llvm.org GIT mirror llvm / 0d66c0e docs / LangRef.html
0d66c0e

Tree @0d66c0e (Download .tar.gz)

LangRef.html @0d66c0eraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>LLVM Assembly Language Reference Manual</title></head>
<body bgcolor=white>

<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp; <font size=+5 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Language Reference Manual</b></font></td>
</tr></table>

<ol>
  <li><a href="#abstract">Abstract</a>
  <li><a href="#introduction">Introduction</a>
  <li><a href="#identifiers">Identifiers</a>
  <li><a href="#typesystem">Type System</a>
    <ol>
      <li><a href="#t_primitive">Primitive Types</a>
	<ol>
          <li><a href="#t_classifications">Type Classifications</a>
        </ol>
      <li><a href="#t_derived">Derived Types</a>
        <ol>
          <li><a href="#t_array"  >Array Type</a>
          <li><a href="#t_function">Function Type</a>
          <li><a href="#t_pointer">Pointer Type</a>
          <li><a href="#t_struct" >Structure Type</a>
          <!-- <li><a href="#t_packed" >Packed Type</a> -->
        </ol>
    </ol>
  <li><a href="#highlevel">High Level Structure</a>
    <ol>
      <li><a href="#modulestructure">Module Structure</a>
      <li><a href="#globalvars">Global Variables</a>
      <li><a href="#functionstructure">Function Structure</a>
    </ol>
  <li><a href="#instref">Instruction Reference</a>
    <ol>
      <li><a href="#terminators">Terminator Instructions</a>
        <ol>
          <li><a href="#i_ret"   >'<tt>ret</tt>' Instruction</a>
          <li><a href="#i_br"    >'<tt>br</tt>' Instruction</a>
          <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a>
          <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a>
          <li><a href="#i_unwind"  >'<tt>unwind</tt>'  Instruction</a>
        </ol>
      <li><a href="#binaryops">Binary Operations</a>
        <ol>
          <li><a href="#i_add"  >'<tt>add</tt>' Instruction</a>
          <li><a href="#i_sub"  >'<tt>sub</tt>' Instruction</a>
          <li><a href="#i_mul"  >'<tt>mul</tt>' Instruction</a>
          <li><a href="#i_div"  >'<tt>div</tt>' Instruction</a>
          <li><a href="#i_rem"  >'<tt>rem</tt>' Instruction</a>
          <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a>
        </ol>
      <li><a href="#bitwiseops">Bitwise Binary Operations</a>
        <ol>
          <li><a href="#i_and">'<tt>and</tt>' Instruction</a>
          <li><a href="#i_or" >'<tt>or</tt>'  Instruction</a>
          <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a>
          <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a>
          <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a>
        </ol>
      <li><a href="#memoryops">Memory Access Operations</a>
        <ol>
          <li><a href="#i_malloc"  >'<tt>malloc</tt>'   Instruction</a>
          <li><a href="#i_free"    >'<tt>free</tt>'     Instruction</a>
          <li><a href="#i_alloca"  >'<tt>alloca</tt>'   Instruction</a>
	  <li><a href="#i_load"    >'<tt>load</tt>'     Instruction</a>
	  <li><a href="#i_store"   >'<tt>store</tt>'    Instruction</a>
	  <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
        </ol>
      <li><a href="#otherops">Other Operations</a>
        <ol>
          <li><a href="#i_phi"  >'<tt>phi</tt>'   Instruction</a>
          <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a>
          <li><a href="#i_call" >'<tt>call</tt>'  Instruction</a>
          <li><a href="#i_vanext">'<tt>vanext</tt>' Instruction</a>
          <li><a href="#i_vaarg" >'<tt>vaarg</tt>'  Instruction</a>
        </ol>
    </ol>
  <li><a href="#intrinsics">Intrinsic Functions</a>
  <ol>
    <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
    <ol>
      <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
      <li><a href="#i_va_end"  >'<tt>llvm.va_end</tt>'   Intrinsic</a>
      <li><a href="#i_va_copy" >'<tt>llvm.va_copy</tt>'  Intrinsic</a>
    </ol>
  </ol>

  <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and <A href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></b><p>


</ol>


<!-- *********************************************************************** -->
<p><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="abstract">Abstract
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

<blockquote>
  This document is a reference manual for the LLVM assembly language.  LLVM is
  an SSA based representation that provides type safety, low-level operations,
  flexibility, and the capability of representing 'all' high-level languages
  cleanly.  It is the common code representation used throughout all phases of
  the LLVM compilation strategy.
</blockquote>




<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="introduction">Introduction
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

The LLVM code representation is designed to be used in three different forms: as
an in-memory compiler IR, as an on-disk bytecode representation (suitable for
fast loading by a Just-In-Time compiler), and as a human readable assembly
language representation.  This allows LLVM to provide a powerful intermediate
representation for efficient compiler transformations and analysis, while
providing a natural means to debug and visualize the transformations.  The three
different forms of LLVM are all equivalent.  This document describes the human
readable representation and notation.<p>

The LLVM representation aims to be a light-weight and low-level while being
expressive, typed, and extensible at the same time.  It aims to be a "universal
IR" of sorts, by being at a low enough level that high-level ideas may be
cleanly mapped to it (similar to how microprocessors are "universal IR's",
allowing many source languages to be mapped to them).  By providing type
information, LLVM can be used as the target of optimizations: for example,
through pointer analysis, it can be proven that a C automatic variable is never
accessed outside of the current function... allowing it to be promoted to a
simple SSA value instead of a memory location.<p>

<!-- _______________________________________________________________________ -->
</ul><a name="wellformed"><h4><hr size=0>Well Formedness</h4><ul>

It is important to note that this document describes 'well formed' LLVM assembly
language.  There is a difference between what the parser accepts and what is
considered 'well formed'.  For example, the following instruction is
syntactically okay, but not well formed:<p>

<pre>
  %x = <a href="#i_add">add</a> int 1, %x
</pre>

...because the definition of <tt>%x</tt> does not dominate all of its uses.  The
LLVM infrastructure provides a verification pass that may be used to verify that
an LLVM module is well formed.  This pass is automatically run by the parser
after parsing input assembly, and by the optimizer before it outputs bytecode.
The violations pointed out by the verifier pass indicate bugs in transformation
passes or input to the parser.<p>

<!-- Describe the typesetting conventions here. -->


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="identifiers">Identifiers
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

LLVM uses three different forms of identifiers, for different purposes:<p>

<ol>
<li>Numeric constants are represented as you would expect: 12, -3 123.421, etc.
Floating point constants have an optional hexidecimal notation.

<li>Named values are represented as a string of characters with a '%' prefix.
For example, %foo, %DivisionByZero, %a.really.long.identifier.  The actual
regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers
which require other characters in their names can be surrounded with quotes.  In
this way, anything except a <tt>"</tt> character can be used in a name.

<li>Unnamed values are represented as an unsigned numeric value with a '%'
prefix.  For example, %12, %2, %44.
</ol><p>

LLVM requires the values start with a '%' sign for two reasons: Compilers don't
need to worry about name clashes with reserved words, and the set of reserved
words may be expanded in the future without penalty.  Additionally, unnamed
identifiers allow a compiler to quickly come up with a temporary variable
without having to avoid symbol table conflicts.<p>

Reserved words in LLVM are very similar to reserved words in other languages.
There are keywords for different opcodes ('<tt><a href="#i_add">add</a></tt>',
'<tt><a href="#i_cast">cast</a></tt>', '<tt><a href="#i_ret">ret</a></tt>',
etc...), for primitive type names ('<tt><a href="#t_void">void</a></tt>',
'<tt><a href="#t_uint">uint</a></tt>', etc...), and others.  These reserved
words cannot conflict with variable names, because none of them start with a '%'
character.<p>

Here is an example of LLVM code to multiply the integer variable '<tt>%X</tt>'
by 8:<p>

The easy way:
<pre>
  %result = <a href="#i_mul">mul</a> uint %X, 8
</pre>

After strength reduction:
<pre>
  %result = <a href="#i_shl">shl</a> uint %X, ubyte 3
</pre>

And the hard way:
<pre>
  <a href="#i_add">add</a> uint %X, %X           <i>; yields {uint}:%0</i>
  <a href="#i_add">add</a> uint %0, %0           <i>; yields {uint}:%1</i>
  %result = <a href="#i_add">add</a> uint %1, %1
</pre>

This last way of multiplying <tt>%X</tt> by 8 illustrates several important lexical features of LLVM:<p>

<ol>
<li>Comments are delimited with a '<tt>;</tt>' and go until the end of line.
<li>Unnamed temporaries are created when the result of a computation is not
    assigned to a named value.
<li>Unnamed temporaries are numbered sequentially
</ol><p>

...and it also show a convention that we follow in this document.  When
demonstrating instructions, we will follow an instruction with a comment that
defines the type and name of value produced.  Comments are shown in italic
text.<p>

The one non-intuitive notation for constants is the optional hexidecimal form of
floating point constants.  For example, the form '<tt>double
0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
4.5e+15</tt>' which is also supported by the parser.  The only time hexadecimal
floating point constants are useful (and the only time that they are generated
by the disassembler) is when an FP constant has to be emitted that is not
representable as a decimal floating point number exactly.  For example, NaN's,
infinities, and other special cases are represented in their IEEE hexadecimal
format so that assembly and disassembly do not cause any bits to change in the
constants.<p>


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="typesystem">Type System
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

The LLVM type system is one of the most important features of the intermediate
representation.  Being typed enables a number of optimizations to be performed
on the IR directly, without having to do extra analyses on the side before the
transformation.  A strong type system makes it easier to read the generated code
and enables novel analyses and transformations that are not feasible to perform
on normal three address code representations.<p>

<!-- The written form for the type system was heavily influenced by the
syntactic problems with types in the C language<sup><a
href="#rw_stroustrup">1</a></sup>.<p> -->



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="t_primitive">Primitive Types
</b></font></td></tr></table><ul>

The primitive types are the fundemental building blocks of the LLVM system.  The
current set of primitive types are as follows:<p>

<table border=0 align=center><tr><td>

<table border=1 cellspacing=0 cellpadding=4 align=center>
<tr><td><tt>void</tt></td>  <td>No value</td></tr>
<tr><td><tt>ubyte</tt></td> <td>Unsigned 8 bit value</td></tr>
<tr><td><tt>ushort</tt></td><td>Unsigned 16 bit value</td></tr>
<tr><td><tt>uint</tt></td>  <td>Unsigned 32 bit value</td></tr>
<tr><td><tt>ulong</tt></td> <td>Unsigned 64 bit value</td></tr>
<tr><td><tt>float</tt></td> <td>32 bit floating point value</td></tr>
<tr><td><tt>label</tt></td> <td>Branch destination</td></tr>
</table>

</td><td valign=top>

<table border=1 cellspacing=0 cellpadding=4 align=center>
<tr><td><tt>bool</tt></td>  <td>True or False value</td></tr>
<tr><td><tt>sbyte</tt></td> <td>Signed 8 bit value</td></tr>
<tr><td><tt>short</tt></td> <td>Signed 16 bit value</td></tr>
<tr><td><tt>int</tt></td>   <td>Signed 32 bit value</td></tr>
<tr><td><tt>long</tt></td>  <td>Signed 64 bit value</td></tr>
<tr><td><tt>double</tt></td><td>64 bit floating point value</td></tr>
</table>

</td></tr></table><p>



<!-- _______________________________________________________________________ -->
</ul><a name="t_classifications"><h4><hr size=0>Type Classifications</h4><ul>

These different primitive types fall into a few useful classifications:<p>

<table border=1 cellspacing=0 cellpadding=4 align=center>
<tr><td><a name="t_signed">signed</td>    <td><tt>sbyte, short, int, long, float, double</tt></td></tr>
<tr><td><a name="t_unsigned">unsigned</td><td><tt>ubyte, ushort, uint, ulong</tt></td></tr>
<tr><td><a name="t_integer">integer</td><td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
<tr><td><a name="t_integral">integral</td><td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td></tr>
<tr><td><a name="t_floating">floating point</td><td><tt>float, double</tt></td></tr>
<tr><td><a name="t_firstclass">first class</td><td><tt>bool, ubyte, sbyte, ushort, short,<br> uint, int, ulong, long, float, double, <a href="#t_pointer">pointer</a></tt></td></tr>
</table><p>





<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="t_derived">Derived Types
</b></font></td></tr></table><ul>

The real power in LLVM comes from the derived types in the system.  This is what
allows a programmer to represent arrays, functions, pointers, and other useful
types.  Note that these derived types may be recursive: For example, it is
possible to have a two dimensional array.<p>



<!-- _______________________________________________________________________ -->
</ul><a name="t_array"><h4><hr size=0>Array Type</h4><ul>

<h5>Overview:</h5>

The array type is a very simple derived type that arranges elements sequentially
in memory.  The array type requires a size (number of elements) and an
underlying data type.<p>

<h5>Syntax:</h5>
<pre>
  [&lt;# elements&gt; x &lt;elementtype&gt;]
</pre>

The number of elements is a constant integer value, elementtype may be any type
with a size.<p>

<h5>Examples:</h5>
<ul>
   <tt>[40 x int ]</tt>: Array of 40 integer values.<br>
   <tt>[41 x int ]</tt>: Array of 41 integer values.<br>
   <tt>[40 x uint]</tt>: Array of 40 unsigned integer values.<p>
</ul>

Here are some examples of multidimensional arrays:<p>
<ul>
<table border=0 cellpadding=0 cellspacing=0>
<tr><td><tt>[3 x [4 x int]]</tt></td><td>: 3x4 array integer values.</td></tr>
<tr><td><tt>[12 x [10 x float]]</tt></td><td>: 12x10 array of single precision floating point values.</td></tr>
<tr><td><tt>[2 x [3 x [4 x uint]]]</tt></td><td>: 2x3x4 array of unsigned integer values.</td></tr>
</table>
</ul>


<!-- _______________________________________________________________________ -->
</ul><a name="t_function"><h4><hr size=0>Function Type</h4><ul>

<h5>Overview:</h5>

The function type can be thought of as a function signature.  It consists of a
return type and a list of formal parameter types.  Function types are usually
used when to build virtual function tables (which are structures of pointers to
functions), for indirect function calls, and when defining a function.<p>

<h5>Syntax:</h5>
<pre>
  &lt;returntype&gt; (&lt;parameter list&gt;)
</pre>

Where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
which indicates that the function takes a variable number of arguments.
Variable argument functions can access their arguments with the <a
href="#int_varargs">variable argument handling intrinsic</a> functions.
<p>

<h5>Examples:</h5>
<ul>
<table border=0 cellpadding=0 cellspacing=0>

<tr><td><tt>int (int)</tt></td><td>: function taking an <tt>int</tt>, returning
an <tt>int</tt></td></tr>

<tr><td><tt>float (int, int *) *</tt></td><td>: <a href="#t_pointer">Pointer</a>
to a function that takes an <tt>int</tt> and a <a href="#t_pointer">pointer</a>
to <tt>int</tt>, returning <tt>float</tt>.</td></tr>

<tr><td><tt>int (sbyte *, ...)</tt></td><td>: A vararg function that takes at
least one <a href="#t_pointer">pointer</a> to <tt>sbyte</tt> (signed char in C),
which returns an integer.  This is the signature for <tt>printf</tt> in
LLVM.</td></tr>

</table>
</ul>



<!-- _______________________________________________________________________ -->
</ul><a name="t_struct"><h4><hr size=0>Structure Type</h4><ul>

<h5>Overview:</h5>

The structure type is used to represent a collection of data members together in
memory.  The packing of the field types is defined to match the ABI of the
underlying processor.  The elements of a structure may be any type that has a
size.<p>

Structures are accessed using '<tt><a href="#i_load">load</a></tt> and '<tt><a
href="#i_store">store</a></tt>' by getting a pointer to a field with the '<tt><a
href="#i_getelementptr">getelementptr</a></tt>' instruction.<p>

<h5>Syntax:</h5>
<pre>
  { &lt;type list&gt; }
</pre>


<h5>Examples:</h5>
<table border=0 cellpadding=0 cellspacing=0>

<tr><td><tt>{ int, int, int }</tt></td><td>: a triple of three <tt>int</tt>
values</td></tr>

<tr><td><tt>{ float, int (int) * }</tt></td><td>: A pair, where the first
element is a <tt>float</tt> and the second element is a <a
href="#t_pointer">pointer</a> to a <a href="t_function">function</a> that takes
an <tt>int</tt>, returning an <tt>int</tt>.</td></tr>

</table>


<!-- _______________________________________________________________________ -->
</ul><a name="t_pointer"><h4><hr size=0>Pointer Type</h4><ul>

<h5>Overview:</h5>

As in many languages, the pointer type represents a pointer or reference to
another object, which must live in memory.<p>

<h5>Syntax:</h5>
<pre>
  &lt;type&gt; *
</pre>

<h5>Examples:</h5>

<table border=0 cellpadding=0 cellspacing=0>

<tr><td><tt>[4x int]*</tt></td><td>: <a href="#t_pointer">pointer</a> to <a
href="#t_array">array</a> of four <tt>int</tt> values</td></tr>

<tr><td><tt>int (int *) *</tt></td><td>: A <a href="#t_pointer">pointer</a> to a
<a href="t_function">function</a> that takes an <tt>int</tt>, returning an
<tt>int</tt>.</td></tr>

</table>
<p>


<!-- _______________________________________________________________________ -->
<!--
</ul><a name="t_packed"><h4><hr size=0>Packed Type</h4><ul>

Mention/decide that packed types work with saturation or not. Maybe have a packed+saturated type in addition to just a packed type.<p>

Packed types should be 'nonsaturated' because standard data types are not saturated.  Maybe have a saturated packed type?<p>

-->


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="highlevel">High Level Structure
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->


<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="modulestructure">Module Structure
</b></font></td></tr></table><ul>

LLVM programs are composed of "Module"s, each of which is a translation unit of
the input programs.  Each module consists of functions, global variables, and
symbol table entries.  Modules may be combined together with the LLVM linker,
which merges function (and global variable) definitions, resolves forward
declarations, and merges symbol table entries. Here is an example of the "hello world" module:<p>

<pre>
<i>; Declare the string constant as a global constant...</i>
<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00"          <i>; [13 x sbyte]*</i>

<i>; External declaration of the puts function</i>
<a href="#functionstructure">declare</a> int %puts(sbyte*)                                            <i>; int(sbyte*)* </i>

<i>; Definition of main function</i>
int %main() {                                                        <i>; int()* </i>
        <i>; Convert [13x sbyte]* to sbyte *...</i>
        %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i>

        <i>; Call puts function to write out the string to stdout...</i>
        <a href="#i_call">call</a> int %puts(sbyte* %cast210)                              <i>; int</i>
        <a href="#i_ret">ret</a> int 0
}
</pre>

This example is made up of a <a href="#globalvars">global variable</a> named
"<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and a
<a href="#functionstructure">function definition</a> for "<tt>main</tt>".<p>

<a name="linkage">
In general, a module is made up of a list of global values, where both functions
and global variables are global values.  Global values are represented by a
pointer to a memory location (in this case, a pointer to an array of char, and a
pointer to a function), and have one of the following linkage types:<p>

<dl>
<a name="linkage_internal">
<dt><tt><b>internal</b></tt>

<dd>Global values with internal linkage are only directly accessible by objects
in the current module.  In particular, linking code into a module with an
internal global value may cause the internal to be renamed as necessary to avoid
collisions.  Because the symbol is internal to the module, all references can be
updated.  This corresponds to the notion of the '<tt>static</tt>' keyword in C,
or the idea of "anonymous namespaces" in C++.<p>

<a name="linkage_linkonce">
<dt><tt><b>linkonce</b></tt>:

<dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> linkage, with
the twist that linking together two modules defining the same <tt>linkonce</tt>
globals will cause one of the globals to be discarded.  This is typically used
to implement inline functions.  Unreferenced <tt>linkonce</tt> globals are
allowed to be discarded.<p>

<a name="linkage_weak">
<dt><tt><b>weak</b></tt>:

<dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
except that unreferenced <tt>weak</tt> globals may not be discarded.  This is
used to implement constructs in C such as "<tt>int X;</tt>" at global scope.<p>

<a name="linkage_appending">
<dt><tt><b>appending</b></tt>:

<dd>"<tt>appending</tt>" linkage may only applied to global variables of pointer
to array type.  When two global variables with appending linkage are linked
together, the two global arrays are appended together.  This is the LLVM,
typesafe, equivalent of having the system linker append together "sections" with
identical names when .o files are linked.<p>

<a name="linkage_external">
<dt><tt><b>externally visible</b></tt>:

<dd>If none of the above identifiers are used, the global is externally visible,
meaning that it participates in linkage and can be used to resolve external
symbol references.<p>

</dl><p>


For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
another module defined a "<tt>.LC0</tt>" variable and was linked with this one,
one of the two would be renamed, preventing a collision.  Since "<tt>main</tt>"
and "<tt>puts</tt>" are external (i.e., lacking any linkage declarations), they
are accessible outside of the current module.  It is illegal for a function
<i>declaration</i> to have any linkage type other than "externally visible".<p>


<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="globalvars">Global Variables
</b></font></td></tr></table><ul>

Global variables define regions of memory allocated at compilation time instead
of run-time.  Global variables may optionally be initialized.  A variable may
be defined as a global "constant", which indicates that the contents of the
variable will never be modified (opening options for optimization).  Constants
must always have an initial value.<p>

As SSA values, global variables define pointer values that are in scope
(i.e. they dominate) for all basic blocks in the program.  Global variables
always define a pointer to their "content" type because they describe a region
of memory, and all memory objects in LLVM are accessed through pointers.<p>



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="functionstructure">Functions
</b></font></td></tr></table><ul>

LLVM functions definitions are composed of a (possibly empty) argument list, an
opening curly brace, a list of basic blocks, and a closing curly brace.  LLVM
function declarations are defined with the "<tt>declare</tt>" keyword, a
function name and a function signature.<p>

A function definition contains a list of basic blocks, forming the CFG for the
function.  Each basic block may optionally start with a label (giving the basic
block a symbol table entry), contains a list of instructions, and ends with a <a
href="#terminators">terminator</a> instruction (such as a branch or function
return).<p>

The first basic block in program is special in two ways: it is immediately
executed on entrance to the function, and it is not allowed to have predecessor
basic blocks (i.e. there can not be any branches to the entry block of a
function).  Because the block can have no predecessors, it also cannot have any
<a href="#i_phi">PHI nodes</a>.<p>


<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="instref">Instruction Reference
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

The LLVM instruction set consists of several different classifications of
instructions: <a href="#terminators">terminator instructions</a>, <a
href="#binaryops">binary instructions</a>, <a href="#memoryops">memory
instructions</a>, and <a href="#otherops">other instructions</a>.<p>


<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="terminators">Terminator Instructions
</b></font></td></tr></table><ul>

As mentioned <a href="#functionstructure">previously</a>, every basic block in a
program ends with a "Terminator" instruction, which indicates which block should
be executed after the current block is finished. These terminator instructions
typically yield a '<tt>void</tt>' value: they produce control flow, not values
(the one exception being the '<a href="#i_invoke"><tt>invoke</tt></a>'
instruction).<p>

There are five different terminator instructions: the '<a
href="#i_ret"><tt>ret</tt></a>' instruction, the '<a
href="#i_br"><tt>br</tt></a>' instruction, the '<a
href="#i_switch"><tt>switch</tt></a>' instruction, the '<a
href="#i_invoke"><tt>invoke</tt></a>' instruction, and the '<a
href="#i_unwind"><tt>unwind</tt></a>' instruction.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_ret"><h4><hr size=0>'<tt>ret</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
  ret void                 <i>; Return from void function</i>
</pre>

<h5>Overview:</h5>

The '<tt>ret</tt>' instruction is used to return control flow (and a value) from
a function, back to the caller.<p>

There are two forms of the '<tt>ret</tt>' instructruction: one that returns a
value and then causes control flow, and one that just causes control flow to
occur.<p>

<h5>Arguments:</h5>

The '<tt>ret</tt>' instruction may return any '<a href="#t_firstclass">first
class</a>' type.  Notice that a function is not <a href="#wellformed">well
formed</a> if there exists a '<tt>ret</tt>' instruction inside of the function
that returns a value that does not match the return type of the function.<p>

<h5>Semantics:</h5>

When the '<tt>ret</tt>' instruction is executed, control flow returns back to
the calling function's context.  If the caller is a "<a
href="#i_call"><tt>call</tt></a> instruction, execution continues at the
instruction after the call.  If the caller was an "<a
href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at the
beginning "normal" of the destination block.  If the instruction returns a
value, that value shall set the call or invoke instruction's return value.<p>


<h5>Example:</h5>
<pre>
  ret int 5                       <i>; Return an integer value of 5</i>
  ret void                        <i>; Return from a void function</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_br"><h4><hr size=0>'<tt>br</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  br bool &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
  br label &lt;dest&gt;          <i>; Unconditional branch</i>
</pre>

<h5>Overview:</h5>

The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
different basic block in the current function.  There are two forms of this
instruction, corresponding to a conditional branch and an unconditional
branch.<p>

<h5>Arguments:</h5>

The conditional branch form of the '<tt>br</tt>' instruction takes a single
'<tt>bool</tt>' value and two '<tt>label</tt>' values.  The unconditional form
of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
target.<p>

<h5>Semantics:</h5>

Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
argument is evaluated.  If the value is <tt>true</tt>, control flows to the
'<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.<p>

<h5>Example:</h5>
<pre>
Test:
  %cond = <a href="#i_setcc">seteq</a> int %a, %b
  br bool %cond, label %IfEqual, label %IfUnequal
IfEqual:
  <a href="#i_ret">ret</a> int 1
IfUnequal:
  <a href="#i_ret">ret</a> int 0
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_switch"><h4><hr size=0>'<tt>switch</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  switch uint &lt;value&gt;, label &lt;defaultdest&gt; [ int &lt;val&gt;, label &dest&gt;, ... ]

</pre>

<h5>Overview:</h5>

The '<tt>switch</tt>' instruction is used to transfer control flow to one of
several different places.  It is a generalization of the '<tt>br</tt>'
instruction, allowing a branch to occur to one of many possible destinations.<p>

<h5>Arguments:</h5>

The '<tt>switch</tt>' instruction uses three parameters: a '<tt>uint</tt>'
comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
an array of pairs of comparison value constants and '<tt>label</tt>'s.<p>

<h5>Semantics:</h5>

The <tt>switch</tt> instruction specifies a table of values and destinations.
When the '<tt>switch</tt>' instruction is executed, this table is searched for
the given value.  If the value is found, the corresponding destination is
branched to, otherwise the default value it transfered to.<p>

<h5>Implementation:</h5>

Depending on properties of the target machine and the particular <tt>switch</tt>
instruction, this instruction may be code generated as a series of chained
conditional branches, or with a lookup table.<p>

<h5>Example:</h5>
<pre>
  <i>; Emulate a conditional br instruction</i>
  %Val = <a href="#i_cast">cast</a> bool %value to uint
  switch uint %Val, label %truedest [int 0, label %falsedest ]

  <i>; Emulate an unconditional br instruction</i>
  switch uint 0, label %dest [ ]

  <i>; Implement a jump table:</i>
  switch uint %val, label %otherwise [ int 0, label %onzero, 
                                       int 1, label %onone, 
                                       int 2, label %ontwo ]
</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_invoke"><h4><hr size=0>'<tt>invoke</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = invoke &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
                 to label &lt;normal label&gt; except label &lt;exception label&gt;
</pre>

<h5>Overview:</h5>

The '<tt>invoke</tt>' instruction causes control to transfer to a specified
function, with the possibility of control flow transfer to either the
'<tt>normal</tt>' <tt>label</tt> label or the '<tt>exception</tt>'
<tt>label</tt>.  If the callee function returns with the "<tt><a
href="#i_ret">ret</a></tt>" instruction, control flow will return to the
"normal" label.  If the callee (or any indirect callees) returns with the "<a
href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted, and
continued at the dynamically nearest "except" label.<p>


<h5>Arguments:</h5>

This instruction requires several arguments:<p>
<ol>

<li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
function value being invoked.  In most cases, this is a direct function
invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
an arbitrary pointer to function value.

<li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
function to be invoked.

<li>'<tt>function args</tt>': argument list whose types match the function
signature argument types.  If the function signature indicates the function
accepts a variable number of arguments, the extra arguments can be specified. 

<li>'<tt>normal label</tt>': the label reached when the called function executes
a '<tt><a href="#i_ret">ret</a></tt>' instruction.

<li>'<tt>exception label</tt>': the label reached when a callee returns with the
<a href="#i_unwind"><tt>unwind</tt></a> instruction.
</ol>

<h5>Semantics:</h5>

This instruction is designed to operate as a standard '<tt><a
href="#i_call">call</a></tt>' instruction in most regards.  The primary
difference is that it establishes an association with a label, which is used by the runtime library to unwind the stack.<p>

This instruction is used in languages with destructors to ensure that proper
cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
exception.  Additionally, this is important for implementation of
'<tt>catch</tt>' clauses in high-level languages that support them.<p>

<h5>Example:</h5>
<pre>
  %retval = invoke int %Test(int 15)
              to label %Continue
              except label %TestCleanup     <i>; {int}:retval set</i>
</pre>

<!-- _______________________________________________________________________ -->
</ul><a name="i_unwind"><h4><hr size=0>'<tt>unwind</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  unwind
</pre>

<h5>Overview:</h5>

The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow at
the first callee in the dynamic call stack which used an <a
href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is
primarily used to implement exception handling.

<h5>Semantics:</h5>

The '<tt>unwind</tt>' intrinsic causes execution of the current function to
immediately halt.  The dynamic call stack is then searched for the first <a
href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found,
execution continues at the "exceptional" destination block specified by the
<tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the
dynamic call chain, undefined behavior results.



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0><tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="binaryops">Binary Operations
</b></font></td></tr></table><ul>

Binary operators are used to do most of the computation in a program.  They
require two operands, execute an operation on them, and produce a single value.
The result value of a binary operator is not necessarily the same type as its
operands.<p>

There are several different binary operators:<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_add"><h4><hr size=0>'<tt>add</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>add</tt>' instruction returns the sum of its two operands.<p>

<h5>Arguments:</h5>
The two arguments to the '<tt>add</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>

The value produced is the integer or floating point sum of the two operands.<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = add int 4, %var          <i>; yields {int}:result = 4 + %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_sub"><h4><hr size=0>'<tt>sub</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>sub</tt>' instruction returns the difference of its two operands.<p>

Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
instruction present in most other intermediate representations.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>sub</tt>' instruction must be either <a
href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>

The value produced is the integer or floating point difference of the two
operands.<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = sub int 4, %var          <i>; yields {int}:result = 4 - %var</i>
  &lt;result&gt; = sub int 0, %val          <i>; yields {int}:result = -%var</i>
</pre>

<!-- _______________________________________________________________________ -->
</ul><a name="i_mul"><h4><hr size=0>'<tt>mul</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The  '<tt>mul</tt>' instruction returns the product of its two operands.<p>

<h5>Arguments:</h5>
The two arguments to the '<tt>mul</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>

The value produced is the integer or floating point product of the two
operands.<p>

There is no signed vs unsigned multiplication.  The appropriate action is taken
based on the type of the operand. <p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = mul int 4, %var          <i>; yields {int}:result = 4 * %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_div"><h4><hr size=0>'<tt>div</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = div &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The  '<tt>div</tt>' instruction returns the quotient of its two operands.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>div</tt>' instruction must be either <a
href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>

The value produced is the integer or floating point quotient of the two
operands.<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = div int 4, %var          <i>; yields {int}:result = 4 / %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_rem"><h4><hr size=0>'<tt>rem</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = rem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The  '<tt>rem</tt>' instruction returns the remainder from the division of its two operands.<p>

<h5>Arguments:</h5>
The two arguments to the '<tt>rem</tt>' instruction must be either <a href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.  Both arguments must have identical types.<p>

<h5>Semantics:</h5>

This returns the <i>remainder</i> of a division (where the result has the same
sign as the divisor), not the <i>modulus</i> (where the result has the same sign
as the dividend) of a value.  For more information about the difference, see: <a
href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The Math
Forum</a>.<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = rem int 4, %var          <i>; yields {int}:result = 4 % %var</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_setcc"><h4><hr size=0>'<tt>set<i>cc</i></tt>' Instructions</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = seteq &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setne &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setlt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setgt &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setle &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
  &lt;result&gt; = setge &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {bool}:result</i>
</pre>

<h5>Overview:</h5> The '<tt>set<i>cc</i></tt>' family of instructions returns a
boolean value based on a comparison of their two operands.<p>

<h5>Arguments:</h5> The two arguments to the '<tt>set<i>cc</i></tt>'
instructions must be of <a href="#t_firstclass">first class</a> or <a
href="#t_pointer">pointer</a> type (it is not possible to compare
'<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' or '<tt>void</tt>'
values, etc...).  Both arguments must have identical types.<p>

<h5>Semantics:</h5>

The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
both operands are equal.<br>

The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
both operands are unequal.<br>

The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
the first operand is less than the second operand.<br>

The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
the first operand is greater than the second operand.<br>

The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
the first operand is less than or equal to the second operand.<br>

The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' value if
the first operand is greater than or equal to the second operand.<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = seteq int   4, 5        <i>; yields {bool}:result = false</i>
  &lt;result&gt; = setne float 4, 5        <i>; yields {bool}:result = true</i>
  &lt;result&gt; = setlt uint  4, 5        <i>; yields {bool}:result = true</i>
  &lt;result&gt; = setgt sbyte 4, 5        <i>; yields {bool}:result = false</i>
  &lt;result&gt; = setle sbyte 4, 5        <i>; yields {bool}:result = true</i>
  &lt;result&gt; = setge sbyte 4, 5        <i>; yields {bool}:result = false</i>
</pre>



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="bitwiseops">Bitwise Binary Operations
</b></font></td></tr></table><ul>

Bitwise binary operators are used to do various forms of bit-twiddling in a
program.  They are generally very efficient instructions, and can commonly be
strength reduced from other instructions.  They require two operands, execute an
operation on them, and produce a single value.  The resulting value of the
bitwise binary operators is always the same type as its first operand.<p>

<!-- _______________________________________________________________________ -->
</ul><a name="i_and"><h4><hr size=0>'<tt>and</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>and</tt>' instruction returns the bitwise logical and of its two operands.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>and</tt>' instruction must be <a
href="#t_integral">integral</a> values.  Both arguments must have identical
types.<p>


<h5>Semantics:</h5>

The truth table used for the '<tt>and</tt>' instruction is:<p>

<center><table border=1 cellspacing=0 cellpadding=4>
<tr><td>In0</td>  <td>In1</td>  <td>Out</td></tr>
<tr><td>0</td>  <td>0</td>  <td>0</td></tr>
<tr><td>0</td>  <td>1</td>  <td>0</td></tr>
<tr><td>1</td>  <td>0</td>  <td>0</td></tr>
<tr><td>1</td>  <td>1</td>  <td>1</td></tr>
</table></center><p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = and int 4, %var         <i>; yields {int}:result = 4 & %var</i>
  &lt;result&gt; = and int 15, 40          <i>; yields {int}:result = 8</i>
  &lt;result&gt; = and int 4, 8            <i>; yields {int}:result = 0</i>
</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_or"><h4><hr size=0>'<tt>or</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5> The '<tt>or</tt>' instruction returns the bitwise logical
inclusive or of its two operands.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>or</tt>' instruction must be <a
href="#t_integral">integral</a> values.  Both arguments must have identical
types.<p>


<h5>Semantics:</h5>

The truth table used for the '<tt>or</tt>' instruction is:<p>

<center><table border=1 cellspacing=0 cellpadding=4>
<tr><td>In0</td>  <td>In1</td>  <td>Out</td></tr>
<tr><td>0</td>  <td>0</td>  <td>0</td></tr>
<tr><td>0</td>  <td>1</td>  <td>1</td></tr>
<tr><td>1</td>  <td>0</td>  <td>1</td></tr>
<tr><td>1</td>  <td>1</td>  <td>1</td></tr>
</table></center><p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = or int 4, %var         <i>; yields {int}:result = 4 | %var</i>
  &lt;result&gt; = or int 15, 40          <i>; yields {int}:result = 47</i>
  &lt;result&gt; = or int 4, 8            <i>; yields {int}:result = 12</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_xor"><h4><hr size=0>'<tt>xor</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of its
two operands.  The <tt>xor</tt> is used to implement the "one's complement"
operation, which is the "~" operator in C.<p>

<h5>Arguments:</h5>

The two arguments to the '<tt>xor</tt>' instruction must be <a
href="#t_integral">integral</a> values.  Both arguments must have identical
types.<p>


<h5>Semantics:</h5>

The truth table used for the '<tt>xor</tt>' instruction is:<p>

<center><table border=1 cellspacing=0 cellpadding=4>
<tr><td>In0</td>  <td>In1</td>  <td>Out</td></tr>
<tr><td>0</td>  <td>0</td>  <td>0</td></tr>
<tr><td>0</td>  <td>1</td>  <td>1</td></tr>
<tr><td>1</td>  <td>0</td>  <td>1</td></tr>
<tr><td>1</td>  <td>1</td>  <td>0</td></tr>
</table></center><p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = xor int 4, %var         <i>; yields {int}:result = 4 ^ %var</i>
  &lt;result&gt; = xor int 15, 40          <i>; yields {int}:result = 39</i>
  &lt;result&gt; = xor int 4, 8            <i>; yields {int}:result = 12</i>
  &lt;result&gt; = xor int %V, -1          <i>; yields {int}:result = ~%V</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_shl"><h4><hr size=0>'<tt>shl</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>shl</tt>' instruction returns the first operand shifted to the left a
specified number of bits.

<h5>Arguments:</h5>

The first argument to the '<tt>shl</tt>' instruction must be an <a
href="#t_integer">integer</a> type.  The second argument must be an
'<tt>ubyte</tt>' type.<p>

<h5>Semantics:</h5>

The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.<p>


<h5>Example:</h5>
<pre>
  &lt;result&gt; = shl int 4, ubyte %var   <i>; yields {int}:result = 4 << %var</i>
  &lt;result&gt; = shl int 4, ubyte 2      <i>; yields {int}:result = 16</i>
  &lt;result&gt; = shl int 1, ubyte 10     <i>; yields {int}:result = 1024</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_shr"><h4><hr size=0>'<tt>shr</tt>' Instruction</h4><ul>


<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = shr &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt;   <i>; yields {ty}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>shr</tt>' instruction returns the first operand shifted to the right a specified number of bits.

<h5>Arguments:</h5>
The first argument to the '<tt>shr</tt>' instruction must be an  <a href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>' type.<p>

<h5>Semantics:</h5>

If the first argument is a <a href="#t_signed">signed</a> type, the most
significant bit is duplicated in the newly free'd bit positions.  If the first
argument is unsigned, zero bits shall fill the empty positions.<p>

<h5>Example:</h5>
<pre>
  &lt;result&gt; = shr int 4, ubyte %var   <i>; yields {int}:result = 4 >> %var</i>
  &lt;result&gt; = shr uint 4, ubyte 1     <i>; yields {uint}:result = 2</i>
  &lt;result&gt; = shr int 4, ubyte 2      <i>; yields {int}:result = 1</i>
  &lt;result&gt; = shr sbyte 4, ubyte 3    <i>; yields {sbyte}:result = 0</i>
  &lt;result&gt; = shr sbyte -2, ubyte 1   <i>; yields {sbyte}:result = -1</i>
</pre>





<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="memoryops">Memory Access Operations
</b></font></td></tr></table><ul>

A key design point of an SSA-based representation is how it represents memory.
In LLVM, no memory locations are in SSA form, which makes things very simple.
This section describes how to read, write, allocate and free memory in LLVM.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_malloc"><h4><hr size=0>'<tt>malloc</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = malloc &lt;type&gt;, uint &lt;NumElements&gt;     <i>; yields {type*}:result</i>
  &lt;result&gt; = malloc &lt;type&gt;                         <i>; yields {type*}:result</i>
</pre>

<h5>Overview:</h5>
The '<tt>malloc</tt>' instruction allocates memory from the system heap and returns a pointer to it.<p>

<h5>Arguments:</h5>

The the '<tt>malloc</tt>' instruction allocates
<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
system, and returns a pointer of the appropriate type to the program.  The
second form of the instruction is a shorter version of the first instruction
that defaults to allocating one element.<p>

'<tt>type</tt>' must be a sized type.<p>

<h5>Semantics:</h5>

Memory is allocated using the system "<tt>malloc</tt>" function, and a pointer
is returned.<p>

<h5>Example:</h5>
<pre>
  %array  = malloc [4 x ubyte ]                    <i>; yields {[%4 x ubyte]*}:array</i>

  %size   = <a href="#i_add">add</a> uint 2, 2                          <i>; yields {uint}:size = uint 4</i>
  %array1 = malloc ubyte, uint 4                   <i>; yields {ubyte*}:array1</i>
  %array2 = malloc [12 x ubyte], uint %size        <i>; yields {[12 x ubyte]*}:array2</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_free"><h4><hr size=0>'<tt>free</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  free &lt;type&gt; &lt;value&gt;                              <i>; yields {void}</i>
</pre>


<h5>Overview:</h5>
The '<tt>free</tt>' instruction returns memory back to the unused memory heap, to be reallocated in the future.<p>


<h5>Arguments:</h5>

'<tt>value</tt>' shall be a pointer value that points to a value that was
allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.<p>


<h5>Semantics:</h5>

Access to the memory pointed to by the pointer is not longer defined after this instruction executes.<p>

<h5>Example:</h5>
<pre>
  %array  = <a href="#i_malloc">malloc</a> [4 x ubyte]                    <i>; yields {[4 x ubyte]*}:array</i>
            free   [4 x ubyte]* %array
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_alloca"><h4><hr size=0>'<tt>alloca</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = alloca &lt;type&gt;, uint &lt;NumElements&gt;  <i>; yields {type*}:result</i>
  &lt;result&gt; = alloca &lt;type&gt;                      <i>; yields {type*}:result</i>
</pre>

<h5>Overview:</h5>

The '<tt>alloca</tt>' instruction allocates memory on the current stack frame of
the procedure that is live until the current function returns to its caller.<p>

<h5>Arguments:</h5>

The the '<tt>alloca</tt>' instruction allocates
<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the runtime stack,
returning a pointer of the appropriate type to the program.  The second form of
the instruction is a shorter version of the first that defaults to allocating
one element.<p>

'<tt>type</tt>' may be any sized type.<p>

<h5>Semantics:</h5>

Memory is allocated, a pointer is returned.  '<tt>alloca</tt>'d memory is
automatically released when the function returns.  The '<tt>alloca</tt>'
instruction is commonly used to represent automatic variables that must have an
address available.  When the function returns (either with the <tt><a
href="#i_ret">ret</a></tt> or <tt><a href="#i_invoke">invoke</a></tt>
instructions), the memory is reclaimed.<p>

<h5>Example:</h5>
<pre>
  %ptr = alloca int                              <i>; yields {int*}:ptr</i>
  %ptr = alloca int, uint 4                      <i>; yields {int*}:ptr</i>
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_load"><h4><hr size=0>'<tt>load</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;
  &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;
</pre>

<h5>Overview:</h5>
The '<tt>load</tt>' instruction is used to read from memory.<p>

<h5>Arguments:</h5>

The argument to the '<tt>load</tt>' instruction specifies the memory address to
load from.  The pointer must point to a <a href="t_firstclass">first class</a>
type.  If the <tt>load</tt> is marked as <tt>volatile</tt> then the optimizer is
not allowed to modify the number or order of execution of this <tt>load</tt>
with other volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
instructions. <p>

<h5>Semantics:</h5>

The location of memory pointed to is loaded.

<h5>Examples:</h5>
<pre>
  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
  <a href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
  %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>
</pre>




<!-- _______________________________________________________________________ -->
</ul><a name="i_store"><h4><hr size=0>'<tt>store</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;                   <i>; yields {void}</i>
  volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;                   <i>; yields {void}</i>
</pre>

<h5>Overview:</h5>
The '<tt>store</tt>' instruction is used to write to memory.<p>

<h5>Arguments:</h5>

There are two arguments to the '<tt>store</tt>' instruction: a value to store
and an address to store it into.  The type of the '<tt>&lt;pointer&gt;</tt>'
operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>' operand.
If the <tt>store</tt> is marked as <tt>volatile</tt> then the optimizer is not
allowed to modify the number or order of execution of this <tt>store</tt> with
other volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
instructions.<p>

<h5>Semantics:</h5> The contents of memory are updated to contain
'<tt>&lt;value&gt;</tt>' at the location specified by the
'<tt>&lt;pointer&gt;</tt>' operand.<p>

<h5>Example:</h5>
<pre>
  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i>
  <a href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i>
  %val = load int* %ptr                           <i>; yields {int}:val = int 3</i>
</pre>




<!-- _______________________________________________________________________ -->
</ul><a name="i_getelementptr"><h4><hr size=0>'<tt>getelementptr</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, long &lt;aidx&gt;|, ubyte &lt;sidx&gt;}*
</pre>

<h5>Overview:</h5>

The '<tt>getelementptr</tt>' instruction is used to get the address of a
subelement of an aggregate data structure.<p>

<h5>Arguments:</h5>

This instruction takes a list of <tt>long</tt> values and <tt>ubyte</tt>
constants that indicate what form of addressing to perform.  The actual types of
the arguments provided depend on the type of the first pointer argument.  The
'<tt>getelementptr</tt>' instruction is used to index down through the type
levels of a structure.<p>

For example, lets consider a C code fragment and how it gets compiled to
LLVM:<p>

<pre>
struct RT {
  char A;
  int B[10][20];
  char C;
};
struct ST {
  int X;
  double Y;
  struct RT Z;
};

int *foo(struct ST *s) {
  return &amp;s[1].Z.B[5][13];
}
</pre>

The LLVM code generated by the GCC frontend is:

<pre>
%RT = type { sbyte, [10 x [20 x int]], sbyte }
%ST = type { int, double, %RT }

int* "foo"(%ST* %s) {
  %reg = getelementptr %ST* %s, long 1, ubyte 2, ubyte 1, long 5, long 13
  ret int* %reg
}
</pre>

<h5>Semantics:</h5>

The index types specified for the '<tt>getelementptr</tt>' instruction depend on
the pointer type that is being index into.  <a href="t_pointer">Pointer</a> and
<a href="t_array">array</a> types require '<tt>long</tt>' values, and <a
href="t_struct">structure</a> types require '<tt>ubyte</tt>'
<b>constants</b>.<p>

In the example above, the first index is indexing into the '<tt>%ST*</tt>' type,
which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT }</tt>'
type, a structure.  The second index indexes into the third element of the
structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]], sbyte
}</tt>' type, another structure.  The third index indexes into the second
element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an
array.  The two dimensions of the array are subscripted into, yielding an
'<tt>int</tt>' type.  The '<tt>getelementptr</tt>' instruction return a pointer
to this element, thus yielding a '<tt>int*</tt>' type.<p>

Note that it is perfectly legal to index partially through a structure,
returning a pointer to an inner element.  Because of this, the LLVM code for the
given testcase is equivalent to:<p>

<pre>
int* "foo"(%ST* %s) {
  %t1 = getelementptr %ST* %s , long 1                        <i>; yields %ST*:%t1</i>
  %t2 = getelementptr %ST* %t1, long 0, ubyte 2               <i>; yields %RT*:%t2</i>
  %t3 = getelementptr %RT* %t2, long 0, ubyte 1               <i>; yields [10 x [20 x int]]*:%t3</i>
  %t4 = getelementptr [10 x [20 x int]]* %t3, long 0, long 5  <i>; yields [20 x int]*:%t4</i>
  %t5 = getelementptr [20 x int]* %t4, long 0, long 13        <i>; yields int*:%t5</i>
  ret int* %t5
}
</pre>



<h5>Example:</h5>
<pre>
  <i>; yields [12 x ubyte]*:aptr</i>
  %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, ubyte 1
</pre>



<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="otherops">Other Operations
</b></font></td></tr></table><ul>

The instructions in this catagory are the "miscellaneous" instructions, which defy better classification.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_phi"><h4><hr size=0>'<tt>phi</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
</pre>

<h5>Overview:</h5>

The '<tt>phi</tt>' instruction is used to implement the &phi; node in the SSA
graph representing the function.<p>

<h5>Arguments:</h5>

The type of the incoming values are specified with the first type field.  After
this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
one pair for each predecessor basic block of the current block.<p>

There must be no non-phi instructions between the start of a basic block and the
PHI instructions: i.e. PHI instructions must be first in a basic block.<p>

<h5>Semantics:</h5>

At runtime, the '<tt>phi</tt>' instruction logically takes on the value
specified by the parameter, depending on which basic block we came from in the
last <a href="#terminators">terminator</a> instruction.<p>

<h5>Example:</h5>

<pre>
Loop:       ; Infinite loop that counts from 0 on up...
  %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
  %nextindvar = add uint %indvar, 1
  br label %Loop
</pre>


<!-- _______________________________________________________________________ -->
</ul><a name="i_cast"><h4><hr size=0>'<tt>cast .. to</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = cast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
</pre>

<h5>Overview:</h5>

The '<tt>cast</tt>' instruction is used as the primitive means to convert
integers to floating point, change data type sizes, and break type safety (by
casting pointers).<p>

<h5>Arguments:</h5>

The '<tt>cast</tt>' instruction takes a value to cast, which must be a first
class value, and a type to cast it to, which must also be a first class type.<p>

<h5>Semantics:</h5>

This instruction follows the C rules for explicit casts when determining how the
data being cast must change to fit in its new container.<p>

When casting to bool, any value that would be considered true in the context of
a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' values,
all else are '<tt>false</tt>'.<p>

When extending an integral value from a type of one signness to another (for
example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value is sign-extended if the
<b>source</b> value is signed, and zero-extended if the source value is
unsigned.  <tt>bool</tt> values are always zero extended into either zero or
one.<p>

<h5>Example:</h5>
<pre>
  %X = cast int 257 to ubyte              <i>; yields ubyte:1</i>
  %Y = cast int 123 to bool               <i>; yields bool:true</i>
</pre>



<!-- _______________________________________________________________________ -->
</ul><a name="i_call"><h4><hr size=0>'<tt>call</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;result&gt; = call &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
</pre>

<h5>Overview:</h5>

The '<tt>call</tt>' instruction represents a simple function call.<p>

<h5>Arguments:</h5>

This instruction requires several arguments:<p>
<ol>

<li>'<tt>ty</tt>': shall be the signature of the pointer to function value being
invoked.  The argument types must match the types implied by this signature.<p>

<li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to be
invoked. In most cases, this is a direct function invocation, but indirect
<tt>call</tt>s are just as possible, calling an arbitrary pointer to function
values.<p>

<li>'<tt>function args</tt>': argument list whose types match the function
signature argument types.  If the function signature indicates the function
accepts a variable number of arguments, the extra arguments can be specified. 
</ol>

<h5>Semantics:</h5>

The '<tt>call</tt>' instruction is used to cause control flow to transfer to a
specified function, with its incoming arguments bound to the specified values.
Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called function,
control flow continues with the instruction after the function call, and the
return value of the function is bound to the result argument.  This is a simpler
case of the <a href="#i_invoke">invoke</a> instruction.<p>

<h5>Example:</h5>
<pre>
  %retval = call int %test(int %argc)
  call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);

</pre>

<!-- _______________________________________________________________________ -->
</ul><a name="i_vanext"><h4><hr size=0>'<tt>vanext</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;resultarglist&gt; = vanext &lt;va_list&gt; &lt;arglist&gt;, &lt;argty&gt;
</pre>

<h5>Overview:</h5>

The '<tt>vanext</tt>' instruction is used to access arguments passed through
the "variable argument" area of a function call.  It is used to implement the
<tt>va_arg</tt> macro in C.<p>

<h5>Arguments:</h5>

This instruction takes a <tt>valist</tt> value and the type of the argument.  It
returns another <tt>valist</tt>.

<h5>Semantics:</h5>

The '<tt>vanext</tt>' instruction advances the specified <tt>valist</tt> past
an argument of the specified type.  In conjunction with the <a
href="#i_vaarg"><tt>vaarg</tt></a> instruction, it is used to implement the
<tt>va_arg</tt> macro available in C.  For more information, see the variable
argument handling <a href="#int_varargs">Intrinsic Functions</a>.<p>

It is legal for this instruction to be called in a function which does not take
a variable number of arguments, for example, the <tt>vfprintf</tt> function.<p>

<tt>vanext</tt> is an LLVM instruction instead of an <a
href="#intrinsics">intrinsic function</a> because it takes an type as an
argument.</p>

<h5>Example:</h5>

See the <a href="#int_varargs">variable argument processing</a> section.<p>



<!-- _______________________________________________________________________ -->
</ul><a name="i_vaarg"><h4><hr size=0>'<tt>vaarg</tt>' Instruction</h4><ul>

<h5>Syntax:</h5>
<pre>
  &lt;resultval&gt; = vaarg &lt;va_list&gt; &lt;arglist&gt;, &lt;argty&gt;
</pre>

<h5>Overview:</h5>

The '<tt>vaarg</tt>' instruction is used to access arguments passed through
the "variable argument" area of a function call.  It is used to implement the
<tt>va_arg</tt> macro in C.<p>

<h5>Arguments:</h5>

This instruction takes a <tt>valist</tt> value and the type of the argument.  It
returns a value of the specified argument type.

<h5>Semantics:</h5>

The '<tt>vaarg</tt>' instruction loads an argument of the specified type from
the specified <tt>va_list</tt>.  In conjunction with the <a
href="#i_vanext"><tt>vanext</tt></a> instruction, it is used to implement the
<tt>va_arg</tt> macro available in C.  For more information, see the variable
argument handling <a href="#int_varargs">Intrinsic Functions</a>.<p>

It is legal for this instruction to be called in a function which does not take
a variable number of arguments, for example, the <tt>vfprintf</tt> function.<p>

<tt>vaarg</tt> is an LLVM instruction instead of an <a
href="#intrinsics">intrinsic function</a> because it takes an type as an
argument.</p>

<h5>Example:</h5>

See the <a href="#int_varargs">variable argument processing</a> section.<p>





<!-- *********************************************************************** -->
</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
<a name="intrinsics">Intrinsic Functions
</b></font></td></tr></table><ul>
<!-- *********************************************************************** -->

LLVM supports the notion of an "intrinsic function".  These functions have well
known names and semantics, and are required to follow certain restrictions.
Overall, these instructions represent an extension mechanism for the LLVM
language that does not require changing all of the transformations in LLVM to
add to the language (or the bytecode reader/writer, the parser, etc...).<p>

Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this
prefix is reserved in LLVM for intrinsic names, thus functions may not be named
this.  Intrinsic functions must always be external functions: you cannot define
the body of intrinsic functions.  Intrinsic functions may only be used in call
or invoke instructions: it is illegal to take the address of an intrinsic
function.  Additionally, because intrinsic functions are part of the LLVM
language, it is required that they all be documented here if any are added.<p>

Unless an intrinsic function is target-specific, there must be a lowering pass
to eliminate the intrinsic or all backends must support the intrinsic
function.<p>


<!-- ======================================================================= -->
</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
<tr><td>&nbsp;</td><td width="100%">&nbsp; <font color="#EEEEFF" face="Georgia,Palatino"><b>
<a name="int_varargs">Variable Argument Handling Intrinsics
</b></font></td></tr></table><ul>

Variable argument support is defined in LLVM with the <a
href="#i_vanext"><tt>vanext</tt></a> instruction and these three intrinsic
functions.  These functions are related to the similarly named macros defined in
the <tt>&lt;stdarg.h&gt;</tt> header file.<p>

All of these functions operate on arguments that use a target-specific value
type "<tt>va_list</tt>".  The LLVM assembly language reference manual does not
define what this type is, so all transformations should be prepared to handle
intrinsics with any type used.<p>

This example shows how the <a href="#i_vanext"><tt>vanext</tt></a> instruction
and the variable argument handling intrinsic functions are used.<p>

<pre>
int %test(int %X, ...) {
  ; Initialize variable argument processing
  %ap = call sbyte*()* %<a href="#i_va_start">llvm.va_start</a>()

  ; Read a single integer argument
  %tmp = vaarg sbyte* %ap, int

  ; Advance to the next argument
  %ap2 = vanext sbyte* %ap, int

  ; Demonstrate usage of llvm.va_copy and llvm.va_end
  %aq = call sbyte* (sbyte*)* %<a href="#i_va_copy">llvm.va_copy</a>(sbyte* %ap2)
  call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %aq)

  ; Stop processing of arguments.
  call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %ap2)
  ret int %tmp
}
</pre>

<!-- _______________________________________________________________________ -->
</ul><a name="i_va_start"><h4><hr size=0>'<tt>llvm.va_start</tt>' Intrinsic</h4><ul>

<h5>Syntax:</h5>
<pre>
  call va_list ()* %llvm.va_start()
</pre>

<h5>Overview:</h5>

The '<tt>llvm.va_start</tt>' intrinsic returns a new <tt>&lt;arglist&gt;</tt>
for subsequent use by the variable argument intrinsics.<p>

<h5>Semantics:</h5>

The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
macro available in C.  In a target-dependent way, it initializes and returns a
<tt>va_list</tt> element, so that the next <tt>vaarg</tt> will produce the first
variable argument passed to the function.  Unlike the C <tt>va_start</tt> macro,
this intrinsic does not need to know the last argument of the function, the
compiler can figure that out.<p>

Note that this intrinsic function is only legal to be called from within the
body of a variable argument function.<p>


<!-- _______________________________________________________________________ -->
</ul><a name="i_va_end"><h4><hr size=0>'<tt>llvm.va_end</tt>' Intrinsic</h4><ul>

<h5>Syntax:</h5>
<pre>
  call void (va_list)* %llvm.va_end(va_list &lt;arglist&gt;)
</pre>

<h5>Overview:</h5>

The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>&lt;arglist&gt;</tt> which has
been initialized previously with <tt><a
href="#i_va_start">llvm.va_start</a></tt> or <tt><a
href="#i_va_copy">llvm.va_copy</a></tt>.<p>

<h5>Arguments:</h5>

The argument is a <tt>va_list</tt> to destroy.<p>

<h5>Semantics:</h5>

The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> macro
available in C.  In a target-dependent way, it destroys the <tt>va_list</tt>.
Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly with calls
to <tt>llvm.va_end</tt>.<p>



<!-- _______________________________________________________________________ -->
</ul><a name="i_va_copy"><h4><hr size=0>'<tt>llvm.va_copy</tt>' Intrinsic</h4><ul>

<h5>Syntax:</h5>
<pre>
  call va_list (va_list)* %llvm.va_copy(va_list &lt;destarglist&gt;)
</pre>

<h5>Overview:</h5>

The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
the source argument list to the destination argument list.<p>

<h5>Arguments:</h5>

The argument is the <tt>va_list</tt> to copy.

<h5>Semantics:</h5>

The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
available in C.  In a target-dependent way, it copies the source
<tt>va_list</tt> element into the returned list.  This intrinsic is necessary
because the <tt><a href="i_va_start">llvm.va_start</a></tt> intrinsic may be
arbitrarily complex and require memory allocation, for example.<p>


<!-- *********************************************************************** -->
</ul>
<!-- *********************************************************************** -->


<hr>
<font size=-1>
<address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
<a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a>
<br>
<!-- Created: Tue Jan 23 15:19:28 CST 2001 -->
<!-- hhmts start -->
Last modified: Tue Oct 21 10:43:36 CDT 2003
<!-- hhmts end -->
</font>
</body></html>