResults.push_back(Val->getDef());
    } else {
      I->error("set destination should be a register!");
    }
  }
    
  // Verify and collect info from the computation.
  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
                              InstInputs, InstResults,
                              InstImpInputs, InstImpResults);
}

//===----------------------------------------------------------------------===//
// Instruction Analysis
//===----------------------------------------------------------------------===//

class InstAnalyzer {
  const CodeGenDAGPatterns &CDP;
  bool &mayStore;
  bool &mayLoad;
  bool &HasSideEffects;
public:
  InstAnalyzer(const CodeGenDAGPatterns &cdp,
               bool &maystore, bool &mayload, bool &hse)
    : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
  }

  /// Analyze - Analyze the specified instruction, returning true if the
  /// instruction had a pattern.
  bool Analyze(Record *InstRecord) {
    const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
    if (Pattern == 0) {
      HasSideEffects = 1;
      return false;  // No pattern.
    }

    // FIXME: Assume only the first tree is the pattern. The others are clobber
    // nodes.
    AnalyzeNode(Pattern->getTree(0));
    return true;
  }

private:
  void AnalyzeNode(const TreePatternNode *N) {
    if (N->isLeaf()) {
      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
        Record *LeafRec = DI->getDef();
        // Handle ComplexPattern leaves.
        if (LeafRec->isSubClassOf("ComplexPattern")) {
          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
          if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
        }
      }
      return;
    }

    // Analyze children.
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
      AnalyzeNode(N->getChild(i));

    // Ignore set nodes, which are not SDNodes.
    if (N->getOperator()->getName() == "set")
      return;

    // Get information about the SDNode for the operator.
    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());

    // Notice properties of the node.
    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
    if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;

    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
      // If this is an intrinsic, analyze it.
      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
        mayLoad = true;// These may load memory.

      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem)
        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.

      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem)
        // WriteMem intrinsics can have other strange effects.
        HasSideEffects = true;
    }
  }

};

static void InferFromPattern(const CodeGenInstruction &Inst,
                             bool &MayStore, bool &MayLoad,
                             bool &HasSideEffects,
                             const CodeGenDAGPatterns &CDP) {
  MayStore = MayLoad = HasSideEffects = false;

  bool HadPattern =
    InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);

  // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
  if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
    // If we decided that this is a store from the pattern, then the .td file
    // entry is redundant.
    if (MayStore)
      fprintf(stderr,
              "Warning: mayStore flag explicitly set on instruction '%s'"
              " but flag already inferred from pattern.\n",
              Inst.TheDef->getName().c_str());
    MayStore = true;
  }

  if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
    // If we decided that this is a load from the pattern, then the .td file
    // entry is redundant.
    if (MayLoad)
      fprintf(stderr,
              "Warning: mayLoad flag explicitly set on instruction '%s'"
              " but flag already inferred from pattern.\n",
              Inst.TheDef->getName().c_str());
    MayLoad = true;
  }

  if (Inst.neverHasSideEffects) {
    if (HadPattern)
      fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
              "which already has a pattern\n", Inst.TheDef->getName().c_str());
    HasSideEffects = false;
  }

  if (Inst.hasSideEffects) {
    if (HasSideEffects)
      fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
              "which already inferred this.\n", Inst.TheDef->getName().c_str());
    HasSideEffects = true;
  }
}

/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved.  This populates the Instructions list with fully
/// resolved instructions.
void CodeGenDAGPatterns::ParseInstructions() {
  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
  
  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
    ListInit *LI = 0;
    
    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
      LI = Instrs[i]->getValueAsListInit("Pattern");
    
    // If there is no pattern, only collect minimal information about the
    // instruction for its operand list.  We have to assume that there is one
    // result, as we have no detailed info.
    if (!LI || LI->getSize() == 0) {
      std::vector<Record*> Results;
      std::vector<Record*> Operands;
      
      CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());

      if (InstInfo.OperandList.size() != 0) {
        if (InstInfo.NumDefs == 0) {
          // These produce no results
          for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
            Operands.push_back(InstInfo.OperandList[j].Rec);
        } else {
          // Assume the first operand is the result.
          Results.push_back(InstInfo.OperandList[0].Rec);
      
          // The rest are inputs.
          for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
            Operands.push_back(InstInfo.OperandList[j].Rec);
        }
      }
      
      // Create and insert the instruction.
      std::vector<Record*> ImpResults;
      std::vector<Record*> ImpOperands;
      Instructions.insert(std::make_pair(Instrs[i], 
                          DAGInstruction(0, Results, Operands, ImpResults,
                                         ImpOperands)));
      continue;  // no pattern.
    }
    
    // Parse the instruction.
    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
    // Inline pattern fragments into it.
    I->InlinePatternFragments();
    
    // Infer as many types as possible.  If we cannot infer all of them, we can
    // never do anything with this instruction pattern: report it to the user.
    if (!I->InferAllTypes())
      I->error("Could not infer all types in pattern!");
    
    // InstInputs - Keep track of all of the inputs of the instruction, along 
    // with the record they are declared as.
    std::map<std::string, TreePatternNode*> InstInputs;
    
    // InstResults - Keep track of all the virtual registers that are 'set'
    // in the instruction, including what reg class they are.
    std::map<std::string, TreePatternNode*> InstResults;

    std::vector<Record*> InstImpInputs;
    std::vector<Record*> InstImpResults;
    
    // Verify that the top-level forms in the instruction are of void type, and
    // fill in the InstResults map.
    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
      TreePatternNode *Pat = I->getTree(j);
      if (Pat->getExtTypeNum(0) != MVT::isVoid)
        I->error("Top-level forms in instruction pattern should have"
                 " void types");

      // Find inputs and outputs, and verify the structure of the uses/defs.
      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
                                  InstImpInputs, InstImpResults);
    }

    // Now that we have inputs and outputs of the pattern, inspect the operands
    // list for the instruction.  This determines the order that operands are
    // added to the machine instruction the node corresponds to.
    unsigned NumResults = InstResults.size();

    // Parse the operands list from the (ops) list, validating it.
    assert(I->getArgList().empty() && "Args list should still be empty here!");
    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());

    // Check that all of the results occur first in the list.
    std::vector<Record*> Results;
    TreePatternNode *Res0Node = NULL;
    for (unsigned i = 0; i != NumResults; ++i) {
      if (i == CGI.OperandList.size())
        I->error("'" + InstResults.begin()->first +
                 "' set but does not appear in operand list!");
      const std::string &OpName = CGI.OperandList[i].Name;
      
      // Check that it exists in InstResults.
      TreePatternNode *RNode = InstResults[OpName];
      if (RNode == 0)
        I->error("Operand $" + OpName + " does not exist in operand list!");
        
      if (i == 0)
        Res0Node = RNode;
      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
      if (R == 0)
        I->error("Operand $" + OpName + " should be a set destination: all "
                 "outputs must occur before inputs in operand list!");
      
      if (CGI.OperandList[i].Rec != R)
        I->error("Operand $" + OpName + " class mismatch!");
      
      // Remember the return type.
      Results.push_back(CGI.OperandList[i].Rec);
      
      // Okay, this one checks out.
      InstResults.erase(OpName);
    }

    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
    // the copy while we're checking the inputs.
    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);

    std::vector<TreePatternNode*> ResultNodeOperands;
    std::vector<Record*> Operands;
    for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
      CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
      const std::string &OpName = Op.Name;
      if (OpName.empty())
        I->error("Operand #" + utostr(i) + " in operands list has no name!");

      if (!InstInputsCheck.count(OpName)) {
        // If this is an predicate operand or optional def operand with an
        // DefaultOps set filled in, we can ignore this.  When we codegen it,
        // we will do so as always executed.
        if (Op.Rec->isSubClassOf("PredicateOperand") ||
            Op.Rec->isSubClassOf("OptionalDefOperand")) {
          // Does it have a non-empty DefaultOps field?  If so, ignore this
          // operand.
          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
            continue;
        }
        I->error("Operand $" + OpName +
                 " does not appear in the instruction pattern");
      }
      TreePatternNode *InVal = InstInputsCheck[OpName];
      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
      
      if (InVal->isLeaf() &&
          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
          I->error("Operand $" + OpName + "'s register class disagrees"
                   " between the operand and pattern");
      }
      Operands.push_back(Op.Rec);
      
      // Construct the result for the dest-pattern operand list.
      TreePatternNode *OpNode = InVal->clone();
      
      // No predicate is useful on the result.
      OpNode->clearPredicateFns();
      
      // Promote the xform function to be an explicit node if set.
      if (Record *Xform = OpNode->getTransformFn()) {
        OpNode->setTransformFn(0);
        std::vector<TreePatternNode*> Children;
        Children.push_back(OpNode);
        OpNode = new TreePatternNode(Xform, Children);
      }
      
      ResultNodeOperands.push_back(OpNode);
    }
    
    if (!InstInputsCheck.empty())
      I->error("Input operand $" + InstInputsCheck.begin()->first +
               " occurs in pattern but not in operands list!");

    TreePatternNode *ResultPattern =
      new TreePatternNode(I->getRecord(), ResultNodeOperands);
    // Copy fully inferred output node type to instruction result pattern.
    if (NumResults > 0)
      ResultPattern->setTypes(Res0Node->getExtTypes());

    // Create and insert the instruction.
    // FIXME: InstImpResults and InstImpInputs should not be part of
    // DAGInstruction.
    DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
    Instructions.insert(std::make_pair(I->getRecord(), TheInst));

    // Use a temporary tree pattern to infer all types and make sure that the
    // constructed result is correct.  This depends on the instruction already
    // being inserted into the Instructions map.
    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
    Temp.InferAllTypes();

    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
    
    DEBUG(I->dump());
  }
   
  // If we can, convert the instructions to be patterns that are matched!
  for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
       E = Instructions.end(); II != E; ++II) {
    DAGInstruction &TheInst = II->second;
    const TreePattern *I = TheInst.getPattern();
    if (I == 0) continue;  // No pattern.

    // FIXME: Assume only the first tree is the pattern. The others are clobber
    // nodes.
    TreePatternNode *Pattern = I->getTree(0);
    TreePatternNode *SrcPattern;
    if (Pattern->getOperator()->getName() == "set") {
      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
    } else{
      // Not a set (store or something?)
      SrcPattern = Pattern;
    }
    
    std::string Reason;
    if (!SrcPattern->canPatternMatch(Reason, *this))
      I->error("Instruction can never match: " + Reason);
    
    Record *Instr = II->first;
    TreePatternNode *DstPattern = TheInst.getResultPattern();
    PatternsToMatch.
      push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
                               SrcPattern, DstPattern, TheInst.getImpResults(),
                               Instr->getValueAsInt("AddedComplexity")));
  }
}


void CodeGenDAGPatterns::InferInstructionFlags() {
  std::map<std::string, CodeGenInstruction> &InstrDescs =
    Target.getInstructions();
  for (std::map<std::string, CodeGenInstruction>::iterator
         II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
    CodeGenInstruction &InstInfo = II->second;
    // Determine properties of the instruction from its pattern.
    bool MayStore, MayLoad, HasSideEffects;
    InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
    InstInfo.mayStore = MayStore;
    InstInfo.mayLoad = MayLoad;
    InstInfo.hasSideEffects = HasSideEffects;
  }
}

void CodeGenDAGPatterns::ParsePatterns() {
  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");

  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
    DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
    DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
    Record *Operator = OpDef->getDef();
    TreePattern *Pattern;
    if (Operator->getName() != "parallel")
      Pattern = new TreePattern(Patterns[i], Tree, true, *this);
    else {
      std::vector<Init*> Values;
      RecTy *ListTy = 0;
      for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) {
        Values.push_back(Tree->getArg(j));
        TypedInit *TArg = dynamic_cast<TypedInit*>(Tree->getArg(j));
        if (TArg == 0) {
          errs() << "In dag: " << Tree->getAsString();
          errs() << " --  Untyped argument in pattern\n";
          assert(0 && "Untyped argument in pattern");
        }
        if (ListTy != 0) {
          ListTy = resolveTypes(ListTy, TArg->getType());
          if (ListTy == 0) {
            errs() << "In dag: " << Tree->getAsString();
            errs() << " --  Incompatible types in pattern arguments\n";
            assert(0 && "Incompatible types in pattern arguments");
          }
        }
        else {
          ListTy = TArg->getType();
        }
      }
      ListInit *LI = new ListInit(Values, new ListRecTy(ListTy));
      Pattern = new TreePattern(Patterns[i], LI, true, *this);
    }

    // Inline pattern fragments into it.
    Pattern->InlinePatternFragments();
    
    ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
    if (LI->getSize() == 0) continue;  // no pattern.
    
    // Parse the instruction.
    TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
    
    // Inline pattern fragments into it.
    Result->InlinePatternFragments();

    if (Result->getNumTrees() != 1)
      Result->error("Cannot handle instructions producing instructions "
                    "with temporaries yet!");
    
    bool IterateInference;
    bool InferredAllPatternTypes, InferredAllResultTypes;
    do {
      // Infer as many types as possible.  If we cannot infer all of them, we
      // can never do anything with this pattern: report it to the user.
      InferredAllPatternTypes = Pattern->InferAllTypes();
      
      // Infer as many types as possible.  If we cannot infer all of them, we
      // can never do anything with this pattern: report it to the user.
      InferredAllResultTypes = Result->InferAllTypes();

      // Apply the type of the result to the source pattern.  This helps us
      // resolve cases where the input type is known to be a pointer type (which
      // is considered resolved), but the result knows it needs to be 32- or
      // 64-bits.  Infer the other way for good measure.
      IterateInference = Pattern->getTree(0)->
        UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
      IterateInference |= Result->getTree(0)->
        UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
    } while (IterateInference);
    
    // Verify that we inferred enough types that we can do something with the
    // pattern and result.  If these fire the user has to add type casts.
    if (!InferredAllPatternTypes)
      Pattern->error("Could not infer all types in pattern!");
    if (!InferredAllResultTypes)
      Result->error("Could not infer all types in pattern result!");
    
    // Validate that the input pattern is correct.
    std::map<std::string, TreePatternNode*> InstInputs;
    std::map<std::string, TreePatternNode*> InstResults;
    std::vector<Record*> InstImpInputs;
    std::vector<Record*> InstImpResults;
    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
                                  InstInputs, InstResults,
                                  InstImpInputs, InstImpResults);

    // Promote the xform function to be an explicit node if set.
    TreePatternNode *DstPattern = Result->getOnlyTree();
    std::vector<TreePatternNode*> ResultNodeOperands;
    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
      TreePatternNode *OpNode = DstPattern->getChild(ii);
      if (Record *Xform = OpNode->getTransformFn()) {
        OpNode->setTransformFn(0);
        std::vector<TreePatternNode*> Children;
        Children.push_back(OpNode);
        OpNode = new TreePatternNode(Xform, Children);
      }
      ResultNodeOperands.push_back(OpNode);
    }
    DstPattern = Result->getOnlyTree();
    if (!DstPattern->isLeaf())
      DstPattern = new TreePatternNode(DstPattern->getOperator(),
                                       ResultNodeOperands);
    DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
    Temp.InferAllTypes();

    std::string Reason;
    if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
      Pattern->error("Pattern can never match: " + Reason);
    
    PatternsToMatch.
      push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
                               Pattern->getTree(0),
                               Temp.getOnlyTree(), InstImpResults,
                               Patterns[i]->getValueAsInt("AddedComplexity")));
  }
}

/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(TreePatternNode *Orig, 
               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
                                 std::vector<TreePatternNode*> &OutVariants,
                                 CodeGenDAGPatterns &CDP,
                                 const MultipleUseVarSet &DepVars) {
  // Make sure that each operand has at least one variant to choose from.
  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
    if (ChildVariants[i].empty())
      return;
        
  // The end result is an all-pairs construction of the resultant pattern.
  std::vector<unsigned> Idxs;
  Idxs.resize(ChildVariants.size());
  bool NotDone;
  do {
#ifndef NDEBUG
    if (DebugFlag && !Idxs.empty()) {
      errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
        for (unsigned i = 0; i < Idxs.size(); ++i) {
          errs() << Idxs[i] << " ";
      }
      errs() << "]\n";
    }
#endif
    // Create the variant and add it to the output list.
    std::vector<TreePatternNode*> NewChildren;
    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
    
    // Copy over properties.
    R->setName(Orig->getName());
    R->setPredicateFns(Orig->getPredicateFns());
    R->setTransformFn(Orig->getTransformFn());
    R->setTypes(Orig->getExtTypes());
    
    // If this pattern cannot match, do not include it as a variant.
    std::string ErrString;
    if (!R->canPatternMatch(ErrString, CDP)) {
      delete R;
    } else {
      bool AlreadyExists = false;
      
      // Scan to see if this pattern has already been emitted.  We can get
      // duplication due to things like commuting:
      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
      // which are the same pattern.  Ignore the dups.
      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
          AlreadyExists = true;
          break;
        }
      
      if (AlreadyExists)
        delete R;
      else
        OutVariants.push_back(R);
    }
    
    // Increment indices to the next permutation by incrementing the
    // indicies from last index backward, e.g., generate the sequence
    // [0, 0], [0, 1], [1, 0], [1, 1].
    int IdxsIdx;
    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
        Idxs[IdxsIdx] = 0;
      else
        break;
    }
    NotDone = (IdxsIdx >= 0);
  } while (NotDone);
}

/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNode *Orig, 
                                 const std::vector<TreePatternNode*> &LHS,
                                 const std::vector<TreePatternNode*> &RHS,
                                 std::vector<TreePatternNode*> &OutVariants,
                                 CodeGenDAGPatterns &CDP,
                                 const MultipleUseVarSet &DepVars) {
  std::vector<std::vector<TreePatternNode*> > ChildVariants;
  ChildVariants.push_back(LHS);
  ChildVariants.push_back(RHS);
  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
}  


static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
                                     std::vector<TreePatternNode *> &Children) {
  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
  Record *Operator = N->getOperator();
  
  // Only permit raw nodes.
  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
      N->getTransformFn()) {
    Children.push_back(N);
    return;
  }

  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
    Children.push_back(N->getChild(0));
  else
    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);

  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
    Children.push_back(N->getChild(1));
  else
    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
}

/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNode *N,
                               std::vector<TreePatternNode*> &OutVariants,
                               CodeGenDAGPatterns &CDP,
                               const MultipleUseVarSet &DepVars) {
  // We cannot permute leaves.
  if (N->isLeaf()) {
    OutVariants.push_back(N);
    return;
  }

  // Look up interesting info about the node.
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());

  // If this node is associative, re-associate.
  if (NodeInfo.hasProperty(SDNPAssociative)) {
    // Re-associate by pulling together all of the linked operators 
    std::vector<TreePatternNode*> MaximalChildren;
    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);

    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
    // permutations.
    if (MaximalChildren.size() == 3) {
      // Find the variants of all of our maximal children.
      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
      
      // There are only two ways we can permute the tree:
      //   (A op B) op C    and    A op (B op C)
      // Within these forms, we can also permute A/B/C.
      
      // Generate legal pair permutations of A/B/C.
      std::vector<TreePatternNode*> ABVariants;
      std::vector<TreePatternNode*> BAVariants;
      std::vector<TreePatternNode*> ACVariants;
      std::vector<TreePatternNode*> CAVariants;
      std::vector<TreePatternNode*> BCVariants;
      std::vector<TreePatternNode*> CBVariants;
      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);

      // Combine those into the result: (x op x) op x
      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);

      // Combine those into the result: x op (x op x)
      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
      return;
    }
  }
  
  // Compute permutations of all children.
  std::vector<std::vector<TreePatternNode*> > ChildVariants;
  ChildVariants.resize(N->getNumChildren());
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);

  // Build all permutations based on how the children were formed.
  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);

  // If this node is commutative, consider the commuted order.
  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
           "Commutative but doesn't have 2 children!");
    // Don't count children which are actually register references.
    unsigned NC = 0;
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
      TreePatternNode *Child = N->getChild(i);
      if (Child->isLeaf())
        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
          Record *RR = DI->getDef();
          if (RR->isSubClassOf("Register"))
            continue;
        }
      NC++;
    }
    // Consider the commuted order.
    if (isCommIntrinsic) {
      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
      // operands are the commutative operands, and there might be more operands
      // after those.
      assert(NC >= 3 &&
             "Commutative intrinsic should have at least 3 childrean!");
      std::vector<std::vector<TreePatternNode*> > Variants;
      Variants.push_back(ChildVariants[0]); // Intrinsic id.
      Variants.push_back(ChildVariants[2]);
      Variants.push_back(ChildVariants[1]);
      for (unsigned i = 3; i != NC; ++i)
        Variants.push_back(ChildVariants[i]);
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
    } else if (NC == 2)
      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
                           OutVariants, CDP, DepVars);
  }
}


// GenerateVariants - Generate variants.  For example, commutative patterns can
// match multiple ways.  Add them to PatternsToMatch as well.
void CodeGenDAGPatterns::GenerateVariants() {
  DOUT << "Generating instruction variants.\n";
  
  // Loop over all of the patterns we've collected, checking to see if we can
  // generate variants of the instruction, through the exploitation of
  // identities.  This permits the target to provide aggressive matching without
  // the .td file having to contain tons of variants of instructions.
  //
  // Note that this loop adds new patterns to the PatternsToMatch list, but we
  // intentionally do not reconsider these.  Any variants of added patterns have
  // already been added.
  //
  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
    MultipleUseVarSet             DepVars;
    std::vector<TreePatternNode*> Variants;
    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
    DOUT << "Dependent/multiply used variables: ";
    DEBUG(DumpDepVars(DepVars));
    DOUT << "\n";
    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);

    assert(!Variants.empty() && "Must create at least original variant!");
    Variants.erase(Variants.begin());  // Remove the original pattern.

    if (Variants.empty())  // No variants for this pattern.
      continue;

    DOUT << "FOUND VARIANTS OF: ";
    DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
    DOUT << "\n";

    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
      TreePatternNode *Variant = Variants[v];

      DOUT << "  VAR#" << v <<  ": ";
      DEBUG(Variant->dump());
      DOUT << "\n";
      
      // Scan to see if an instruction or explicit pattern already matches this.
      bool AlreadyExists = false;
      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
        // Skip if the top level predicates do not match.
        if (PatternsToMatch[i].getPredicates() !=
            PatternsToMatch[p].getPredicates())
          continue;
        // Check to see if this variant already exists.
        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
          DOUT << "  *** ALREADY EXISTS, ignoring variant.\n";
          AlreadyExists = true;
          break;
        }
      }
      // If we already have it, ignore the variant.
      if (AlreadyExists) continue;

      // Otherwise, add it to the list of patterns we have.
      PatternsToMatch.
        push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
                                 Variant, PatternsToMatch[i].getDstPattern(),
                                 PatternsToMatch[i].getDstRegs(),
                                 PatternsToMatch[i].getAddedComplexity()));
    }

    DOUT << "\n";
  }
}