llvm.org GIT mirror llvm / 1060082 lib / Transforms / InstCombine / InstCombineCasts.cpp
1060082

Tree @1060082 (Download .tar.gz)

InstCombineCasts.cpp @1060082raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
//===- InstCombineCasts.cpp -----------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for cast operations.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Analyze 'Val', seeing if it is a simple linear expression.
/// If so, decompose it, returning some value X, such that Val is
/// X*Scale+Offset.
///
static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
                                        uint64_t &Offset) {
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    Offset = CI->getZExtValue();
    Scale  = 0;
    return ConstantInt::get(Val->getType(), 0);
  }

  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
    // Cannot look past anything that might overflow.
    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
      Scale = 1;
      Offset = 0;
      return Val;
    }

    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
      if (I->getOpcode() == Instruction::Shl) {
        // This is a value scaled by '1 << the shift amt'.
        Scale = UINT64_C(1) << RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      }

      if (I->getOpcode() == Instruction::Mul) {
        // This value is scaled by 'RHS'.
        Scale = RHS->getZExtValue();
        Offset = 0;
        return I->getOperand(0);
      }

      if (I->getOpcode() == Instruction::Add) {
        // We have X+C.  Check to see if we really have (X*C2)+C1,
        // where C1 is divisible by C2.
        unsigned SubScale;
        Value *SubVal =
          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
        Offset += RHS->getZExtValue();
        Scale = SubScale;
        return SubVal;
      }
    }
  }

  // Otherwise, we can't look past this.
  Scale = 1;
  Offset = 0;
  return Val;
}

/// If we find a cast of an allocation instruction, try to eliminate the cast by
/// moving the type information into the alloc.
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
                                                   AllocaInst &AI) {
  PointerType *PTy = cast<PointerType>(CI.getType());

  BuilderTy AllocaBuilder(Builder);
  AllocaBuilder.SetInsertPoint(&AI);

  // Get the type really allocated and the type casted to.
  Type *AllocElTy = AI.getAllocatedType();
  Type *CastElTy = PTy->getElementType();
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;

  unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
  unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
  if (CastElTyAlign < AllocElTyAlign) return nullptr;

  // If the allocation has multiple uses, only promote it if we are strictly
  // increasing the alignment of the resultant allocation.  If we keep it the
  // same, we open the door to infinite loops of various kinds.
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;

  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;

  // If the allocation has multiple uses, only promote it if we're not
  // shrinking the amount of memory being allocated.
  uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;

  // See if we can satisfy the modulus by pulling a scale out of the array
  // size argument.
  unsigned ArraySizeScale;
  uint64_t ArrayOffset;
  Value *NumElements = // See if the array size is a decomposable linear expr.
    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);

  // If we can now satisfy the modulus, by using a non-1 scale, we really can
  // do the xform.
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;

  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
  Value *Amt = nullptr;
  if (Scale == 1) {
    Amt = NumElements;
  } else {
    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    // Insert before the alloca, not before the cast.
    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
  }

  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
                                  Offset, true);
    Amt = AllocaBuilder.CreateAdd(Amt, Off);
  }

  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
  New->setAlignment(AI.getAlignment());
  New->takeName(&AI);
  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());

  // If the allocation has multiple real uses, insert a cast and change all
  // things that used it to use the new cast.  This will also hack on CI, but it
  // will die soon.
  if (!AI.hasOneUse()) {
    // New is the allocation instruction, pointer typed. AI is the original
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    replaceInstUsesWith(AI, NewCast);
  }
  return replaceInstUsesWith(CI, New);
}

/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
/// true for, actually insert the code to evaluate the expression.
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
                                             bool isSigned) {
  if (Constant *C = dyn_cast<Constant>(V)) {
    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    // If we got a constantexpr back, try to simplify it with DL info.
    if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
      C = FoldedC;
    return C;
  }

  // Otherwise, it must be an instruction.
  Instruction *I = cast<Instruction>(V);
  Instruction *Res = nullptr;
  unsigned Opc = I->getOpcode();
  switch (Opc) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::AShr:
  case Instruction::LShr:
  case Instruction::Shl:
  case Instruction::UDiv:
  case Instruction::URem: {
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    break;
  }
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
    // If the source type of the cast is the type we're trying for then we can
    // just return the source.  There's no need to insert it because it is not
    // new.
    if (I->getOperand(0)->getType() == Ty)
      return I->getOperand(0);

    // Otherwise, must be the same type of cast, so just reinsert a new one.
    // This also handles the case of zext(trunc(x)) -> zext(x).
    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
                                      Opc == Instruction::SExt);
    break;
  case Instruction::Select: {
    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    Res = SelectInst::Create(I->getOperand(0), True, False);
    break;
  }
  case Instruction::PHI: {
    PHINode *OPN = cast<PHINode>(I);
    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
      Value *V =
          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
      NPN->addIncoming(V, OPN->getIncomingBlock(i));
    }
    Res = NPN;
    break;
  }
  default:
    // TODO: Can handle more cases here.
    llvm_unreachable("Unreachable!");
  }

  Res->takeName(I);
  return InsertNewInstWith(Res, *I);
}

Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
                                                        const CastInst *CI2) {
  Type *SrcTy = CI1->getSrcTy();
  Type *MidTy = CI1->getDestTy();
  Type *DstTy = CI2->getDestTy();

  Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode());
  Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode());
  Type *SrcIntPtrTy =
      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
  Type *MidIntPtrTy =
      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
  Type *DstIntPtrTy =
      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
                                                DstIntPtrTy);

  // We don't want to form an inttoptr or ptrtoint that converts to an integer
  // type that differs from the pointer size.
  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
    Res = 0;

  return Instruction::CastOps(Res);
}

/// @brief Implement the transforms common to all CastInst visitors.
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
  Value *Src = CI.getOperand(0);

  // Try to eliminate a cast of a cast.
  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
      // The first cast (CSrc) is eliminable so we need to fix up or replace
      // the second cast (CI). CSrc will then have a good chance of being dead.
      return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
    }
  }

  // If we are casting a select, then fold the cast into the select.
  if (auto *SI = dyn_cast<SelectInst>(Src))
    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
      return NV;

  // If we are casting a PHI, then fold the cast into the PHI.
  if (auto *PN = dyn_cast<PHINode>(Src)) {
    // Don't do this if it would create a PHI node with an illegal type from a
    // legal type.
    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
        shouldChangeType(CI.getType(), Src->getType()))
      if (Instruction *NV = foldOpIntoPhi(CI, PN))
        return NV;
  }

  return nullptr;
}

/// Return true if we can evaluate the specified expression tree as type Ty
/// instead of its larger type, and arrive with the same value.
/// This is used by code that tries to eliminate truncates.
///
/// Ty will always be a type smaller than V.  We should return true if trunc(V)
/// can be computed by computing V in the smaller type.  If V is an instruction,
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
/// makes sense if x and y can be efficiently truncated.
///
/// This function works on both vectors and scalars.
///
static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
                                 Instruction *CxtI) {
  // We can always evaluate constants in another type.
  if (isa<Constant>(V))
    return true;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  Type *OrigTy = V->getType();

  // If this is an extension from the dest type, we can eliminate it, even if it
  // has multiple uses.
  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
      I->getOperand(0)->getType() == Ty)
    return true;

  // We can't extend or shrink something that has multiple uses: doing so would
  // require duplicating the instruction in general, which isn't profitable.
  if (!I->hasOneUse()) return false;

  unsigned Opc = I->getOpcode();
  switch (Opc) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // These operators can all arbitrarily be extended or truncated.
    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);

  case Instruction::UDiv:
  case Instruction::URem: {
    // UDiv and URem can be truncated if all the truncated bits are zero.
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    uint32_t BitWidth = Ty->getScalarSizeInBits();
    if (BitWidth < OrigBitWidth) {
      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
      if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
          IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
               canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
      }
    }
    break;
  }
  case Instruction::Shl:
    // If we are truncating the result of this SHL, and if it's a shift of a
    // constant amount, we can always perform a SHL in a smaller type.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint32_t BitWidth = Ty->getScalarSizeInBits();
      if (CI->getLimitedValue(BitWidth) < BitWidth)
        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
    }
    break;
  case Instruction::LShr:
    // If this is a truncate of a logical shr, we can truncate it to a smaller
    // lshr iff we know that the bits we would otherwise be shifting in are
    // already zeros.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
      uint32_t BitWidth = Ty->getScalarSizeInBits();
      if (IC.MaskedValueIsZero(I->getOperand(0),
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
          CI->getLimitedValue(BitWidth) < BitWidth) {
        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
      }
    }
    break;
  case Instruction::Trunc:
    // trunc(trunc(x)) -> trunc(x)
    return true;
  case Instruction::ZExt:
  case Instruction::SExt:
    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    return true;
  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
  }
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
        return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    break;
  }

  return false;
}

/// Given a vector that is bitcast to an integer, optionally logically
/// right-shifted, and truncated, convert it to an extractelement.
/// Example (big endian):
///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
///   --->
///   extractelement <4 x i32> %X, 1
static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
  Value *TruncOp = Trunc.getOperand(0);
  Type *DestType = Trunc.getType();
  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
    return nullptr;

  Value *VecInput = nullptr;
  ConstantInt *ShiftVal = nullptr;
  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
                                  m_LShr(m_BitCast(m_Value(VecInput)),
                                         m_ConstantInt(ShiftVal)))) ||
      !isa<VectorType>(VecInput->getType()))
    return nullptr;

  VectorType *VecType = cast<VectorType>(VecInput->getType());
  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;

  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
    return nullptr;

  // If the element type of the vector doesn't match the result type,
  // bitcast it to a vector type that we can extract from.
  unsigned NumVecElts = VecWidth / DestWidth;
  if (VecType->getElementType() != DestType) {
    VecType = VectorType::get(DestType, NumVecElts);
    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
  }

  unsigned Elt = ShiftAmount / DestWidth;
  if (IC.getDataLayout().isBigEndian())
    Elt = NumVecElts - 1 - Elt;

  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
}

/// Try to narrow the width of bitwise logic instructions with constants.
Instruction *InstCombiner::shrinkBitwiseLogic(TruncInst &Trunc) {
  Type *SrcTy = Trunc.getSrcTy();
  Type *DestTy = Trunc.getType();
  if (isa<IntegerType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
    return nullptr;

  BinaryOperator *LogicOp;
  Constant *C;
  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(LogicOp))) ||
      !LogicOp->isBitwiseLogicOp() ||
      !match(LogicOp->getOperand(1), m_Constant(C)))
    return nullptr;

  // trunc (logic X, C) --> logic (trunc X, C')
  Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
  Value *NarrowOp0 = Builder.CreateTrunc(LogicOp->getOperand(0), DestTy);
  return BinaryOperator::Create(LogicOp->getOpcode(), NarrowOp0, NarrowC);
}

/// Try to narrow the width of a splat shuffle. This could be generalized to any
/// shuffle with a constant operand, but we limit the transform to avoid
/// creating a shuffle type that targets may not be able to lower effectively.
static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
                                       InstCombiner::BuilderTy &Builder) {
  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
  if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
      Shuf->getMask()->getSplatValue() &&
      Shuf->getType() == Shuf->getOperand(0)->getType()) {
    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
    Constant *NarrowUndef = UndefValue::get(Trunc.getType());
    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
    return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
  }

  return nullptr;
}

/// Try to narrow the width of an insert element. This could be generalized for
/// any vector constant, but we limit the transform to insertion into undef to
/// avoid potential backend problems from unsupported insertion widths. This
/// could also be extended to handle the case of inserting a scalar constant
/// into a vector variable.
static Instruction *shrinkInsertElt(CastInst &Trunc,
                                    InstCombiner::BuilderTy &Builder) {
  Instruction::CastOps Opcode = Trunc.getOpcode();
  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
         "Unexpected instruction for shrinking");

  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
  if (!InsElt || !InsElt->hasOneUse())
    return nullptr;

  Type *DestTy = Trunc.getType();
  Type *DestScalarTy = DestTy->getScalarType();
  Value *VecOp = InsElt->getOperand(0);
  Value *ScalarOp = InsElt->getOperand(1);
  Value *Index = InsElt->getOperand(2);

  if (isa<UndefValue>(VecOp)) {
    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
    UndefValue *NarrowUndef = UndefValue::get(DestTy);
    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
  }

  return nullptr;
}

Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
  if (Instruction *Result = commonCastTransforms(CI))
    return Result;

  // Test if the trunc is the user of a select which is part of a
  // minimum or maximum operation. If so, don't do any more simplification.
  // Even simplifying demanded bits can break the canonical form of a
  // min/max.
  Value *LHS, *RHS;
  if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
    if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
      return nullptr;

  // See if we can simplify any instructions used by the input whose sole
  // purpose is to compute bits we don't care about.
  if (SimplifyDemandedInstructionBits(CI))
    return &CI;

  Value *Src = CI.getOperand(0);
  Type *DestTy = CI.getType(), *SrcTy = Src->getType();

  // Attempt to truncate the entire input expression tree to the destination
  // type.   Only do this if the dest type is a simple type, don't convert the
  // expression tree to something weird like i93 unless the source is also
  // strange.
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
      canEvaluateTruncated(Src, DestTy, *this, &CI)) {

    // If this cast is a truncate, evaluting in a different type always
    // eliminates the cast, so it is always a win.
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
          " to avoid cast: " << CI << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    assert(Res->getType() == DestTy);
    return replaceInstUsesWith(CI, Res);
  }

  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
  if (DestTy->getScalarSizeInBits() == 1) {
    Constant *One = ConstantInt::get(SrcTy, 1);
    Src = Builder.CreateAnd(Src, One);
    Value *Zero = Constant::getNullValue(Src->getType());
    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
  }

  // FIXME: Maybe combine the next two transforms to handle the no cast case
  // more efficiently. Support vector types. Cleanup code by using m_OneUse.

  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
  Value *A = nullptr; ConstantInt *Cst = nullptr;
  if (Src->hasOneUse() &&
      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    // We have three types to worry about here, the type of A, the source of
    // the truncate (MidSize), and the destination of the truncate. We know that
    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    // between ASize and ResultSize.
    unsigned ASize = A->getType()->getPrimitiveSizeInBits();

    // If the shift amount is larger than the size of A, then the result is
    // known to be zero because all the input bits got shifted out.
    if (Cst->getZExtValue() >= ASize)
      return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));

    // Since we're doing an lshr and a zero extend, and know that the shift
    // amount is smaller than ASize, it is always safe to do the shift in A's
    // type, then zero extend or truncate to the result.
    Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
    Shift->takeName(Src);
    return CastInst::CreateIntegerCast(Shift, DestTy, false);
  }

  // FIXME: We should canonicalize to zext/trunc and remove this transform.
  // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
  // conversion.
  // It works because bits coming from sign extension have the same value as
  // the sign bit of the original value; performing ashr instead of lshr
  // generates bits of the same value as the sign bit.
  if (Src->hasOneUse() &&
      match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
    Value *SExt = cast<Instruction>(Src)->getOperand(0);
    const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
    const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
    const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
    unsigned ShiftAmt = Cst->getZExtValue();

    // This optimization can be only performed when zero bits generated by
    // the original lshr aren't pulled into the value after truncation, so we
    // can only shift by values no larger than the number of extension bits.
    // FIXME: Instead of bailing when the shift is too large, use and to clear
    // the extra bits.
    if (ShiftAmt <= MaxAmt) {
      if (CISize == ASize)
        return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
                                          std::min(ShiftAmt, ASize - 1)));
      if (SExt->hasOneUse()) {
        Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
        Shift->takeName(Src);
        return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
      }
    }
  }

  if (Instruction *I = shrinkBitwiseLogic(CI))
    return I;

  if (Instruction *I = shrinkSplatShuffle(CI, Builder))
    return I;

  if (Instruction *I = shrinkInsertElt(CI, Builder))
    return I;

  if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
      shouldChangeType(SrcTy, DestTy)) {
    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
    // dest type is native and cst < dest size.
    if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
        !match(A, m_Shr(m_Value(), m_Constant()))) {
      // Skip shifts of shift by constants. It undoes a combine in
      // FoldShiftByConstant and is the extend in reg pattern.
      const unsigned DestSize = DestTy->getScalarSizeInBits();
      if (Cst->getValue().ult(DestSize)) {
        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");

        return BinaryOperator::Create(
          Instruction::Shl, NewTrunc,
          ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
      }
    }
  }

  if (Instruction *I = foldVecTruncToExtElt(CI, *this))
    return I;

  return nullptr;
}

Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
                                             bool DoTransform) {
  // If we are just checking for a icmp eq of a single bit and zext'ing it
  // to an integer, then shift the bit to the appropriate place and then
  // cast to integer to avoid the comparison.
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    const APInt &Op1CV = Op1C->getValue();

    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) ||
        (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
      if (!DoTransform) return ICI;

      Value *In = ICI->getOperand(0);
      Value *Sh = ConstantInt::get(In->getType(),
                                   In->getType()->getScalarSizeInBits() - 1);
      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
      if (In->getType() != CI.getType())
        In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);

      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
        Constant *One = ConstantInt::get(In->getType(), 1);
        In = Builder.CreateXor(In, One, In->getName() + ".not");
      }

      return replaceInstUsesWith(CI, In);
    }

    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) &&
        // This only works for EQ and NE
        ICI->isEquality()) {
      // If Op1C some other power of two, convert:
      KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);

      APInt KnownZeroMask(~Known.Zero);
      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
        if (!DoTransform) return ICI;

        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
        if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) {
          // (X&4) == 2 --> false
          // (X&4) != 2 --> true
          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
                                           isNE);
          Res = ConstantExpr::getZExt(Res, CI.getType());
          return replaceInstUsesWith(CI, Res);
        }

        uint32_t ShAmt = KnownZeroMask.logBase2();
        Value *In = ICI->getOperand(0);
        if (ShAmt) {
          // Perform a logical shr by shiftamt.
          // Insert the shift to put the result in the low bit.
          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
                                  In->getName() + ".lobit");
        }

        if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit.
          Constant *One = ConstantInt::get(In->getType(), 1);
          In = Builder.CreateXor(In, One);
        }

        if (CI.getType() == In->getType())
          return replaceInstUsesWith(CI, In);

        Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
        return replaceInstUsesWith(CI, IntCast);
      }
    }
  }

  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
  // may lead to additional simplifications.
  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
      Value *LHS = ICI->getOperand(0);
      Value *RHS = ICI->getOperand(1);

      KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
      KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);

      if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
        APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
        APInt UnknownBit = ~KnownBits;
        if (UnknownBit.countPopulation() == 1) {
          if (!DoTransform) return ICI;

          Value *Result = Builder.CreateXor(LHS, RHS);

          // Mask off any bits that are set and won't be shifted away.
          if (KnownLHS.One.uge(UnknownBit))
            Result = Builder.CreateAnd(Result,
                                        ConstantInt::get(ITy, UnknownBit));

          // Shift the bit we're testing down to the lsb.
          Result = Builder.CreateLShr(
               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));

          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
            Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
          Result->takeName(ICI);
          return replaceInstUsesWith(CI, Result);
        }
      }
    }
  }

  return nullptr;
}

/// Determine if the specified value can be computed in the specified wider type
/// and produce the same low bits. If not, return false.
///
/// If this function returns true, it can also return a non-zero number of bits
/// (in BitsToClear) which indicates that the value it computes is correct for
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
/// out.  For example, to promote something like:
///
///   %B = trunc i64 %A to i32
///   %C = lshr i32 %B, 8
///   %E = zext i32 %C to i64
///
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
/// set to 8 to indicate that the promoted value needs to have bits 24-31
/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
/// clear the top bits anyway, doing this has no extra cost.
///
/// This function works on both vectors and scalars.
static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
                             InstCombiner &IC, Instruction *CxtI) {
  BitsToClear = 0;
  if (isa<Constant>(V))
    return true;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // If the input is a truncate from the destination type, we can trivially
  // eliminate it.
  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    return true;

  // We can't extend or shrink something that has multiple uses: doing so would
  // require duplicating the instruction in general, which isn't profitable.
  if (!I->hasOneUse()) return false;

  unsigned Opc = I->getOpcode(), Tmp;
  switch (Opc) {
  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    return true;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
      return false;
    // These can all be promoted if neither operand has 'bits to clear'.
    if (BitsToClear == 0 && Tmp == 0)
      return true;

    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    // other side, BitsToClear is ok.
    if (Tmp == 0 && I->isBitwiseLogicOp()) {
      // We use MaskedValueIsZero here for generality, but the case we care
      // about the most is constant RHS.
      unsigned VSize = V->getType()->getScalarSizeInBits();
      if (IC.MaskedValueIsZero(I->getOperand(1),
                               APInt::getHighBitsSet(VSize, BitsToClear),
                               0, CxtI))
        return true;
    }

    // Otherwise, we don't know how to analyze this BitsToClear case yet.
    return false;

  case Instruction::Shl:
    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
    // upper bits we can reduce BitsToClear by the shift amount.
    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
        return false;
      uint64_t ShiftAmt = Amt->getZExtValue();
      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
      return true;
    }
    return false;
  case Instruction::LShr:
    // We can promote lshr(x, cst) if we can promote x.  This requires the
    // ultimate 'and' to clear out the high zero bits we're clearing out though.
    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
        return false;
      BitsToClear += Amt->getZExtValue();
      if (BitsToClear > V->getType()->getScalarSizeInBits())
        BitsToClear = V->getType()->getScalarSizeInBits();
      return true;
    }
    // Cannot promote variable LSHR.
    return false;
  case Instruction::Select:
    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
        // TODO: If important, we could handle the case when the BitsToClear are
        // known zero in the disagreeing side.
        Tmp != BitsToClear)
      return false;
    return true;

  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
      return false;
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
          // TODO: If important, we could handle the case when the BitsToClear
          // are known zero in the disagreeing input.
          Tmp != BitsToClear)
        return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    return false;
  }
}

Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
  // If this zero extend is only used by a truncate, let the truncate be
  // eliminated before we try to optimize this zext.
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
    return nullptr;

  // If one of the common conversion will work, do it.
  if (Instruction *Result = commonCastTransforms(CI))
    return Result;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();

  // Attempt to extend the entire input expression tree to the destination
  // type.   Only do this if the dest type is a simple type, don't convert the
  // expression tree to something weird like i93 unless the source is also
  // strange.
  unsigned BitsToClear;
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
           "Can't clear more bits than in SrcTy");

    // Okay, we can transform this!  Insert the new expression now.
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
          " to avoid zero extend: " << CI << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    assert(Res->getType() == DestTy);

    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();

    // If the high bits are already filled with zeros, just replace this
    // cast with the result.
    if (MaskedValueIsZero(Res,
                          APInt::getHighBitsSet(DestBitSize,
                                                DestBitSize-SrcBitsKept),
                             0, &CI))
      return replaceInstUsesWith(CI, Res);

    // We need to emit an AND to clear the high bits.
    Constant *C = ConstantInt::get(Res->getType(),
                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    return BinaryOperator::CreateAnd(Res, C);
  }

  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
  // types and if the sizes are just right we can convert this into a logical
  // 'and' which will be much cheaper than the pair of casts.
  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    // TODO: Subsume this into EvaluateInDifferentType.

    // Get the sizes of the types involved.  We know that the intermediate type
    // will be smaller than A or C, but don't know the relation between A and C.
    Value *A = CSrc->getOperand(0);
    unsigned SrcSize = A->getType()->getScalarSizeInBits();
    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    unsigned DstSize = CI.getType()->getScalarSizeInBits();
    // If we're actually extending zero bits, then if
    // SrcSize <  DstSize: zext(a & mask)
    // SrcSize == DstSize: a & mask
    // SrcSize  > DstSize: trunc(a) & mask
    if (SrcSize < DstSize) {
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
      return new ZExtInst(And, CI.getType());
    }

    if (SrcSize == DstSize) {
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
                                                           AndValue));
    }
    if (SrcSize > DstSize) {
      Value *Trunc = Builder.CreateTrunc(A, CI.getType());
      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
      return BinaryOperator::CreateAnd(Trunc,
                                       ConstantInt::get(Trunc->getType(),
                                                        AndValue));
    }
  }

  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    return transformZExtICmp(ICI, CI);

  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
    // of the (zext icmp) can be eliminated. If so, immediately perform the
    // according elimination.
    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
        (transformZExtICmp(LHS, CI, false) ||
         transformZExtICmp(RHS, CI, false))) {
      // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
      Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
      Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
      BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);

      // Perform the elimination.
      if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
        transformZExtICmp(LHS, *LZExt);
      if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
        transformZExtICmp(RHS, *RZExt);

      return Or;
    }
  }

  // zext(trunc(X) & C) -> (X & zext(C)).
  Constant *C;
  Value *X;
  if (SrcI &&
      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
      X->getType() == CI.getType())
    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));

  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
  Value *And;
  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
      X->getType() == CI.getType()) {
    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
  }

  return nullptr;
}

/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
  ICmpInst::Predicate Pred = ICI->getPredicate();

  // Don't bother if Op1 isn't of vector or integer type.
  if (!Op1->getType()->isIntOrIntVectorTy())
    return nullptr;

  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {

      Value *Sh = ConstantInt::get(Op0->getType(),
                                   Op0->getType()->getScalarSizeInBits()-1);
      Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
      if (In->getType() != CI.getType())
        In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);

      if (Pred == ICmpInst::ICMP_SGT)
        In = Builder.CreateNot(In, In->getName() + ".not");
      return replaceInstUsesWith(CI, In);
    }
  }

  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    // If we know that only one bit of the LHS of the icmp can be set and we
    // have an equality comparison with zero or a power of 2, we can transform
    // the icmp and sext into bitwise/integer operations.
    if (ICI->hasOneUse() &&
        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
      KnownBits Known = computeKnownBits(Op0, 0, &CI);

      APInt KnownZeroMask(~Known.Zero);
      if (KnownZeroMask.isPowerOf2()) {
        Value *In = ICI->getOperand(0);

        // If the icmp tests for a known zero bit we can constant fold it.
        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
          Value *V = Pred == ICmpInst::ICMP_NE ?
                       ConstantInt::getAllOnesValue(CI.getType()) :
                       ConstantInt::getNullValue(CI.getType());
          return replaceInstUsesWith(CI, V);
        }

        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
          // Perform a right shift to place the desired bit in the LSB.
          if (ShiftAmt)
            In = Builder.CreateLShr(In,
                                    ConstantInt::get(In->getType(), ShiftAmt));

          // At this point "In" is either 1 or 0. Subtract 1 to turn
          // {1, 0} -> {0, -1}.
          In = Builder.CreateAdd(In,
                                 ConstantInt::getAllOnesValue(In->getType()),
                                 "sext");
        } else {
          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
          // Perform a left shift to place the desired bit in the MSB.
          if (ShiftAmt)
            In = Builder.CreateShl(In,
                                   ConstantInt::get(In->getType(), ShiftAmt));

          // Distribute the bit over the whole bit width.
          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
                                  KnownZeroMask.getBitWidth() - 1), "sext");
        }

        if (CI.getType() == In->getType())
          return replaceInstUsesWith(CI, In);
        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
      }
    }
  }

  return nullptr;
}

/// Return true if we can take the specified value and return it as type Ty
/// without inserting any new casts and without changing the value of the common
/// low bits.  This is used by code that tries to promote integer operations to
/// a wider types will allow us to eliminate the extension.
///
/// This function works on both vectors and scalars.
///
static bool canEvaluateSExtd(Value *V, Type *Ty) {
  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
         "Can't sign extend type to a smaller type");
  // If this is a constant, it can be trivially promoted.
  if (isa<Constant>(V))
    return true;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // If this is a truncate from the dest type, we can trivially eliminate it.
  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    return true;

  // We can't extend or shrink something that has multiple uses: doing so would
  // require duplicating the instruction in general, which isn't profitable.
  if (!I->hasOneUse()) return false;

  switch (I->getOpcode()) {
  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
    return true;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // These operators can all arbitrarily be extended if their inputs can.
    return canEvaluateSExtd(I->getOperand(0), Ty) &&
           canEvaluateSExtd(I->getOperand(1), Ty);

  //case Instruction::Shl:   TODO
  //case Instruction::LShr:  TODO

  case Instruction::Select:
    return canEvaluateSExtd(I->getOperand(1), Ty) &&
           canEvaluateSExtd(I->getOperand(2), Ty);

  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateSExtd(IncValue, Ty)) return false;
    return true;
  }
  default:
    // TODO: Can handle more cases here.
    break;
  }

  return false;
}

Instruction *InstCombiner::visitSExt(SExtInst &CI) {
  // If this sign extend is only used by a truncate, let the truncate be
  // eliminated before we try to optimize this sext.
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
    return nullptr;

  if (Instruction *I = commonCastTransforms(CI))
    return I;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();

  // If we know that the value being extended is positive, we can use a zext
  // instead.
  KnownBits Known = computeKnownBits(Src, 0, &CI);
  if (Known.isNonNegative()) {
    Value *ZExt = Builder.CreateZExt(Src, DestTy);
    return replaceInstUsesWith(CI, ZExt);
  }

  // Attempt to extend the entire input expression tree to the destination
  // type.   Only do this if the dest type is a simple type, don't convert the
  // expression tree to something weird like i93 unless the source is also
  // strange.
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
      canEvaluateSExtd(Src, DestTy)) {
    // Okay, we can transform this!  Insert the new expression now.
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
          " to avoid sign extend: " << CI << '\n');
    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
    assert(Res->getType() == DestTy);

    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();

    // If the high bits are already filled with sign bit, just replace this
    // cast with the result.
    if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
      return replaceInstUsesWith(CI, Res);

    // We need to emit a shl + ashr to do the sign extend.
    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
                                      ShAmt);
  }

  // If the input is a trunc from the destination type, then turn sext(trunc(x))
  // into shifts.
  Value *X;
  if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
    // sext(trunc(X)) --> ashr(shl(X, C), C)
    unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    unsigned DestBitSize = DestTy->getScalarSizeInBits();
    Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
    return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
  }

  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    return transformSExtICmp(ICI, CI);

  // If the input is a shl/ashr pair of a same constant, then this is a sign
  // extension from a smaller value.  If we could trust arbitrary bitwidth
  // integers, we could turn this into a truncate to the smaller bit and then
  // use a sext for the whole extension.  Since we don't, look deeper and check
  // for a truncate.  If the source and dest are the same type, eliminate the
  // trunc and extend and just do shifts.  For example, turn:
  //   %a = trunc i32 %i to i8
  //   %b = shl i8 %a, 6
  //   %c = ashr i8 %b, 6
  //   %d = sext i8 %c to i32
  // into:
  //   %a = shl i32 %i, 30
  //   %d = ashr i32 %a, 30
  Value *A = nullptr;
  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
  ConstantInt *BA = nullptr, *CA = nullptr;
  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
                        m_ConstantInt(CA))) &&
      BA == CA && A->getType() == CI.getType()) {
    unsigned MidSize = Src->getType()->getScalarSizeInBits();
    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
    A = Builder.CreateShl(A, ShAmtV, CI.getName());
    return BinaryOperator::CreateAShr(A, ShAmtV);
  }

  return nullptr;
}


/// Return a Constant* for the specified floating-point constant if it fits
/// in the specified FP type without changing its value.
static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
  bool losesInfo;
  APFloat F = CFP->getValueAPF();
  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
  if (!losesInfo)
    return ConstantFP::get(CFP->getContext(), F);
  return nullptr;
}

/// Look through floating-point extensions until we get the source value.
static Value *lookThroughFPExtensions(Value *V) {
  while (auto *FPExt = dyn_cast<FPExtInst>(V))
    V = FPExt->getOperand(0);

  // If this value is a constant, return the constant in the smallest FP type
  // that can accurately represent it.  This allows us to turn
  // (float)((double)X+2.0) into x+2.0f.
  if (auto *CFP = dyn_cast<ConstantFP>(V)) {
    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
      return V;  // No constant folding of this.
    // See if the value can be truncated to half and then reextended.
    if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
      return V;
    // See if the value can be truncated to float and then reextended.
    if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
      return V;
    if (CFP->getType()->isDoubleTy())
      return V;  // Won't shrink.
    if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
      return V;
    // Don't try to shrink to various long double types.
  }

  return V;
}

Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
  if (Instruction *I = commonCastTransforms(CI))
    return I;
  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
  // simplify this expression to avoid one or more of the trunc/extend
  // operations if we can do so without changing the numerical results.
  //
  // The exact manner in which the widths of the operands interact to limit
  // what we can and cannot do safely varies from operation to operation, and
  // is explained below in the various case statements.
  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
  if (OpI && OpI->hasOneUse()) {
    Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
    Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
    unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
    unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
    unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
    unsigned DstWidth = CI.getType()->getFPMantissaWidth();
    switch (OpI->getOpcode()) {
      default: break;
      case Instruction::FAdd:
      case Instruction::FSub:
        // For addition and subtraction, the infinitely precise result can
        // essentially be arbitrarily wide; proving that double rounding
        // will not occur because the result of OpI is exact (as we will for
        // FMul, for example) is hopeless.  However, we *can* nonetheless
        // frequently know that double rounding cannot occur (or that it is
        // innocuous) by taking advantage of the specific structure of
        // infinitely-precise results that admit double rounding.
        //
        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
        // to represent both sources, we can guarantee that the double
        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
        // for proof of this fact).
        //
        // Note: Figueroa does not consider the case where DstFormat !=
        // SrcFormat.  It's possible (likely even!) that this analysis
        // could be tightened for those cases, but they are rare (the main
        // case of interest here is (float)((double)float + float)).
        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
          if (LHSOrig->getType() != CI.getType())
            LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
          if (RHSOrig->getType() != CI.getType())
            RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
          Instruction *RI =
            BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
          RI->copyFastMathFlags(OpI);
          return RI;
        }
        break;
      case Instruction::FMul:
        // For multiplication, the infinitely precise result has at most
        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
        // that such a value can be exactly represented, then no double
        // rounding can possibly occur; we can safely perform the operation
        // in the destination format if it can represent both sources.
        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
          if (LHSOrig->getType() != CI.getType())
            LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
          if (RHSOrig->getType() != CI.getType())
            RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
          Instruction *RI =
            BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
          RI->copyFastMathFlags(OpI);
          return RI;
        }
        break;
      case Instruction::FDiv:
        // For division, we use again use the bound from Figueroa's
        // dissertation.  I am entirely certain that this bound can be
        // tightened in the unbalanced operand case by an analysis based on
        // the diophantine rational approximation bound, but the well-known
        // condition used here is a good conservative first pass.
        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
          if (LHSOrig->getType() != CI.getType())
            LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
          if (RHSOrig->getType() != CI.getType())
            RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
          Instruction *RI =
            BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
          RI->copyFastMathFlags(OpI);
          return RI;
        }
        break;
      case Instruction::FRem:
        // Remainder is straightforward.  Remainder is always exact, so the
        // type of OpI doesn't enter into things at all.  We simply evaluate
        // in whichever source type is larger, then convert to the
        // destination type.
        if (SrcWidth == OpWidth)
          break;
        if (LHSWidth < SrcWidth)
          LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
        else if (RHSWidth <= SrcWidth)
          RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
        if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
          Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
          if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
            RI->copyFastMathFlags(OpI);
          return CastInst::CreateFPCast(ExactResult, CI.getType());
        }
    }

    // (fptrunc (fneg x)) -> (fneg (fptrunc x))
    if (BinaryOperator::isFNeg(OpI)) {
      Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
                                                CI.getType());
      Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
      RI->copyFastMathFlags(OpI);
      return RI;
    }
  }

  // (fptrunc (select cond, R1, Cst)) -->
  // (select cond, (fptrunc R1), (fptrunc Cst))
  //
  //  - but only if this isn't part of a min/max operation, else we'll
  // ruin min/max canonical form which is to have the select and
  // compare's operands be of the same type with no casts to look through.
  Value *LHS, *RHS;
  SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
  if (SI &&
      (isa<ConstantFP>(SI->getOperand(1)) ||
       isa<ConstantFP>(SI->getOperand(2))) &&
      matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
    Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
    Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
    return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
  }

  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
  if (II) {
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::fabs:
    case Intrinsic::ceil:
    case Intrinsic::floor:
    case Intrinsic::rint:
    case Intrinsic::round:
    case Intrinsic::nearbyint:
    case Intrinsic::trunc: {
      Value *Src = II->getArgOperand(0);
      if (!Src->hasOneUse())
        break;

      // Except for fabs, this transformation requires the input of the unary FP
      // operation to be itself an fpext from the type to which we're
      // truncating.
      if (II->getIntrinsicID() != Intrinsic::fabs) {
        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
        if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
          break;
      }

      // Do unary FP operation on smaller type.
      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
      Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
      Type *IntrinsicType[] = { CI.getType() };
      Function *Overload = Intrinsic::getDeclaration(
        CI.getModule(), II->getIntrinsicID(), IntrinsicType);

      SmallVector<OperandBundleDef, 1> OpBundles;
      II->getOperandBundlesAsDefs(OpBundles);

      Value *Args[] = { InnerTrunc };
      CallInst *NewCI =  CallInst::Create(Overload, Args,
                                          OpBundles, II->getName());
      NewCI->copyFastMathFlags(II);
      return NewCI;
    }
    }
  }

  if (Instruction *I = shrinkInsertElt(CI, Builder))
    return I;

  return nullptr;
}

Instruction *InstCombiner::visitFPExt(CastInst &CI) {
  return commonCastTransforms(CI);
}

// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X.  For example, this won't work with
// i64 -> float -> i64.
Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
    return nullptr;
  Instruction *OpI = cast<Instruction>(FI.getOperand(0));

  Value *SrcI = OpI->getOperand(0);
  Type *FITy = FI.getType();
  Type *OpITy = OpI->getType();
  Type *SrcTy = SrcI->getType();
  bool IsInputSigned = isa<SIToFPInst>(OpI);
  bool IsOutputSigned = isa<FPToSIInst>(FI);

  // We can safely assume the conversion won't overflow the output range,
  // because (for example) (uint8_t)18293.f is undefined behavior.

  // Since we can assume the conversion won't overflow, our decision as to
  // whether the input will fit in the float should depend on the minimum
  // of the input range and output range.

  // This means this is also safe for a signed input and unsigned output, since
  // a negative input would lead to undefined behavior.
  int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
  int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
  int ActualSize = std::min(InputSize, OutputSize);

  if (ActualSize <= OpITy->getFPMantissaWidth()) {
    if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
      if (IsInputSigned && IsOutputSigned)
        return new SExtInst(SrcI, FITy);
      return new ZExtInst(SrcI, FITy);
    }
    if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
      return new TruncInst(SrcI, FITy);
    if (SrcTy == FITy)
      return replaceInstUsesWith(FI, SrcI);
    return new BitCastInst(SrcI, FITy);
  }
  return nullptr;
}

Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
  if (!OpI)
    return commonCastTransforms(FI);

  if (Instruction *I = FoldItoFPtoI(FI))
    return I;

  return commonCastTransforms(FI);
}

Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
  if (!OpI)
    return commonCastTransforms(FI);

  if (Instruction *I = FoldItoFPtoI(FI))
    return I;

  return commonCastTransforms(FI);
}

Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
  // If the source integer type is not the intptr_t type for this target, do a
  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
  // cast to be exposed to other transforms.
  unsigned AS = CI.getAddressSpace();
  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
      DL.getPointerSizeInBits(AS)) {
    Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
    if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
      Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());

    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
    return new IntToPtrInst(P, CI.getType());
  }

  if (Instruction *I = commonCastTransforms(CI))
    return I;

  return nullptr;
}

/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
  Value *Src = CI.getOperand(0);

  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
    // If casting the result of a getelementptr instruction with no offset, turn
    // this into a cast of the original pointer!
    if (GEP->hasAllZeroIndices() &&
        // If CI is an addrspacecast and GEP changes the poiner type, merging
        // GEP into CI would undo canonicalizing addrspacecast with different
        // pointer types, causing infinite loops.
        (!isa<AddrSpaceCastInst>(CI) ||
         GEP->getType() == GEP->getPointerOperandType())) {
      // Changing the cast operand is usually not a good idea but it is safe
      // here because the pointer operand is being replaced with another
      // pointer operand so the opcode doesn't need to change.
      Worklist.Add(GEP);
      CI.setOperand(0, GEP->getOperand(0));
      return &CI;
    }
  }

  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
  // If the destination integer type is not the intptr_t type for this target,
  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
  // to be exposed to other transforms.

  Type *Ty = CI.getType();
  unsigned AS = CI.getPointerAddressSpace();

  if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
    return commonPointerCastTransforms(CI);

  Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
  if (Ty->isVectorTy()) // Handle vectors of pointers.
    PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());

  Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
}

/// This input value (which is known to have vector type) is being zero extended
/// or truncated to the specified vector type.
/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
///
/// The source and destination vector types may have different element types.
static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
                                         InstCombiner &IC) {
  // We can only do this optimization if the output is a multiple of the input
  // element size, or the input is a multiple of the output element size.
  // Convert the input type to have the same element type as the output.
  VectorType *SrcTy = cast<VectorType>(InVal->getType());

  if (SrcTy->getElementType() != DestTy->getElementType()) {
    // The input types don't need to be identical, but for now they must be the
    // same size.  There is no specific reason we couldn't handle things like
    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
    // there yet.
    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
        DestTy->getElementType()->getPrimitiveSizeInBits())
      return nullptr;

    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
  }

  // Now that the element types match, get the shuffle mask and RHS of the
  // shuffle to use, which depends on whether we're increasing or decreasing the
  // size of the input.
  SmallVector<uint32_t, 16> ShuffleMask;
  Value *V2;

  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
    // If we're shrinking the number of elements, just shuffle in the low
    // elements from the input and use undef as the second shuffle input.
    V2 = UndefValue::get(SrcTy);
    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
      ShuffleMask.push_back(i);

  } else {
    // If we're increasing the number of elements, shuffle in all of the
    // elements from InVal and fill the rest of the result elements with zeros
    // from a constant zero.
    V2 = Constant::getNullValue(SrcTy);
    unsigned SrcElts = SrcTy->getNumElements();
    for (unsigned i = 0, e = SrcElts; i != e; ++i)
      ShuffleMask.push_back(i);

    // The excess elements reference the first element of the zero input.
    for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
      ShuffleMask.push_back(SrcElts);
  }

  return new ShuffleVectorInst(InVal, V2,
                               ConstantDataVector::get(V2->getContext(),
                                                       ShuffleMask));
}

static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
  return Value % Ty->getPrimitiveSizeInBits() == 0;
}

static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
  return Value / Ty->getPrimitiveSizeInBits();
}

/// V is a value which is inserted into a vector of VecEltTy.
/// Look through the value to see if we can decompose it into
/// insertions into the vector.  See the example in the comment for
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
/// The type of V is always a non-zero multiple of VecEltTy's size.
/// Shift is the number of bits between the lsb of V and the lsb of
/// the vector.
///
/// This returns false if the pattern can't be matched or true if it can,
/// filling in Elements with the elements found here.
static bool collectInsertionElements(Value *V, unsigned Shift,
                                     SmallVectorImpl<Value *> &Elements,
                                     Type *VecEltTy, bool isBigEndian) {
  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
         "Shift should be a multiple of the element type size");

  // Undef values never contribute useful bits to the result.
  if (isa<UndefValue>(V)) return true;

  // If we got down to a value of the right type, we win, try inserting into the
  // right element.
  if (V->getType() == VecEltTy) {
    // Inserting null doesn't actually insert any elements.
    if (Constant *C = dyn_cast<Constant>(V))
      if (C->isNullValue())
        return true;

    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
    if (isBigEndian)
      ElementIndex = Elements.size() - ElementIndex - 1;

    // Fail if multiple elements are inserted into this slot.
    if (Elements[ElementIndex])
      return false;

    Elements[ElementIndex] = V;
    return true;
  }

  if (Constant *C = dyn_cast<Constant>(V)) {
    // Figure out the # elements this provides, and bitcast it or slice it up
    // as required.
    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
                                        VecEltTy);
    // If the constant is the size of a vector element, we just need to bitcast
    // it to the right type so it gets properly inserted.
    if (NumElts == 1)
      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
                                      Shift, Elements, VecEltTy, isBigEndian);

    // Okay, this is a constant that covers multiple elements.  Slice it up into
    // pieces and insert each element-sized piece into the vector.
    if (!isa<IntegerType>(C->getType()))
      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
                                       C->getType()->getPrimitiveSizeInBits()));
    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);

    for (unsigned i = 0; i != NumElts; ++i) {
      unsigned ShiftI = Shift+i*ElementSize;
      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
                                                                  ShiftI));
      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
                                    isBigEndian))
        return false;
    }
    return true;
  }

  if (!V->hasOneUse()) return false;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;
  switch (I->getOpcode()) {
  default: return false; // Unhandled case.
  case Instruction::BitCast:
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::ZExt:
    if (!isMultipleOfTypeSize(
                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
                              VecEltTy))
      return false;
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::Or:
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian) &&
           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
                                    isBigEndian);
  case Instruction::Shl: {
    // Must be shifting by a constant that is a multiple of the element size.
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
    if (!CI) return false;
    Shift += CI->getZExtValue();
    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
                                    isBigEndian);
  }

  }
}


/// If the input is an 'or' instruction, we may be doing shifts and ors to
/// assemble the elements of the vector manually.
/// Try to rip the code out and replace it with insertelements.  This is to
/// optimize code like this:
///
///    %tmp37 = bitcast float %inc to i32
///    %tmp38 = zext i32 %tmp37 to i64
///    %tmp31 = bitcast float %inc5 to i32
///    %tmp32 = zext i32 %tmp31 to i64
///    %tmp33 = shl i64 %tmp32, 32
///    %ins35 = or i64 %tmp33, %tmp38
///    %tmp43 = bitcast i64 %ins35 to <2 x float>
///
/// Into two insertelements that do "buildvector{%inc, %inc5}".
static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
                                                InstCombiner &IC) {
  VectorType *DestVecTy = cast<VectorType>(CI.getType());
  Value *IntInput = CI.getOperand(0);

  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
  if (!collectInsertionElements(IntInput, 0, Elements,
                                DestVecTy->getElementType(),
                                IC.getDataLayout().isBigEndian()))
    return nullptr;

  // If we succeeded, we know that all of the element are specified by Elements
  // or are zero if Elements has a null entry.  Recast this as a set of
  // insertions.
  Value *Result = Constant::getNullValue(CI.getType());
  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
    if (!Elements[i]) continue;  // Unset element.

    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
                                            IC.Builder.getInt32(i));
  }

  return Result;
}

/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
/// vector followed by extract element. The backend tends to handle bitcasts of
/// vectors better than bitcasts of scalars because vector registers are
/// usually not type-specific like scalar integer or scalar floating-point.
static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
                                              InstCombiner &IC) {
  // TODO: Create and use a pattern matcher for ExtractElementInst.
  auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
  if (!ExtElt || !ExtElt->hasOneUse())
    return nullptr;

  // The bitcast must be to a vectorizable type, otherwise we can't make a new
  // type to extract from.
  Type *DestType = BitCast.getType();
  if (!VectorType::isValidElementType(DestType))
    return nullptr;

  unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
  auto *NewVecType = VectorType::get(DestType, NumElts);
  auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
                                         NewVecType, "bc");
  return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
}

/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
                                            InstCombiner::BuilderTy &Builder) {
  Type *DestTy = BitCast.getType();
  BinaryOperator *BO;
  if (!DestTy->isIntOrIntVectorTy() ||
      !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
      !BO->isBitwiseLogicOp())
    return nullptr;
  
  // FIXME: This transform is restricted to vector types to avoid backend
  // problems caused by creating potentially illegal operations. If a fix-up is
  // added to handle that situation, we can remove this check.
  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
    return nullptr;
  
  Value *X;
  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
      X->getType() == DestTy && !isa<Constant>(X)) {
    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
  }

  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
      X->getType() == DestTy && !isa<Constant>(X)) {
    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
  }

  // Canonicalize vector bitcasts to come before vector bitwise logic with a
  // constant. This eases recognition of special constants for later ops.
  // Example:
  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
  Constant *C;
  if (match(BO->getOperand(1), m_Constant(C))) {
    // bitcast (logic X, C) --> logic (bitcast X, C')
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
    Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
  }

  return nullptr;
}

/// Change the type of a select if we can eliminate a bitcast.
static Instruction *foldBitCastSelect(BitCastInst &BitCast,
                                      InstCombiner::BuilderTy &Builder) {
  Value *Cond, *TVal, *FVal;
  if (!match(BitCast.getOperand(0),
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
    return nullptr;

  // A vector select must maintain the same number of elements in its operands.
  Type *CondTy = Cond->getType();
  Type *DestTy = BitCast.getType();
  if (CondTy->isVectorTy()) {
    if (!DestTy->isVectorTy())
      return nullptr;
    if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
      return nullptr;
  }

  // FIXME: This transform is restricted from changing the select between
  // scalars and vectors to avoid backend problems caused by creating
  // potentially illegal operations. If a fix-up is added to handle that
  // situation, we can remove this check.
  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
    return nullptr;

  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
  Value *X;
  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
      !isa<Constant>(X)) {
    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
  }

  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
      !isa<Constant>(X)) {
    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
  }

  return nullptr;
}

/// Check if all users of CI are StoreInsts.
static bool hasStoreUsersOnly(CastInst &CI) {
  for (User *U : CI.users()) {
    if (!isa<StoreInst>(U))
      return false;
  }
  return true;
}

/// This function handles following case
///
///     A  ->  B    cast
///     PHI
///     B  ->  A    cast
///
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
  if (hasStoreUsersOnly(CI))
    return nullptr;

  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType();         // Type B
  Type *DestTy = CI.getType();          // Type A

  SmallVector<PHINode *, 4> PhiWorklist;
  SmallSetVector<PHINode *, 4> OldPhiNodes;

  // Find all of the A->B casts and PHI nodes.
  // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
  // OldPhiNodes is used to track all known PHI nodes, before adding a new
  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
  PhiWorklist.push_back(PN);
  OldPhiNodes.insert(PN);
  while (!PhiWorklist.empty()) {
    auto *OldPN = PhiWorklist.pop_back_val();
    for (Value *IncValue : OldPN->incoming_values()) {
      if (isa<Constant>(IncValue))
        continue;

      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
        // If there is a sequence of one or more load instructions, each loaded
        // value is used as address of later load instruction, bitcast is
        // necessary to change the value type, don't optimize it. For
        // simplicity we give up if the load address comes from another load.
        Value *Addr = LI->getOperand(0);
        if (Addr == &CI || isa<LoadInst>(Addr))
          return nullptr;
        if (LI->hasOneUse() && LI->isSimple())
          continue;
        // If a LoadInst has more than one use, changing the type of loaded
        // value may create another bitcast.
        return nullptr;
      }

      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
        if (OldPhiNodes.insert(PNode))
          PhiWorklist.push_back(PNode);
        continue;
      }

      auto *BCI = dyn_cast<BitCastInst>(IncValue);
      // We can't handle other instructions.
      if (!BCI)
        return nullptr;

      // Verify it's a A->B cast.
      Type *TyA = BCI->getOperand(0)->getType();
      Type *TyB = BCI->getType();
      if (TyA != DestTy || TyB != SrcTy)
        return nullptr;
    }
  }

  // For each old PHI node, create a corresponding new PHI node with a type A.
  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
  for (auto *OldPN : OldPhiNodes) {
    Builder.SetInsertPoint(OldPN);
    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
    NewPNodes[OldPN] = NewPN;
  }

  // Fill in the operands of new PHI nodes.
  for (auto *OldPN : OldPhiNodes) {
    PHINode *NewPN = NewPNodes[OldPN];
    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
      Value *V = OldPN->getOperand(j);
      Value *NewV = nullptr;
      if (auto *C = dyn_cast<Constant>(V)) {
        NewV = ConstantExpr::getBitCast(C, DestTy);
      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
        Builder.SetInsertPoint(LI->getNextNode());
        NewV = Builder.CreateBitCast(LI, DestTy);
        Worklist.Add(LI);
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
        NewV = BCI->getOperand(0);
      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
        NewV = NewPNodes[PrevPN];
      }
      assert(NewV);
      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
    }
  }

  // If there is a store with type B, change it to type A.
  for (User *U : PN->users()) {
    auto *SI = dyn_cast<StoreInst>(U);
    if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
      Builder.SetInsertPoint(SI);
      auto *NewBC =
          cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
      SI->setOperand(0, NewBC);
      Worklist.Add(SI);
      assert(hasStoreUsersOnly(*NewBC));
    }
  }

  return replaceInstUsesWith(CI, NewPNodes[PN]);
}

Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
  // If the operands are integer typed then apply the integer transforms,
  // otherwise just apply the common ones.
  Value *Src = CI.getOperand(0);
  Type *SrcTy = Src->getType();
  Type *DestTy = CI.getType();

  // Get rid of casts from one type to the same type. These are useless and can
  // be replaced by the operand.
  if (DestTy == Src->getType())
    return replaceInstUsesWith(CI, Src);

  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
    PointerType *SrcPTy = cast<PointerType>(SrcTy);
    Type *DstElTy = DstPTy->getElementType();
    Type *SrcElTy = SrcPTy->getElementType();

    // If we are casting a alloca to a pointer to a type of the same
    // size, rewrite the allocation instruction to allocate the "right" type.
    // There is no need to modify malloc calls because it is their bitcast that
    // needs to be cleaned up.
    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
        return V;

    // When the type pointed to is not sized the cast cannot be
    // turned into a gep.
    Type *PointeeType =
        cast<PointerType>(Src->getType()->getScalarType())->getElementType();
    if (!PointeeType->isSized())
      return nullptr;

    // If the source and destination are pointers, and this cast is equivalent
    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
    // This can enhance SROA and other transforms that want type-safe pointers.
    unsigned NumZeros = 0;
    while (SrcElTy != DstElTy &&
           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
           SrcElTy->getNumContainedTypes() /* not "{}" */) {
      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
      ++NumZeros;
    }

    // If we found a path from the src to dest, create the getelementptr now.
    if (SrcElTy == DstElTy) {
      SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
      return GetElementPtrInst::CreateInBounds(Src, Idxs);
    }
  }

  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
    }

    if (isa<IntegerType>(SrcTy)) {
      // If this is a cast from an integer to vector, check to see if the input
      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
      // the casts with a shuffle and (potentially) a bitcast.
      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
        CastInst *SrcCast = cast<CastInst>(Src);
        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
            if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
                                               cast<VectorType>(DestTy), *this))
              return I;
      }

      // If the input is an 'or' instruction, we may be doing shifts and ors to
      // assemble the elements of the vector manually.  Try to rip the code out
      // and replace it with insertelements.
      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
        return replaceInstUsesWith(CI, V);
    }
  }

  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
    if (SrcVTy->getNumElements() == 1) {
      // If our destination is not a vector, then make this a straight
      // scalar-scalar cast.
      if (!DestTy->isVectorTy()) {
        Value *Elem =
          Builder.CreateExtractElement(Src,
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
      }

      // Otherwise, see if our source is an insert. If so, then use the scalar
      // component directly.
      if (InsertElementInst *IEI =
            dyn_cast<InsertElementInst>(CI.getOperand(0)))
        return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
                                DestTy);
    }
  }

  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
    // a bitcast to a vector with the same # elts.
    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
        DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
        SVI->getType()->getNumElements() ==
        SVI->getOperand(0)->getType()->getVectorNumElements()) {
      BitCastInst *Tmp;
      // If either of the operands is a cast from CI.getType(), then
      // evaluating the shuffle in the casted destination's type will allow
      // us to eliminate at least one cast.
      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
           Tmp->getOperand(0)->getType() == DestTy) ||
          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
           Tmp->getOperand(0)->getType() == DestTy)) {
        Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
        Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
        // Return a new shuffle vector.  Use the same element ID's, as we
        // know the vector types match #elts.
        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
      }
    }
  }

  // Handle the A->B->A cast, and there is an intervening PHI node.
  if (PHINode *PN = dyn_cast<PHINode>(Src))
    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
      return I;

  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
    return I;

  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
    return I;

  if (Instruction *I = foldBitCastSelect(CI, Builder))
    return I;

  if (SrcTy->isPointerTy())
    return commonPointerCastTransforms(CI);
  return commonCastTransforms(CI);
}

Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
  // If the destination pointer element type is not the same as the source's
  // first do a bitcast to the destination type, and then the addrspacecast.
  // This allows the cast to be exposed to other transforms.
  Value *Src = CI.getOperand(0);
  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());

  Type *DestElemTy = DestTy->getElementType();
  if (SrcTy->getElementType() != DestElemTy) {
    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
    if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
      // Handle vectors of pointers.
      MidTy = VectorType::get(MidTy, VT->getNumElements());
    }

    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
    return new AddrSpaceCastInst(NewBitCast, CI.getType());
  }

  return commonPointerCastTransforms(CI);
}