llvm.org GIT mirror llvm / 0a5372e lib / Transforms / Scalar / PredicateSimplifier.cpp
0a5372e

Tree @0a5372e (Download .tar.gz)

PredicateSimplifier.cpp @0a5372eraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Path-sensitive optimizer. In a branch where x == y, replace uses of
// x with y. Permits further optimization, such as the elimination of
// the unreachable call:
//
// void test(int *p, int *q)
// {
//   if (p != q)
//     return;
// 
//   if (*p != *q)
//     foo(); // unreachable
// }
//
//===----------------------------------------------------------------------===//
//
// The InequalityGraph focusses on four properties; equals, not equals,
// less-than and less-than-or-equals-to. The greater-than forms are also held
// just to allow walking from a lesser node to a greater one. These properties
// are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
//
// These relationships define a graph between values of the same type. Each
// Value is stored in a map table that retrieves the associated Node. This
// is how EQ relationships are stored; the map contains pointers from equal
// Value to the same node. The node contains a most canonical Value* form
// and the list of known relationships with other nodes.
//
// If two nodes are known to be inequal, then they will contain pointers to
// each other with an "NE" relationship. If node getNode(%x) is less than
// getNode(%y), then the %x node will contain <%y, GT> and %y will contain
// <%x, LT>. This allows us to tie nodes together into a graph like this:
//
//   %a < %b < %c < %d
//
// with four nodes representing the properties. The InequalityGraph provides
// querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
// To find a relationship, we start with one of the nodes any binary search
// through its list to find where the relationships with the second node start.
// Then we iterate through those to find the first relationship that dominates
// our context node.
//
// To create these properties, we wait until a branch or switch instruction
// implies that a particular value is true (or false). The VRPSolver is
// responsible for analyzing the variable and seeing what new inferences
// can be made from each property. For example:
//
//   %P = icmp ne i32* %ptr, null
//   %a = and i1 %P, %Q
//   br i1 %a label %cond_true, label %cond_false
//
// For the true branch, the VRPSolver will start with %a EQ true and look at
// the definition of %a and find that it can infer that %P and %Q are both
// true. From %P being true, it can infer that %ptr NE null. For the false
// branch it can't infer anything from the "and" instruction.
//
// Besides branches, we can also infer properties from instruction that may
// have undefined behaviour in certain cases. For example, the dividend of
// a division may never be zero. After the division instruction, we may assume
// that the dividend is not equal to zero.
//
//===----------------------------------------------------------------------===//
//
// The ValueRanges class stores the known integer bounds of a Value. When we
// encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
// %b = [0, 254].
//
// It never stores an empty range, because that means that the code is
// unreachable. It never stores a single-element range since that's an equality
// relationship and better stored in the InequalityGraph, nor an empty range
// since that is better stored in UnreachableBlocks.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "predsimplify"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <deque>
#include <stack>
using namespace llvm;

STATISTIC(NumVarsReplaced, "Number of argument substitutions");
STATISTIC(NumInstruction , "Number of instructions removed");
STATISTIC(NumSimple      , "Number of simple replacements");
STATISTIC(NumBlocks      , "Number of blocks marked unreachable");
STATISTIC(NumSnuggle     , "Number of comparisons snuggled");

static const ConstantRange empty(1, false);

namespace {
  class DomTreeDFS {
  public:
    class Node {
      friend class DomTreeDFS;
    public:
      typedef std::vector<Node *>::iterator       iterator;
      typedef std::vector<Node *>::const_iterator const_iterator;

      unsigned getDFSNumIn()  const { return DFSin;  }
      unsigned getDFSNumOut() const { return DFSout; }

      BasicBlock *getBlock() const { return BB; }

      iterator begin() { return Children.begin(); }
      iterator end()   { return Children.end();   }

      const_iterator begin() const { return Children.begin(); }
      const_iterator end()   const { return Children.end();   }

      bool dominates(const Node *N) const {
        return DFSin <= N->DFSin && DFSout >= N->DFSout;
      }

      bool DominatedBy(const Node *N) const {
        return N->dominates(this);
      }

      /// Sorts by the number of descendants. With this, you can iterate
      /// through a sorted list and the first matching entry is the most
      /// specific match for your basic block. The order provided is stable;
      /// DomTreeDFS::Nodes with the same number of descendants are sorted by
      /// DFS in number.
      bool operator<(const Node &N) const {
        unsigned   spread =   DFSout -   DFSin;
        unsigned N_spread = N.DFSout - N.DFSin;
        if (spread == N_spread) return DFSin < N.DFSin;
        return spread < N_spread;
      }
      bool operator>(const Node &N) const { return N < *this; }

    private:
      unsigned DFSin, DFSout;
      BasicBlock *BB;

      std::vector<Node *> Children;
    };

    // XXX: this may be slow. Instead of using "new" for each node, consider
    // putting them in a vector to keep them contiguous.
    explicit DomTreeDFS(DominatorTree *DT) {
      std::stack<std::pair<Node *, DomTreeNode *> > S;

      Entry = new Node;
      Entry->BB = DT->getRootNode()->getBlock();
      S.push(std::make_pair(Entry, DT->getRootNode()));

      NodeMap[Entry->BB] = Entry;

      while (!S.empty()) {
        std::pair<Node *, DomTreeNode *> &Pair = S.top();
        Node *N = Pair.first;
        DomTreeNode *DTNode = Pair.second;
        S.pop();

        for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end();
             I != E; ++I) {
          Node *NewNode = new Node;
          NewNode->BB = (*I)->getBlock();
          N->Children.push_back(NewNode);
          S.push(std::make_pair(NewNode, *I));

          NodeMap[NewNode->BB] = NewNode;
        }
      }

      renumber();

#ifndef NDEBUG
      DEBUG(dump());
#endif
    }

#ifndef NDEBUG
    virtual
#endif
    ~DomTreeDFS() {
      std::stack<Node *> S;

      S.push(Entry);
      while (!S.empty()) {
        Node *N = S.top(); S.pop();

        for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
          S.push(*I);

        delete N;
      }
    }

    /// getRootNode - This returns the entry node for the CFG of the function.
    Node *getRootNode() const { return Entry; }

    /// getNodeForBlock - return the node for the specified basic block.
    Node *getNodeForBlock(BasicBlock *BB) const {
      if (!NodeMap.count(BB)) return 0;
      return const_cast<DomTreeDFS*>(this)->NodeMap[BB];
    }

    /// dominates - returns true if the basic block for I1 dominates that of
    /// the basic block for I2. If the instructions belong to the same basic
    /// block, the instruction first instruction sequentially in the block is
    /// considered dominating.
    bool dominates(Instruction *I1, Instruction *I2) {
      BasicBlock *BB1 = I1->getParent(),
                 *BB2 = I2->getParent();
      if (BB1 == BB2) {
        if (isa<TerminatorInst>(I1)) return false;
        if (isa<TerminatorInst>(I2)) return true;
        if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
        if (!isa<PHINode>(I1) &&  isa<PHINode>(I2)) return false;

        for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end();
             I != E; ++I) {
          if (&*I == I1) return true;
          else if (&*I == I2) return false;
        }
        assert(!"Instructions not found in parent BasicBlock?");
      } else {
        Node *Node1 = getNodeForBlock(BB1),
             *Node2 = getNodeForBlock(BB2);
        return Node1 && Node2 && Node1->dominates(Node2);
      }
      return false; // Not reached
    }

  private:
    /// renumber - calculates the depth first search numberings and applies
    /// them onto the nodes.
    void renumber() {
      std::stack<std::pair<Node *, Node::iterator> > S;
      unsigned n = 0;

      Entry->DFSin = ++n;
      S.push(std::make_pair(Entry, Entry->begin()));

      while (!S.empty()) {
        std::pair<Node *, Node::iterator> &Pair = S.top();
        Node *N = Pair.first;
        Node::iterator &I = Pair.second;

        if (I == N->end()) {
          N->DFSout = ++n;
          S.pop();
        } else {
          Node *Next = *I++;
          Next->DFSin = ++n;
          S.push(std::make_pair(Next, Next->begin()));
        }
      }
    }

#ifndef NDEBUG
    virtual void dump() const {
      dump(*cerr.stream());
    }

    void dump(std::ostream &os) const {
      os << "Predicate simplifier DomTreeDFS: \n";
      dump(Entry, 0, os);
      os << "\n\n";
    }

    void dump(Node *N, int depth, std::ostream &os) const {
      ++depth;
      for (int i = 0; i < depth; ++i) { os << " "; }
      os << "[" << depth << "] ";

      os << N->getBlock()->getName() << " (" << N->getDFSNumIn()
         << ", " << N->getDFSNumOut() << ")\n";

      for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
        dump(*I, depth, os);
    }
#endif

    Node *Entry;
    std::map<BasicBlock *, Node *> NodeMap;
  };

  // SLT SGT ULT UGT EQ
  //   0   1   0   1  0 -- GT                  10
  //   0   1   0   1  1 -- GE                  11
  //   0   1   1   0  0 -- SGTULT              12
  //   0   1   1   0  1 -- SGEULE              13
  //   0   1   1   1  0 -- SGT                 14
  //   0   1   1   1  1 -- SGE                 15
  //   1   0   0   1  0 -- SLTUGT              18
  //   1   0   0   1  1 -- SLEUGE              19
  //   1   0   1   0  0 -- LT                  20
  //   1   0   1   0  1 -- LE                  21
  //   1   0   1   1  0 -- SLT                 22
  //   1   0   1   1  1 -- SLE                 23
  //   1   1   0   1  0 -- UGT                 26
  //   1   1   0   1  1 -- UGE                 27
  //   1   1   1   0  0 -- ULT                 28
  //   1   1   1   0  1 -- ULE                 29
  //   1   1   1   1  0 -- NE                  30
  enum LatticeBits {
    EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
  };
  enum LatticeVal {
    GT = SGT_BIT | UGT_BIT,
    GE = GT | EQ_BIT,
    LT = SLT_BIT | ULT_BIT,
    LE = LT | EQ_BIT,
    NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
    SGTULT = SGT_BIT | ULT_BIT,
    SGEULE = SGTULT | EQ_BIT,
    SLTUGT = SLT_BIT | UGT_BIT,
    SLEUGE = SLTUGT | EQ_BIT,
    ULT = SLT_BIT | SGT_BIT | ULT_BIT,
    UGT = SLT_BIT | SGT_BIT | UGT_BIT,
    SLT = SLT_BIT | ULT_BIT | UGT_BIT,
    SGT = SGT_BIT | ULT_BIT | UGT_BIT,
    SLE = SLT | EQ_BIT,
    SGE = SGT | EQ_BIT,
    ULE = ULT | EQ_BIT,
    UGE = UGT | EQ_BIT
  };

#ifndef NDEBUG
  /// validPredicate - determines whether a given value is actually a lattice
  /// value. Only used in assertions or debugging.
  static bool validPredicate(LatticeVal LV) {
    switch (LV) {
      case GT: case GE: case LT: case LE: case NE:
      case SGTULT: case SGT: case SGEULE:
      case SLTUGT: case SLT: case SLEUGE:
      case ULT: case UGT:
      case SLE: case SGE: case ULE: case UGE:
        return true;
      default:
        return false;
    }
  }
#endif

  /// reversePredicate - reverse the direction of the inequality
  static LatticeVal reversePredicate(LatticeVal LV) {
    unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT

    if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
      reverse |= (SLT_BIT|SGT_BIT);

    if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
      reverse |= (ULT_BIT|UGT_BIT);

    LatticeVal Rev = static_cast<LatticeVal>(reverse);
    assert(validPredicate(Rev) && "Failed reversing predicate.");
    return Rev;
  }

  /// ValueNumbering stores the scope-specific value numbers for a given Value.
  class VISIBILITY_HIDDEN ValueNumbering {

    /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
    /// includes the comparison operators necessary to allow you to store it
    /// in a sorted vector.
    class VISIBILITY_HIDDEN VNPair {
    public:
      Value *V;
      unsigned index;
      DomTreeDFS::Node *Subtree;

      VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree)
        : V(V), index(index), Subtree(Subtree) {}

      bool operator==(const VNPair &RHS) const {
        return V == RHS.V && Subtree == RHS.Subtree;
      }

      bool operator<(const VNPair &RHS) const {
        if (V != RHS.V) return V < RHS.V;
        return *Subtree < *RHS.Subtree;
      }

      bool operator<(Value *RHS) const {
        return V < RHS;
      }

      bool operator>(Value *RHS) const {
        return V > RHS;
      }

      friend bool operator<(Value *RHS, const VNPair &pair) {
        return pair.operator>(RHS);
      }
    };

    typedef std::vector<VNPair> VNMapType;
    VNMapType VNMap;

    /// The canonical choice for value number at index.
    std::vector<Value *> Values;

    DomTreeDFS *DTDFS;

  public:
#ifndef NDEBUG
    virtual ~ValueNumbering() {}
    virtual void dump() {
      dump(*cerr.stream());
    }

    void dump(std::ostream &os) {
      for (unsigned i = 1; i <= Values.size(); ++i) {
        os << i << " = ";
        WriteAsOperand(os, Values[i-1]);
        os << " {";
        for (unsigned j = 0; j < VNMap.size(); ++j) {
          if (VNMap[j].index == i) {
            WriteAsOperand(os, VNMap[j].V);
            os << " (" << VNMap[j].Subtree->getDFSNumIn() << ")  ";
          }
        }
        os << "}\n";
      }
    }
#endif

    /// compare - returns true if V1 is a better canonical value than V2.
    bool compare(Value *V1, Value *V2) const {
      if (isa<Constant>(V1))
        return !isa<Constant>(V2);
      else if (isa<Constant>(V2))
        return false;
      else if (isa<Argument>(V1))
        return !isa<Argument>(V2);
      else if (isa<Argument>(V2))
        return false;

      Instruction *I1 = dyn_cast<Instruction>(V1);
      Instruction *I2 = dyn_cast<Instruction>(V2);

      if (!I1 || !I2)
        return V1->getNumUses() < V2->getNumUses();

      return DTDFS->dominates(I1, I2);
    }

    ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {}

    /// valueNumber - finds the value number for V under the Subtree. If
    /// there is no value number, returns zero.
    unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
      if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V))
          || V->getType() == Type::VoidTy) return 0;

      VNMapType::iterator E = VNMap.end();
      VNPair pair(V, 0, Subtree);
      VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
      while (I != E && I->V == V) {
        if (I->Subtree->dominates(Subtree))
          return I->index;
        ++I;
      }
      return 0;
    }

    /// getOrInsertVN - always returns a value number, creating it if necessary.
    unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
      if (unsigned n = valueNumber(V, Subtree))
        return n;
      else
        return newVN(V);
    }

    /// newVN - creates a new value number. Value V must not already have a
    /// value number assigned.
    unsigned newVN(Value *V) {
      assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
             "Bad Value for value numbering.");
      assert(V->getType() != Type::VoidTy && "Won't value number a void value");

      Values.push_back(V);

      VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
      VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
      assert((I == VNMap.end() || value(I->index) != V) &&
             "Attempt to create a duplicate value number.");
      VNMap.insert(I, pair);

      return Values.size();
    }

    /// value - returns the Value associated with a value number.
    Value *value(unsigned index) const {
      assert(index != 0 && "Zero index is reserved for not found.");
      assert(index <= Values.size() && "Index out of range.");
      return Values[index-1];
    }

    /// canonicalize - return a Value that is equal to V under Subtree.
    Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) {
      if (isa<Constant>(V)) return V;

      if (unsigned n = valueNumber(V, Subtree))
        return value(n);
      else
        return V;
    }

    /// addEquality - adds that value V belongs to the set of equivalent
    /// values defined by value number n under Subtree.
    void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) {
      assert(canonicalize(value(n), Subtree) == value(n) &&
             "Node's 'canonical' choice isn't best within this subtree.");

      // Suppose that we are given "%x -> node #1 (%y)". The problem is that
      // we may already have "%z -> node #2 (%x)" somewhere above us in the
      // graph. We need to find those edges and add "%z -> node #1 (%y)"
      // to keep the lookups canonical.

      std::vector<Value *> ToRepoint(1, V);

      if (unsigned Conflict = valueNumber(V, Subtree)) {
        for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end();
             I != E; ++I) {
          if (I->index == Conflict && I->Subtree->dominates(Subtree))
            ToRepoint.push_back(I->V);
        }
      }

      for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
           VE = ToRepoint.end(); VI != VE; ++VI) {
        Value *V = *VI;

        VNPair pair(V, n, Subtree);
        VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
        VNMapType::iterator I = std::lower_bound(B, E, pair);
        if (I != E && I->V == V && I->Subtree == Subtree)
          I->index = n; // Update best choice
        else
          VNMap.insert(I, pair); // New Value

        // XXX: we currently don't have to worry about updating values with
        // more specific Subtrees, but we will need to for PHI node support.

#ifndef NDEBUG
        Value *V_n = value(n);
        if (isa<Constant>(V) && isa<Constant>(V_n)) {
          assert(V == V_n && "Constant equals different constant?");
        }
#endif
      }
    }

    /// remove - removes all references to value V.
    void remove(Value *V) {
      VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
      VNPair pair(V, 0, DTDFS->getRootNode());
      VNMapType::iterator J = std::upper_bound(B, E, pair);
      VNMapType::iterator I = J;

      while (I != B && (I == E || I->V == V)) --I;

      VNMap.erase(I, J);
    }
  };

  /// The InequalityGraph stores the relationships between values.
  /// Each Value in the graph is assigned to a Node. Nodes are pointer
  /// comparable for equality. The caller is expected to maintain the logical
  /// consistency of the system.
  ///
  /// The InequalityGraph class may invalidate Node*s after any mutator call.
  /// @brief The InequalityGraph stores the relationships between values.
  class VISIBILITY_HIDDEN InequalityGraph {
    ValueNumbering &VN;
    DomTreeDFS::Node *TreeRoot;

    InequalityGraph();                  // DO NOT IMPLEMENT
    InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
  public:
    InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot)
      : VN(VN), TreeRoot(TreeRoot) {}

    class Node;

    /// An Edge is contained inside a Node making one end of the edge implicit
    /// and contains a pointer to the other end. The edge contains a lattice
    /// value specifying the relationship and an DomTreeDFS::Node specifying
    /// the root in the dominator tree to which this edge applies.
    class VISIBILITY_HIDDEN Edge {
    public:
      Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST)
        : To(T), LV(V), Subtree(ST) {}

      unsigned To;
      LatticeVal LV;
      DomTreeDFS::Node *Subtree;

      bool operator<(const Edge &edge) const {
        if (To != edge.To) return To < edge.To;
        return *Subtree < *edge.Subtree;
      }

      bool operator<(unsigned to) const {
        return To < to;
      }

      bool operator>(unsigned to) const {
        return To > to;
      }

      friend bool operator<(unsigned to, const Edge &edge) {
        return edge.operator>(to);
      }
    };

    /// A single node in the InequalityGraph. This stores the canonical Value
    /// for the node, as well as the relationships with the neighbours.
    ///
    /// @brief A single node in the InequalityGraph.
    class VISIBILITY_HIDDEN Node {
      friend class InequalityGraph;

      typedef SmallVector<Edge, 4> RelationsType;
      RelationsType Relations;

      // TODO: can this idea improve performance?
      //friend class std::vector<Node>;
      //Node(Node &N) { RelationsType.swap(N.RelationsType); }

    public:
      typedef RelationsType::iterator       iterator;
      typedef RelationsType::const_iterator const_iterator;

#ifndef NDEBUG
      virtual ~Node() {}
      virtual void dump() const {
        dump(*cerr.stream());
      }
    private:
      void dump(std::ostream &os) const {
        static const std::string names[32] =
          { "000000", "000001", "000002", "000003", "000004", "000005",
            "000006", "000007", "000008", "000009", "     >", "    >=",
            "  s>u<", "s>=u<=", "    s>", "   s>=", "000016", "000017",
            "  s<u>", "s<=u>=", "     <", "    <=", "    s<", "   s<=",
            "000024", "000025", "    u>", "   u>=", "    u<", "   u<=",
            "    !=", "000031" };
        for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
          os << names[NI->LV] << " " << NI->To
             << " (" << NI->Subtree->getDFSNumIn() << "), ";
        }
      }
    public:
#endif

      iterator begin()             { return Relations.begin(); }
      iterator end()               { return Relations.end();   }
      const_iterator begin() const { return Relations.begin(); }
      const_iterator end()   const { return Relations.end();   }

      iterator find(unsigned n, DomTreeDFS::Node *Subtree) {
        iterator E = end();
        for (iterator I = std::lower_bound(begin(), E, n);
             I != E && I->To == n; ++I) {
          if (Subtree->DominatedBy(I->Subtree))
            return I;
        }
        return E;
      }

      const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const {
        const_iterator E = end();
        for (const_iterator I = std::lower_bound(begin(), E, n);
             I != E && I->To == n; ++I) {
          if (Subtree->DominatedBy(I->Subtree))
            return I;
        }
        return E;
      }

      /// update - updates the lattice value for a given node, creating a new
      /// entry if one doesn't exist. The new lattice value must not be
      /// inconsistent with any previously existing value.
      void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) {
        assert(validPredicate(R) && "Invalid predicate.");

        Edge edge(n, R, Subtree);
        iterator B = begin(), E = end();
        iterator I = std::lower_bound(B, E, edge);

        iterator J = I;
        while (J != E && J->To == n) {
          if (Subtree->DominatedBy(J->Subtree))
            break;
          ++J;
        }

        if (J != E && J->To == n) {
          edge.LV = static_cast<LatticeVal>(J->LV & R);
          assert(validPredicate(edge.LV) && "Invalid union of lattice values.");

          if (edge.LV == J->LV)
            return; // This update adds nothing new.
        }

        if (I != B) {
          // We also have to tighten any edge beneath our update.
          for (iterator K = I - 1; K->To == n; --K) {
            if (K->Subtree->DominatedBy(Subtree)) {
              LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV);
              assert(validPredicate(LV) && "Invalid union of lattice values");
              K->LV = LV;
            }
            if (K == B) break;
          }
        }

        // Insert new edge at Subtree if it isn't already there.
        if (I == E || I->To != n || Subtree != I->Subtree)
          Relations.insert(I, edge);
      }
    };

  private:

    std::vector<Node> Nodes;

  public:
    /// node - returns the node object at a given value number. The pointer
    /// returned may be invalidated on the next call to node().
    Node *node(unsigned index) {
      assert(VN.value(index)); // This triggers the necessary checks.
      if (Nodes.size() < index) Nodes.resize(index);
      return &Nodes[index-1];
    }

    /// isRelatedBy - true iff n1 op n2
    bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
                     LatticeVal LV) {
      if (n1 == n2) return LV & EQ_BIT;

      Node *N1 = node(n1);
      Node::iterator I = N1->find(n2, Subtree), E = N1->end();
      if (I != E) return (I->LV & LV) == I->LV;

      return false;
    }

    // The add* methods assume that your input is logically valid and may 
    // assertion-fail or infinitely loop if you attempt a contradiction.

    /// addInequality - Sets n1 op n2.
    /// It is also an error to call this on an inequality that is already true.
    void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
                       LatticeVal LV1) {
      assert(n1 != n2 && "A node can't be inequal to itself.");

      if (LV1 != NE)
        assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
               "Contradictory inequality.");

      // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
      // add %a < %n2 too. This keeps the graph fully connected.
      if (LV1 != NE) {
        // Break up the relationship into signed and unsigned comparison parts.
        // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
        // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
        // should have the EQ_BIT iff it's set for both op1 and op2.

        unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
        unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);

        for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
          if (I->LV != NE && I->To != n2) {

            DomTreeDFS::Node *Local_Subtree = NULL;
            if (Subtree->DominatedBy(I->Subtree))
              Local_Subtree = Subtree;
            else if (I->Subtree->DominatedBy(Subtree))
              Local_Subtree = I->Subtree;

            if (Local_Subtree) {
              unsigned new_relationship = 0;
              LatticeVal ILV = reversePredicate(I->LV);
              unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
              unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);

              if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
                new_relationship |= ILV_s;
              if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
                new_relationship |= ILV_u;

              if (new_relationship) {
                if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
                  new_relationship |= (SLT_BIT|SGT_BIT);
                if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
                  new_relationship |= (ULT_BIT|UGT_BIT);
                if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
                  new_relationship |= EQ_BIT;

                LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);

                node(I->To)->update(n2, NewLV, Local_Subtree);
                node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
              }
            }
          }
        }

        for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
          if (I->LV != NE && I->To != n1) {
            DomTreeDFS::Node *Local_Subtree = NULL;
            if (Subtree->DominatedBy(I->Subtree))
              Local_Subtree = Subtree;
            else if (I->Subtree->DominatedBy(Subtree))
              Local_Subtree = I->Subtree;

            if (Local_Subtree) {
              unsigned new_relationship = 0;
              unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
              unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);

              if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
                new_relationship |= ILV_s;

              if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
                new_relationship |= ILV_u;

              if (new_relationship) {
                if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
                  new_relationship |= (SLT_BIT|SGT_BIT);
                if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
                  new_relationship |= (ULT_BIT|UGT_BIT);
                if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
                  new_relationship |= EQ_BIT;

                LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);

                node(n1)->update(I->To, NewLV, Local_Subtree);
                node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
              }
            }
          }
        }
      }

      node(n1)->update(n2, LV1, Subtree);
      node(n2)->update(n1, reversePredicate(LV1), Subtree);
    }

    /// remove - removes a node from the graph by removing all references to
    /// and from it.
    void remove(unsigned n) {
      Node *N = node(n);
      for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
        Node::iterator Iter = node(NI->To)->find(n, TreeRoot);
        do {
          node(NI->To)->Relations.erase(Iter);
          Iter = node(NI->To)->find(n, TreeRoot);
        } while (Iter != node(NI->To)->end());
      }
      N->Relations.clear();
    }

#ifndef NDEBUG
    virtual ~InequalityGraph() {}
    virtual void dump() {
      dump(*cerr.stream());
    }

    void dump(std::ostream &os) {
      for (unsigned i = 1; i <= Nodes.size(); ++i) {
        os << i << " = {";
        node(i)->dump(os);
        os << "}\n";
      }
    }
#endif
  };

  class VRPSolver;

  /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
  /// in the InequalityGraph.
  class VISIBILITY_HIDDEN ValueRanges {
    ValueNumbering &VN;
    TargetData *TD;

    class VISIBILITY_HIDDEN ScopedRange {
      typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
              RangeListType;
      RangeListType RangeList;

      static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
                      const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
        return *LHS.first < *RHS.first;
      }

    public:
#ifndef NDEBUG
      virtual ~ScopedRange() {}
      virtual void dump() const {
        dump(*cerr.stream());
      }

      void dump(std::ostream &os) const {
        os << "{";
        for (const_iterator I = begin(), E = end(); I != E; ++I) {
          os << &I->second << " (" << I->first->getDFSNumIn() << "), ";
        }
        os << "}";
      }
#endif

      typedef RangeListType::iterator       iterator;
      typedef RangeListType::const_iterator const_iterator;

      iterator begin() { return RangeList.begin(); }
      iterator end()   { return RangeList.end(); }
      const_iterator begin() const { return RangeList.begin(); }
      const_iterator end()   const { return RangeList.end(); }

      iterator find(DomTreeDFS::Node *Subtree) {
        iterator E = end();
        iterator I = std::lower_bound(begin(), E,
                                      std::make_pair(Subtree, empty), swo);

        while (I != E && !I->first->dominates(Subtree)) ++I;
        return I;
      }

      const_iterator find(DomTreeDFS::Node *Subtree) const {
        const_iterator E = end();
        const_iterator I = std::lower_bound(begin(), E,
                                            std::make_pair(Subtree, empty), swo);

        while (I != E && !I->first->dominates(Subtree)) ++I;
        return I;
      }

      void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
        assert(!CR.isEmptySet() && "Empty ConstantRange.");
        assert(!CR.isSingleElement() && "Refusing to store single element.");

        iterator E = end();
        iterator I =
            std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);

        if (I != end() && I->first == Subtree) {
          ConstantRange CR2 = I->second.maximalIntersectWith(CR);
          assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
                 "Invalid union of ranges.");
          I->second = CR2;
        } else
          RangeList.insert(I, std::make_pair(Subtree, CR));
      }
    };

    std::vector<ScopedRange> Ranges;

    void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){
      if (CR.isFullSet()) return;
      if (Ranges.size() < n) Ranges.resize(n);
      Ranges[n-1].update(CR, Subtree);
    }

    /// create - Creates a ConstantRange that matches the given LatticeVal
    /// relation with a given integer.
    ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
      assert(!CR.isEmptySet() && "Can't deal with empty set.");

      if (LV == NE)
        return ConstantRange::makeICmpRegion(ICmpInst::ICMP_NE, CR);

      unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
      unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
      bool hasEQ = LV & EQ_BIT;

      ConstantRange Range(CR.getBitWidth());

      if (LV_s == SGT_BIT) {
        Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
                    hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
      } else if (LV_s == SLT_BIT) {
        Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
                    hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
      }

      if (LV_u == UGT_BIT) {
        Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
                    hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
      } else if (LV_u == ULT_BIT) {
        Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
                    hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
      }

      return Range;
    }

#ifndef NDEBUG
    bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) {
      return V == VN.canonicalize(V, Subtree);
    }
#endif

  public:

    ValueRanges(ValueNumbering &VN, TargetData *TD) : VN(VN), TD(TD) {}

#ifndef NDEBUG
    virtual ~ValueRanges() {}

    virtual void dump() const {
      dump(*cerr.stream());
    }

    void dump(std::ostream &os) const {
      for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
        os << (i+1) << " = ";
        Ranges[i].dump(os);
        os << "\n";
      }
    }
#endif

    /// range - looks up the ConstantRange associated with a value number.
    ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) {
      assert(VN.value(n)); // performs range checks

      if (n <= Ranges.size()) {
        ScopedRange::iterator I = Ranges[n-1].find(Subtree);
        if (I != Ranges[n-1].end()) return I->second;
      }

      Value *V = VN.value(n);
      ConstantRange CR = range(V);
      return CR;
    }

    /// range - determine a range from a Value without performing any lookups.
    ConstantRange range(Value *V) const {
      if (ConstantInt *C = dyn_cast<ConstantInt>(V))
        return ConstantRange(C->getValue());
      else if (isa<ConstantPointerNull>(V))
        return ConstantRange(APInt::getNullValue(typeToWidth(V->getType())));
      else
        return ConstantRange(typeToWidth(V->getType()));
    }

    // typeToWidth - returns the number of bits necessary to store a value of
    // this type, or zero if unknown.
    uint32_t typeToWidth(const Type *Ty) const {
      if (TD)
        return TD->getTypeSizeInBits(Ty);
      else
        return Ty->getPrimitiveSizeInBits();
    }

    static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2,
                            LatticeVal LV) {
      switch (LV) {
      default: assert(!"Impossible lattice value!");
      case NE:
        return CR1.maximalIntersectWith(CR2).isEmptySet();
      case ULT:
        return CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
      case ULE:
        return CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
      case UGT:
        return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
      case UGE:
        return CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
      case SLT:
        return CR1.getSignedMax().slt(CR2.getSignedMin());
      case SLE:
        return CR1.getSignedMax().sle(CR2.getSignedMin());
      case SGT:
        return CR1.getSignedMin().sgt(CR2.getSignedMax());
      case SGE:
        return CR1.getSignedMin().sge(CR2.getSignedMax());
      case LT:
        return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) &&
               CR1.getSignedMax().slt(CR2.getUnsignedMin());
      case LE:
        return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) &&
               CR1.getSignedMax().sle(CR2.getUnsignedMin());
      case GT:
        return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) &&
               CR1.getSignedMin().sgt(CR2.getSignedMax());
      case GE:
        return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) &&
               CR1.getSignedMin().sge(CR2.getSignedMax());
      case SLTUGT:
        return CR1.getSignedMax().slt(CR2.getSignedMin()) &&
               CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
      case SLEUGE:
        return CR1.getSignedMax().sle(CR2.getSignedMin()) &&
               CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
      case SGTULT:
        return CR1.getSignedMin().sgt(CR2.getSignedMax()) &&
               CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
      case SGEULE:
        return CR1.getSignedMin().sge(CR2.getSignedMax()) &&
               CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
      }
    }

    bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
                     LatticeVal LV) {
      ConstantRange CR1 = range(n1, Subtree);
      ConstantRange CR2 = range(n2, Subtree);

      // True iff all values in CR1 are LV to all values in CR2.
      return isRelatedBy(CR1, CR2, LV);
    }

    void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
                       VRPSolver *VRP);
    void markBlock(VRPSolver *VRP);

    void mergeInto(Value **I, unsigned n, unsigned New,
                   DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
      ConstantRange CR_New = range(New, Subtree);
      ConstantRange Merged = CR_New;

      for (; n != 0; ++I, --n) {
        unsigned i = VN.valueNumber(*I, Subtree);
        ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
        if (CR_Kill.isFullSet()) continue;
        Merged = Merged.maximalIntersectWith(CR_Kill);
      }

      if (Merged.isFullSet() || Merged == CR_New) return;

      applyRange(New, Merged, Subtree, VRP);
    }

    void applyRange(unsigned n, const ConstantRange &CR,
                    DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
      ConstantRange Merged = CR.maximalIntersectWith(range(n, Subtree));
      if (Merged.isEmptySet()) {
        markBlock(VRP);
        return;
      }

      if (const APInt *I = Merged.getSingleElement()) {
        Value *V = VN.value(n); // XXX: redesign worklist.
        const Type *Ty = V->getType();
        if (Ty->isInteger()) {
          addToWorklist(V, ConstantInt::get(*I), ICmpInst::ICMP_EQ, VRP);
          return;
        } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
          assert(*I == 0 && "Pointer is null but not zero?");
          addToWorklist(V, ConstantPointerNull::get(PTy),
                        ICmpInst::ICMP_EQ, VRP);
          return;
        }
      }

      update(n, Merged, Subtree);
    }

    void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
                      VRPSolver *VRP) {
      ConstantRange CR1 = range(n1, Subtree);
      ConstantRange CR2 = range(n2, Subtree);

      uint32_t W = CR1.getBitWidth();

      if (const APInt *I = CR1.getSingleElement()) {
        if (CR2.isFullSet()) {
          ConstantRange NewCR2(CR1.getUpper(), CR1.getLower());
          applyRange(n2, NewCR2, Subtree, VRP);
        } else if (*I == CR2.getLower()) {
          APInt NewLower(CR2.getLower() + 1),
                NewUpper(CR2.getUpper());
          if (NewLower == NewUpper)
            NewLower = NewUpper = APInt::getMinValue(W);

          ConstantRange NewCR2(NewLower, NewUpper);
          applyRange(n2, NewCR2, Subtree, VRP);
        } else if (*I == CR2.getUpper() - 1) {
          APInt NewLower(CR2.getLower()),
                NewUpper(CR2.getUpper() - 1);
          if (NewLower == NewUpper)
            NewLower = NewUpper = APInt::getMinValue(W);

          ConstantRange NewCR2(NewLower, NewUpper);
          applyRange(n2, NewCR2, Subtree, VRP);
        }
      }

      if (const APInt *I = CR2.getSingleElement()) {
        if (CR1.isFullSet()) {
          ConstantRange NewCR1(CR2.getUpper(), CR2.getLower());
          applyRange(n1, NewCR1, Subtree, VRP);
        } else if (*I == CR1.getLower()) {
          APInt NewLower(CR1.getLower() + 1),
                NewUpper(CR1.getUpper());
          if (NewLower == NewUpper)
            NewLower = NewUpper = APInt::getMinValue(W);

          ConstantRange NewCR1(NewLower, NewUpper);
          applyRange(n1, NewCR1, Subtree, VRP);
        } else if (*I == CR1.getUpper() - 1) {
          APInt NewLower(CR1.getLower()),
                NewUpper(CR1.getUpper() - 1);
          if (NewLower == NewUpper)
            NewLower = NewUpper = APInt::getMinValue(W);

          ConstantRange NewCR1(NewLower, NewUpper);
          applyRange(n1, NewCR1, Subtree, VRP);
        }
      }
    }

    void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
                       LatticeVal LV, VRPSolver *VRP) {
      assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work.");

      if (LV == NE) {
        addNotEquals(n1, n2, Subtree, VRP);
        return;
      }

      ConstantRange CR1 = range(n1, Subtree);
      ConstantRange CR2 = range(n2, Subtree);

      if (!CR1.isSingleElement()) {
        ConstantRange NewCR1 = CR1.maximalIntersectWith(create(LV, CR2));
        if (NewCR1 != CR1)
          applyRange(n1, NewCR1, Subtree, VRP);
      }

      if (!CR2.isSingleElement()) {
        ConstantRange NewCR2 = CR2.maximalIntersectWith(
                                       create(reversePredicate(LV), CR1));
        if (NewCR2 != CR2)
          applyRange(n2, NewCR2, Subtree, VRP);
      }
    }
  };

  /// UnreachableBlocks keeps tracks of blocks that are for one reason or
  /// another discovered to be unreachable. This is used to cull the graph when
  /// analyzing instructions, and to mark blocks with the "unreachable"
  /// terminator instruction after the function has executed.
  class VISIBILITY_HIDDEN UnreachableBlocks {
  private:
    std::vector<BasicBlock *> DeadBlocks;

  public:
    /// mark - mark a block as dead
    void mark(BasicBlock *BB) {
      std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
      std::vector<BasicBlock *>::iterator I =
        std::lower_bound(DeadBlocks.begin(), E, BB);

      if (I == E || *I != BB) DeadBlocks.insert(I, BB);
    }

    /// isDead - returns whether a block is known to be dead already
    bool isDead(BasicBlock *BB) {
      std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
      std::vector<BasicBlock *>::iterator I =
        std::lower_bound(DeadBlocks.begin(), E, BB);

      return I != E && *I == BB;
    }

    /// kill - replace the dead blocks' terminator with an UnreachableInst.
    bool kill() {
      bool modified = false;
      for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
           E = DeadBlocks.end(); I != E; ++I) {
        BasicBlock *BB = *I;

        DOUT << "unreachable block: " << BB->getName() << "\n";

        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
             SI != SE; ++SI) {
          BasicBlock *Succ = *SI;
          Succ->removePredecessor(BB);
        }

        TerminatorInst *TI = BB->getTerminator();
        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
        TI->eraseFromParent();
        new UnreachableInst(BB);
        ++NumBlocks;
        modified = true;
      }
      DeadBlocks.clear();
      return modified;
    }
  };

  /// VRPSolver keeps track of how changes to one variable affect other
  /// variables, and forwards changes along to the InequalityGraph. It
  /// also maintains the correct choice for "canonical" in the IG.
  /// @brief VRPSolver calculates inferences from a new relationship.
  class VISIBILITY_HIDDEN VRPSolver {
  private:
    friend class ValueRanges;

    struct Operation {
      Value *LHS, *RHS;
      ICmpInst::Predicate Op;

      BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead
      Instruction *ContextInst;
    };
    std::deque<Operation> WorkList;

    ValueNumbering &VN;
    InequalityGraph &IG;
    UnreachableBlocks &UB;
    ValueRanges &VR;
    DomTreeDFS *DTDFS;
    DomTreeDFS::Node *Top;
    BasicBlock *TopBB;
    Instruction *TopInst;
    bool &modified;
    LLVMContext *Context;

    typedef InequalityGraph::Node Node;

    // below - true if the Instruction is dominated by the current context
    // block or instruction
    bool below(Instruction *I) {
      BasicBlock *BB = I->getParent();
      if (TopInst && TopInst->getParent() == BB) {
        if (isa<TerminatorInst>(TopInst)) return false;
        if (isa<TerminatorInst>(I)) return true;
        if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true;
        if (!isa<PHINode>(TopInst) &&  isa<PHINode>(I)) return false;

        for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end();
             Iter != E; ++Iter) {
          if (&*Iter == TopInst) return true;
          else if (&*Iter == I) return false;
        }
        assert(!"Instructions not found in parent BasicBlock?");
      } else {
        DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
        if (!Node) return false;
        return Top->dominates(Node);
      }
      return false; // Not reached
    }

    // aboveOrBelow - true if the Instruction either dominates or is dominated
    // by the current context block or instruction
    bool aboveOrBelow(Instruction *I) {
      BasicBlock *BB = I->getParent();
      DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
      if (!Node) return false;

      return Top == Node || Top->dominates(Node) || Node->dominates(Top);
    }

    bool makeEqual(Value *V1, Value *V2) {
      DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n";
      DOUT << "context is ";
      if (TopInst) DOUT << "I: " << *TopInst << "\n";
      else DOUT << "BB: " << TopBB->getName()
                << "(" << Top->getDFSNumIn() << ")\n";

      assert(V1->getType() == V2->getType() &&
             "Can't make two values with different types equal.");

      if (V1 == V2) return true;

      if (isa<Constant>(V1) && isa<Constant>(V2))
        return false;

      unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top);

      if (n1 && n2) {
        if (n1 == n2) return true;
        if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
      }

      if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical.");
      if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical.");

      assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual.");

      assert(!isa<Constant>(V2) && "Tried to remove a constant.");

      SetVector<unsigned> Remove;
      if (n2) Remove.insert(n2);

      if (n1 && n2) {
        // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
        // We can't just merge %x and %y because the relationship with %z would
        // be EQ and that's invalid. What we're doing is looking for any nodes
        // %z such that %x <= %z and %y >= %z, and vice versa.

        Node::iterator end = IG.node(n2)->end();

        // Find the intersection between N1 and N2 which is dominated by
        // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
        // Remove.
        for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end();
             I != E; ++I) {
          if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue;

          unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
          unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
          Node::iterator NI = IG.node(n2)->find(I->To, Top);
          if (NI != end) {
            LatticeVal NILV = reversePredicate(NI->LV);
            unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT);
            unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT);

            if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) ||
                (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u))
              Remove.insert(I->To);
          }
        }

        // See if one of the nodes about to be removed is actually a better
        // canonical choice than n1.
        unsigned orig_n1 = n1;
        SetVector<unsigned>::iterator DontRemove = Remove.end();
        for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
             E = Remove.end(); I != E; ++I) {
          unsigned n = *I;
          Value *V = VN.value(n);
          if (VN.compare(V, V1)) {
            V1 = V;
            n1 = n;
            DontRemove = I;
          }
        }
        if (DontRemove != Remove.end()) {
          unsigned n = *DontRemove;
          Remove.remove(n);
          Remove.insert(orig_n1);
        }
      }

      // We'd like to allow makeEqual on two values to perform a simple
      // substitution without creating nodes in the IG whenever possible.
      //
      // The first iteration through this loop operates on V2 before going
      // through the Remove list and operating on those too. If all of the
      // iterations performed simple replacements then we exit early.
      bool mergeIGNode = false;
      unsigned i = 0;
      for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
        if (i) R = VN.value(Remove[i]); // skip n2.

        // Try to replace the whole instruction. If we can, we're done.
        Instruction *I2 = dyn_cast<Instruction>(R);
        if (I2 && below(I2)) {
          std::vector<Instruction *> ToNotify;
          for (Value::use_iterator UI = I2->use_begin(), UE = I2->use_end();
               UI != UE;) {
            Use &TheUse = UI.getUse();
            ++UI;
            Instruction *I = cast<Instruction>(TheUse.getUser());
            ToNotify.push_back(I);
          }

          DOUT << "Simply removing " << *I2
               << ", replacing with " << *V1 << "\n";
          I2->replaceAllUsesWith(V1);
          // leave it dead; it'll get erased later.
          ++NumInstruction;
          modified = true;

          for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
               IE = ToNotify.end(); II != IE; ++II) {
            opsToDef(*II);
          }

          continue;
        }

        // Otherwise, replace all dominated uses.
        for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
             UI != UE;) {
          Use &TheUse = UI.getUse();
          ++UI;
          if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
            if (below(I)) {
              TheUse.set(V1);
              modified = true;
              ++NumVarsReplaced;
              opsToDef(I);
            }
          }
        }

        // If that killed the instruction, stop here.
        if (I2 && isInstructionTriviallyDead(I2)) {
          DOUT << "Killed all uses of " << *I2
               << ", replacing with " << *V1 << "\n";
          continue;
        }

        // If we make it to here, then we will need to create a node for N1.
        // Otherwise, we can skip out early!
        mergeIGNode = true;
      }

      if (!isa<Constant>(V1)) {
        if (Remove.empty()) {
          VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this);
        } else {
          std::vector<Value*> RemoveVals;
          RemoveVals.reserve(Remove.size());

          for (SetVector<unsigned>::iterator I = Remove.begin(),
               E = Remove.end(); I != E; ++I) {
            Value *V = VN.value(*I);
            if (!V->use_empty())
              RemoveVals.push_back(V);
          }
          VR.mergeInto(&RemoveVals[0], RemoveVals.size(), 
                       VN.getOrInsertVN(V1, Top), Top, this);
        }
      }

      if (mergeIGNode) {
        // Create N1.
        if (!n1) n1 = VN.getOrInsertVN(V1, Top);
        IG.node(n1); // Ensure that IG.Nodes won't get resized

        // Migrate relationships from removed nodes to N1.
        for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
             I != E; ++I) {
          unsigned n = *I;
          for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end();
               NI != NE; ++NI) {
            if (NI->Subtree->DominatedBy(Top)) {
              if (NI->To == n1) {
                assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
                continue;
              }
              if (Remove.count(NI->To))
                continue;

              IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
              IG.node(n1)->update(NI->To, NI->LV, Top);
            }
          }
        }

        // Point V2 (and all items in Remove) to N1.
        if (!n2)
          VN.addEquality(n1, V2, Top);
        else {
          for (SetVector<unsigned>::iterator I = Remove.begin(),
               E = Remove.end(); I != E; ++I) {
            VN.addEquality(n1, VN.value(*I), Top);
          }
        }

        // If !Remove.empty() then V2 = Remove[0]->getValue().
        // Even when Remove is empty, we still want to process V2.
        i = 0;
        for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
          if (i) R = VN.value(Remove[i]); // skip n2.

          if (Instruction *I2 = dyn_cast<Instruction>(R)) {
            if (aboveOrBelow(I2))
            defToOps(I2);
          }
          for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
               UI != UE;) {
            Use &TheUse = UI.getUse();
            ++UI;
            if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
              if (aboveOrBelow(I))
                opsToDef(I);
            }
          }
        }
      }

      // re-opsToDef all dominated users of V1.
      if (Instruction *I = dyn_cast<Instruction>(V1)) {
        for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
             UI != UE;) {
          Use &TheUse = UI.getUse();
          ++UI;
          Value *V = TheUse.getUser();
          if (!V->use_empty()) {
            Instruction *Inst = cast<Instruction>(V);
            if (aboveOrBelow(Inst))
              opsToDef(Inst);
          }
        }
      }

      return true;
    }

    /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
    /// Requires that the lattice value be valid; does not accept ICMP_EQ.
    static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
      switch (Pred) {
        case ICmpInst::ICMP_EQ:
          assert(!"No matching lattice value.");
          return static_cast<LatticeVal>(EQ_BIT);
        default:
          assert(!"Invalid 'icmp' predicate.");
        case ICmpInst::ICMP_NE:
          return NE;
        case ICmpInst::ICMP_UGT:
          return UGT;
        case ICmpInst::ICMP_UGE:
          return UGE;
        case ICmpInst::ICMP_ULT:
          return ULT;
        case ICmpInst::ICMP_ULE:
          return ULE;
        case ICmpInst::ICMP_SGT:
          return SGT;
        case ICmpInst::ICMP_SGE:
          return SGE;
        case ICmpInst::ICMP_SLT:
          return SLT;
        case ICmpInst::ICMP_SLE:
          return SLE;
      }
    }

  public:
    VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
              ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
              BasicBlock *TopBB)
      : VN(VN),
        IG(IG),
        UB(UB),
        VR(VR),
        DTDFS(DTDFS),
        Top(DTDFS->getNodeForBlock(TopBB)),
        TopBB(TopBB),
        TopInst(NULL),
        modified(modified),
        Context(TopBB->getContext())
    {
      assert(Top && "VRPSolver created for unreachable basic block.");
    }

    VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
              ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
              Instruction *TopInst)
      : VN(VN),
        IG(IG),
        UB(UB),
        VR(VR),
        DTDFS(DTDFS),
        Top(DTDFS->getNodeForBlock(TopInst->getParent())),
        TopBB(TopInst->getParent()),
        TopInst(TopInst),
        modified(modified)
    {
      assert(Top && "VRPSolver created for unreachable basic block.");
      assert(Top->getBlock() == TopInst->getParent() && "Context mismatch.");
    }

    bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
      if (Constant *C1 = dyn_cast<Constant>(V1))
        if (Constant *C2 = dyn_cast<Constant>(V2))
          return ConstantExpr::getCompare(Pred, C1, C2) ==
                 ConstantInt::getTrue();

      unsigned n1 = VN.valueNumber(V1, Top);
      unsigned n2 = VN.valueNumber(V2, Top);

      if (n1 && n2) {
        if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
                             Pred == ICmpInst::ICMP_ULE ||
                             Pred == ICmpInst::ICMP_UGE ||
                             Pred == ICmpInst::ICMP_SLE ||
                             Pred == ICmpInst::ICMP_SGE;
        if (Pred == ICmpInst::ICMP_EQ) return false;
        if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
        if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
      }

      if ((n1 && !n2 && isa<Constant>(V2)) ||
          (n2 && !n1 && isa<Constant>(V1))) {
        ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1);
        ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2);

        if (Pred == ICmpInst::ICMP_EQ)
          return CR1.isSingleElement() &&
                 CR1.getSingleElement() == CR2.getSingleElement();

        return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred));
      }
      if (Pred == ICmpInst::ICMP_EQ) return V1 == V2;
      return false;
    }

    /// add - adds a new property to the work queue
    void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
             Instruction *I = NULL) {
      DOUT << "adding " << *V1 << " " << Pred << " " << *V2;
      if (I) DOUT << " context: " << *I;
      else DOUT << " default context (" << Top->getDFSNumIn() << ")";
      DOUT << "\n";

      assert(V1->getType() == V2->getType() &&
             "Can't relate two values with different types.");

      WorkList.push_back(Operation());
      Operation &O = WorkList.back();
      O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I;
      O.ContextBB = I ? I->getParent() : TopBB;
    }

    /// defToOps - Given an instruction definition that we've learned something
    /// new about, find any new relationships between its operands.
    void defToOps(Instruction *I) {
      Instruction *NewContext = below(I) ? I : TopInst;
      Value *Canonical = VN.canonicalize(I, Top);

      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
        const Type *Ty = BO->getType();
        assert(!Ty->isFPOrFPVector() && "Float in work queue!");

        Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
        Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);

        // TODO: "and i32 -1, %x" EQ %y then %x EQ %y.

        switch (BO->getOpcode()) {
          case Instruction::And: {
            // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
            ConstantInt *CI = ConstantInt::getAllOnesValue(Ty);
            if (Canonical == CI) {
              add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
              add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
            }
          } break;
          case Instruction::Or: {
            // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
            Constant *Zero = Context->getNullValue(Ty);
            if (Canonical == Zero) {
              add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
              add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
            }
          } break;
          case Instruction::Xor: {
            // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b
            // "xor i32 %c, %a" EQ %c then %a EQ 0
            // "xor i32 %c, %a" NE %c then %a NE 0
            // Repeat the above, with order of operands reversed.
            Value *LHS = Op0;
            Value *RHS = Op1;
            if (!isa<Constant>(LHS)) std::swap(LHS, RHS);

            if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) {
              if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) {
                add(RHS, ConstantInt::get(CI->getValue() ^ Arg->getValue()),
                    ICmpInst::ICMP_EQ, NewContext);
              }
            }
            if (Canonical == LHS) {
              if (isa<ConstantInt>(Canonical))
                add(RHS, Context->getNullValue(Ty), ICmpInst::ICMP_EQ,
                    NewContext);
            } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
              add(RHS, Context->getNullValue(Ty), ICmpInst::ICMP_NE,
                  NewContext);
            }
          } break;
          default:
            break;
        }
      } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
        // "icmp ult i32 %a, %y" EQ true then %a u< y
        // etc.

        if (Canonical == ConstantInt::getTrue()) {
          add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
              NewContext);
        } else if (Canonical == ConstantInt::getFalse()) {
          add(IC->getOperand(0), IC->getOperand(1),
              ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
        }
      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
        if (I->getType()->isFPOrFPVector()) return;

        // Given: "%a = select i1 %x, i32 %b, i32 %c"
        // %a EQ %b and %b NE %c then %x EQ true
        // %a EQ %c and %b NE %c then %x EQ false

        Value *True  = SI->getTrueValue();
        Value *False = SI->getFalseValue();
        if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
          if (Canonical == VN.canonicalize(True, Top) ||
              isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
            add(SI->getCondition(), ConstantInt::getTrue(),
                ICmpInst::ICMP_EQ, NewContext);
          else if (Canonical == VN.canonicalize(False, Top) ||
                   isRelatedBy(Canonical, True, ICmpInst::ICMP_NE))
            add(SI->getCondition(), ConstantInt::getFalse(),
                ICmpInst::ICMP_EQ, NewContext);
        }
      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
        for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
             OE = GEPI->idx_end(); OI != OE; ++OI) {
          ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
          if (!Op || !Op->isZero()) return;
        }
        // TODO: The GEPI indices are all zero. Copy from definition to operand,
        // jumping the type plane as needed.
        if (isRelatedBy(GEPI, Context->getNullValue(GEPI->getType()),
                        ICmpInst::ICMP_NE)) {
          Value *Ptr = GEPI->getPointerOperand();
          add(Ptr, Context->getNullValue(Ptr->getType()), ICmpInst::ICMP_NE,
              NewContext);
        }
      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
        const Type *SrcTy = CI->getSrcTy();

        unsigned ci = VN.getOrInsertVN(CI, Top);
        uint32_t W = VR.typeToWidth(SrcTy);
        if (!W) return;
        ConstantRange CR = VR.range(ci, Top);

        if (CR.isFullSet()) return;

        switch (CI->getOpcode()) {
          default: break;
          case Instruction::ZExt:
          case Instruction::SExt:
            VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
                          CR.truncate(W), Top, this);
            break;
          case Instruction::BitCast:
            VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
                          CR, Top, this);
            break;
        }
      }
    }

    /// opsToDef - A new relationship was discovered involving one of this
    /// instruction's operands. Find any new relationship involving the
    /// definition, or another operand.
    void opsToDef(Instruction *I) {
      Instruction *NewContext = below(I) ? I : TopInst;

      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
        Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
        Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);

        if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0))
          if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
            add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
                ICmpInst::ICMP_EQ, NewContext);
            return;
          }

        // "%y = and i1 true, %x" then %x EQ %y
        // "%y = or i1 false, %x" then %x EQ %y
        // "%x = add i32 %y, 0" then %x EQ %y
        // "%x = mul i32 %y, 0" then %x EQ 0

        Instruction::BinaryOps Opcode = BO->getOpcode();
        const Type *Ty = BO->getType();
        assert(!Ty->isFPOrFPVector() && "Float in work queue!");

        Constant *Zero = Context->getNullValue(Ty);
        Constant *One = ConstantInt::get(Ty, 1);
        ConstantInt *AllOnes = ConstantInt::getAllOnesValue(Ty);

        switch (Opcode) {
          default: break;
          case Instruction::LShr:
          case Instruction::AShr:
          case Instruction::Shl:
            if (Op1 == Zero) {
              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            break;
          case Instruction::Sub:
            if (Op1 == Zero) {
              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
              unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
              ConstantRange CR = VR.range(n_ci0, Top);
              if (!CR.isFullSet()) {
                CR.subtract(CI0->getValue());
                unsigned n_bo = VN.getOrInsertVN(BO, Top);
                VR.applyRange(n_bo, CR, Top, this);
                return;
              }
            }
            if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
              unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
              ConstantRange CR = VR.range(n_ci1, Top);
              if (!CR.isFullSet()) {
                CR.subtract(CI1->getValue());
                unsigned n_bo = VN.getOrInsertVN(BO, Top);
                VR.applyRange(n_bo, CR, Top, this);
                return;
              }
            }
            break;
          case Instruction::Or:
            if (Op0 == AllOnes || Op1 == AllOnes) {
              add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            if (Op0 == Zero) {
              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
              return;
            } else if (Op1 == Zero) {
              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            break;
          case Instruction::Add:
            if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
              unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
              ConstantRange CR = VR.range(n_ci0, Top);
              if (!CR.isFullSet()) {
                CR.subtract(-CI0->getValue());
                unsigned n_bo = VN.getOrInsertVN(BO, Top);
                VR.applyRange(n_bo, CR, Top, this);
                return;
              }
            }
            if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
              unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
              ConstantRange CR = VR.range(n_ci1, Top);
              if (!CR.isFullSet()) {
                CR.subtract(-CI1->getValue());
                unsigned n_bo = VN.getOrInsertVN(BO, Top);
                VR.applyRange(n_bo, CR, Top, this);
                return;
              }
            }
            // fall-through
          case Instruction::Xor:
            if (Op0 == Zero) {
              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
              return;
            } else if (Op1 == Zero) {
              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            break;
          case Instruction::And:
            if (Op0 == AllOnes) {
              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
              return;
            } else if (Op1 == AllOnes) {
              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            if (Op0 == Zero || Op1 == Zero) {
              add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            break;
          case Instruction::Mul:
            if (Op0 == Zero || Op1 == Zero) {
              add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            if (Op0 == One) {
              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
              return;
            } else if (Op1 == One) {
              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
              return;
            }
            break;
        }

        // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0
        // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0
        // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0
        // "%x = udiv i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 1

        Value *Known = Op0, *Unknown = Op1,
              *TheBO = VN.canonicalize(BO, Top);
        if (Known != TheBO) std::swap(Known, Unknown);
        if (Known == TheBO) {
          switch (Opcode) {
            default: break;
            case Instruction::LShr:
            case Instruction::AShr:
            case Instruction::Shl:
              if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break;
              // otherwise, fall-through.
            case Instruction::Sub:
              if (Unknown == Op0) break;
              // otherwise, fall-through.
            case Instruction::Xor:
            case Instruction::Add:
              add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext);
              break;
            case Instruction::UDiv:
            case Instruction::SDiv:
              if (Unknown == Op1) break;
              if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE))
                add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
              break;
          }
        }

        // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z.

      } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
        // "%a = icmp ult i32 %b, %c" and %b u<  %c then %a EQ true
        // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false
        // etc.

        Value *Op0 = VN.canonicalize(IC->getOperand(0), Top);
        Value *Op1 = VN.canonicalize(IC->getOperand(1), Top);

        ICmpInst::Predicate Pred = IC->getPredicate();
        if (isRelatedBy(Op0, Op1, Pred))
          add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext);
        else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred)))
          add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext);

      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
        if (I->getType()->isFPOrFPVector()) return;

        // Given: "%a = select i1 %x, i32 %b, i32 %c"
        // %x EQ true  then %a EQ %b
        // %x EQ false then %a EQ %c
        // %b EQ %c then %a EQ %b

        Value *Canonical = VN.canonicalize(SI->getCondition(), Top);
        if (Canonical == ConstantInt::getTrue()) {
          add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
        } else if (Canonical == ConstantInt::getFalse()) {
          add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
        } else if (VN.canonicalize(SI->getTrueValue(), Top) ==
                   VN.canonicalize(SI->getFalseValue(), Top)) {
          add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
        }
      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
        const Type *DestTy = CI->getDestTy();
        if (DestTy->isFPOrFPVector()) return;

        Value *Op = VN.canonicalize(CI->getOperand(0), Top);
        Instruction::CastOps Opcode = CI->getOpcode();

        if (Constant *C = dyn_cast<Constant>(Op)) {
          add(CI, ConstantExpr::getCast(Opcode, C, DestTy),
              ICmpInst::ICMP_EQ, NewContext);
        }

        uint32_t W = VR.typeToWidth(DestTy);
        unsigned ci = VN.getOrInsertVN(CI, Top);
        ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top);

        if (!CR.isFullSet()) {
          switch (Opcode) {
            default: break;
            case Instruction::ZExt:
              VR.applyRange(ci, CR.zeroExtend(W), Top, this);
              break;
            case Instruction::SExt:
              VR.applyRange(ci, CR.signExtend(W), Top, this);
              break;
            case Instruction::Trunc: {
              ConstantRange Result = CR.truncate(W);
              if (!Result.isFullSet())
                VR.applyRange(ci, Result, Top, this);
            } break;
            case Instruction::BitCast:
              VR.applyRange(ci, CR, Top, this);
              break;
            // TODO: other casts?
          }
        }
      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
        for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
             OE = GEPI->idx_end(); OI != OE; ++OI) {
          ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
          if (!Op || !Op->isZero()) return;
        }
        // TODO: The GEPI indices are all zero. Copy from operand to definition,
        // jumping the type plane as needed.
        Value *Ptr = GEPI->getPointerOperand();
        if (isRelatedBy(Ptr, Context->getNullValue(Ptr->getType()),
                        ICmpInst::ICMP_NE)) {
          add(GEPI, Context->getNullValue(GEPI->getType()), ICmpInst::ICMP_NE,
              NewContext);
        }
      }
    }

    /// solve - process the work queue
    void solve() {
      //DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
      while (!WorkList.empty()) {
        //DOUT << "WorkList size: " << WorkList.size() << "\n";

        Operation &O = WorkList.front();
        TopInst = O.ContextInst;
        TopBB = O.ContextBB;
        Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context

        O.LHS = VN.canonicalize(O.LHS, Top);
        O.RHS = VN.canonicalize(O.RHS, Top);

        assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
        assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't.");

        DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
        if (O.ContextInst) DOUT << " context inst: " << *O.ContextInst;
        else DOUT << " context block: " << O.ContextBB->getName();
        DOUT << "\n";

        DEBUG(VN.dump());
        DEBUG(IG.dump());
        DEBUG(VR.dump());

        // If they're both Constant, skip it. Check for contradiction and mark
        // the BB as unreachable if so.
        if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) {
          if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) {
            if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) ==
                ConstantInt::getFalse())
              UB.mark(TopBB);

            WorkList.pop_front();
            continue;
          }
        }

        if (VN.compare(O.LHS, O.RHS)) {
          std::swap(O.LHS, O.RHS);
          O.Op = ICmpInst::getSwappedPredicate(O.Op);
        }

        if (O.Op == ICmpInst::ICMP_EQ) {
          if (!makeEqual(O.RHS, O.LHS))
            UB.mark(TopBB);
        } else {
          LatticeVal LV = cmpInstToLattice(O.Op);

          if ((LV & EQ_BIT) &&
              isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
            if (!makeEqual(O.RHS, O.LHS))
              UB.mark(TopBB);
          } else {
            if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
              UB.mark(TopBB);
              WorkList.pop_front();
              continue;
            }

            unsigned n1 = VN.getOrInsertVN(O.LHS, Top);
            unsigned n2 = VN.getOrInsertVN(O.RHS, Top);

            if (n1 == n2) {
              if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
                  O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
                UB.mark(TopBB);

              WorkList.pop_front();
              continue;
            }

            if (VR.isRelatedBy(n1, n2, Top, LV) ||
                IG.isRelatedBy(n1, n2, Top, LV)) {
              WorkList.pop_front();
              continue;
            }

            VR.addInequality(n1, n2, Top, LV, this);
            if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) ||
                LV == NE)
              IG.addInequality(n1, n2, Top, LV);

            if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) {
              if (aboveOrBelow(I1))
                defToOps(I1);
            }
            if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
              for (Value::use_iterator UI = O.LHS->use_begin(),
                   UE = O.LHS->use_end(); UI != UE;) {
                Use &TheUse = UI.getUse();
                ++UI;
                Instruction *I = cast<Instruction>(TheUse.getUser());
                if (aboveOrBelow(I))
                  opsToDef(I);
              }
            }
            if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) {
              if (aboveOrBelow(I2))
              defToOps(I2);
            }
            if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
              for (Value::use_iterator UI = O.RHS->use_begin(),
                   UE = O.RHS->use_end(); UI != UE;) {
                Use &TheUse = UI.getUse();
                ++UI;
                Instruction *I = cast<Instruction>(TheUse.getUser());
                if (aboveOrBelow(I))
                  opsToDef(I);
              }
            }
          }
        }
        WorkList.pop_front();
      }
    }
  };

  void ValueRanges::addToWorklist(Value *V, Constant *C,
                                  ICmpInst::Predicate Pred, VRPSolver *VRP) {
    VRP->add(V, C, Pred, VRP->TopInst);
  }

  void ValueRanges::markBlock(VRPSolver *VRP) {
    VRP->UB.mark(VRP->TopBB);
  }

  /// PredicateSimplifier - This class is a simplifier that replaces
  /// one equivalent variable with another. It also tracks what
  /// can't be equal and will solve setcc instructions when possible.
  /// @brief Root of the predicate simplifier optimization.
  class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass {
    DomTreeDFS *DTDFS;
    bool modified;
    ValueNumbering *VN;
    InequalityGraph *IG;
    UnreachableBlocks UB;
    ValueRanges *VR;

    std::vector<DomTreeDFS::Node *> WorkList;

  public:
    static char ID; // Pass identification, replacement for typeid
    PredicateSimplifier() : FunctionPass(&ID) {}

    bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(BreakCriticalEdgesID);
      AU.addRequired<DominatorTree>();
      AU.addRequired<TargetData>();
      AU.addPreserved<TargetData>();
    }

  private:
    /// Forwards - Adds new properties to VRPSolver and uses them to
    /// simplify instructions. Because new properties sometimes apply to
    /// a transition from one BasicBlock to another, this will use the
    /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
    /// basic block.
    /// @brief Performs abstract execution of the program.
    class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
      friend class InstVisitor<Forwards>;
      PredicateSimplifier *PS;
      DomTreeDFS::Node *DTNode;

    public:
      ValueNumbering &VN;
      InequalityGraph &IG;
      UnreachableBlocks &UB;
      ValueRanges &VR;

      Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode)
        : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB),
          VR(*PS->VR) {}

      void visitTerminatorInst(TerminatorInst &TI);
      void visitBranchInst(BranchInst &BI);
      void visitSwitchInst(SwitchInst &SI);

      void visitAllocaInst(AllocaInst &AI);
      void visitLoadInst(LoadInst &LI);
      void visitStoreInst(StoreInst &SI);

      void visitSExtInst(SExtInst &SI);
      void visitZExtInst(ZExtInst &ZI);

      void visitBinaryOperator(BinaryOperator &BO);
      void visitICmpInst(ICmpInst &IC);
    };
  
    // Used by terminator instructions to proceed from the current basic
    // block to the next. Verifies that "current" dominates "next",
    // then calls visitBasicBlock.
    void proceedToSuccessors(DomTreeDFS::Node *Current) {
      for (DomTreeDFS::Node::iterator I = Current->begin(),
           E = Current->end(); I != E; ++I) {
        WorkList.push_back(*I);
      }
    }

    void proceedToSuccessor(DomTreeDFS::Node *Next) {
      WorkList.push_back(Next);
    }

    // Visits each instruction in the basic block.
    void visitBasicBlock(DomTreeDFS::Node *Node) {
      BasicBlock *BB = Node->getBlock();
      DOUT << "Entering Basic Block: " << BB->getName()
           << " (" << Node->getDFSNumIn() << ")\n";
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
        visitInstruction(I++, Node);
      }
    }

    // Tries to simplify each Instruction and add new properties.
    void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) {
      DOUT << "Considering instruction " << *I << "\n";
      DEBUG(VN->dump());
      DEBUG(IG->dump());
      DEBUG(VR->dump());

      // Sometimes instructions are killed in earlier analysis.
      if (isInstructionTriviallyDead(I)) {
        ++NumSimple;
        modified = true;
        if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
          if (VN->value(n) == I) IG->remove(n);
        VN->remove(I);
        I->eraseFromParent();
        return;
      }

#ifndef NDEBUG
      // Try to replace the whole instruction.
      Value *V = VN->canonicalize(I, DT);
      assert(V == I && "Late instruction canonicalization.");
      if (V != I) {
        modified = true;
        ++NumInstruction;
        DOUT << "Removing " << *I << ", replacing with " << *V << "\n";
        if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
          if (VN->value(n) == I) IG->remove(n);
        VN->remove(I);
        I->replaceAllUsesWith(V);
        I->eraseFromParent();
        return;
      }

      // Try to substitute operands.
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
        Value *Oper = I->getOperand(i);
        Value *V = VN->canonicalize(Oper, DT);
        assert(V == Oper && "Late operand canonicalization.");
        if (V != Oper) {
          modified = true;
          ++NumVarsReplaced;
          DOUT << "Resolving " << *I;
          I->setOperand(i, V);
          DOUT << " into " << *I;
        }
      }
#endif

      std::string name = I->getParent()->getName();
      DOUT << "push (%" << name << ")\n";
      Forwards visit(this, DT);
      visit.visit(*I);
      DOUT << "pop (%" << name << ")\n";
    }
  };

  bool PredicateSimplifier::runOnFunction(Function &F) {
    DominatorTree *DT = &getAnalysis<DominatorTree>();
    DTDFS = new DomTreeDFS(DT);
    TargetData *TD = &getAnalysis<TargetData>();

    DOUT << "Entering Function: " << F.getName() << "\n";

    modified = false;
    DomTreeDFS::Node *Root = DTDFS->getRootNode();
    VN = new ValueNumbering(DTDFS);
    IG = new InequalityGraph(*VN, Root);
    VR = new ValueRanges(*VN, TD);
    WorkList.push_back(Root);

    do {
      DomTreeDFS::Node *DTNode = WorkList.back();
      WorkList.pop_back();
      if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
    } while (!WorkList.empty());

    delete DTDFS;
    delete VR;
    delete IG;
    delete VN;

    modified |= UB.kill();

    return modified;
  }

  void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
    PS->proceedToSuccessors(DTNode);
  }

  void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
    if (BI.isUnconditional()) {
      PS->proceedToSuccessors(DTNode);
      return;
    }

    Value *Condition = BI.getCondition();
    BasicBlock *TrueDest  = BI.getSuccessor(0);
    BasicBlock *FalseDest = BI.getSuccessor(1);

    if (isa<Constant>(Condition) || TrueDest == FalseDest) {
      PS->proceedToSuccessors(DTNode);
      return;
    }

    for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
         I != E; ++I) {
      BasicBlock *Dest = (*I)->getBlock();
      DOUT << "Branch thinking about %" << Dest->getName()
           << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n";

      if (Dest == TrueDest) {
        DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n";
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
        VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ);
        VRP.solve();
        DEBUG(VN.dump());
        DEBUG(IG.dump());
        DEBUG(VR.dump());
      } else if (Dest == FalseDest) {
        DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n";
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
        VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ);
        VRP.solve();
        DEBUG(VN.dump());
        DEBUG(IG.dump());
        DEBUG(VR.dump());
      }

      PS->proceedToSuccessor(*I);
    }
  }

  void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
    Value *Condition = SI.getCondition();

    // Set the EQProperty in each of the cases BBs, and the NEProperties
    // in the default BB.

    for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
         I != E; ++I) {
      BasicBlock *BB = (*I)->getBlock();
      DOUT << "Switch thinking about BB %" << BB->getName()
           << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n";

      VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB);
      if (BB == SI.getDefaultDest()) {
        for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
          if (SI.getSuccessor(i) != BB)
            VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
        VRP.solve();
      } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
        VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
        VRP.solve();
      }
      PS->proceedToSuccessor(*I);
    }
  }

  void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI);
    VRP.add(AI.getParent()->getContext()->getNullValue(AI.getType()),
            &AI, ICmpInst::ICMP_NE);
    VRP.solve();
  }

  void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
    Value *Ptr = LI.getPointerOperand();
    // avoid "load i8* null" -> null NE null.
    if (isa<Constant>(Ptr)) return;

    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI);
    VRP.add(LI.getParent()->getContext()->getNullValue(Ptr->getType()),
            Ptr, ICmpInst::ICMP_NE);
    VRP.solve();
  }

  void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
    Value *Ptr = SI.getPointerOperand();
    if (isa<Constant>(Ptr)) return;

    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
    VRP.add(SI.getParent()->getContext()->getNullValue(Ptr->getType()),
            Ptr, ICmpInst::ICMP_NE);
    VRP.solve();
  }

  void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) {
    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
    uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth();
    uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth();
    APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1));
    APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1));
    VRP.add(ConstantInt::get(Min), &SI, ICmpInst::ICMP_SLE);
    VRP.add(ConstantInt::get(Max), &SI, ICmpInst::ICMP_SGE);
    VRP.solve();
  }

  void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) {
    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI);
    uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth();
    uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth();
    APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth));
    VRP.add(ConstantInt::get(Max), &ZI, ICmpInst::ICMP_UGE);
    VRP.solve();
  }

  void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
    Instruction::BinaryOps ops = BO.getOpcode();

    switch (ops) {
    default: break;
      case Instruction::URem:
      case Instruction::SRem:
      case Instruction::UDiv:
      case Instruction::SDiv: {
        Value *Divisor = BO.getOperand(1);
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
        VRP.add(BO.getParent()->getContext()->getNullValue(Divisor->getType()), 
                Divisor, ICmpInst::ICMP_NE);
        VRP.solve();
        break;
      }
    }

    switch (ops) {
      default: break;
      case Instruction::Shl: {
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
        VRP.solve();
      } break;
      case Instruction::AShr: {
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE);
        VRP.solve();
      } break;
      case Instruction::LShr:
      case Instruction::UDiv: {
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
        VRP.solve();
      } break;
      case Instruction::URem: {
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
        VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
        VRP.solve();
      } break;
      case Instruction::And: {
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
        VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
        VRP.solve();
      } break;
      case Instruction::Or: {
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
        VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE);
        VRP.solve();
      } break;
    }
  }

  void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) {
    // If possible, squeeze the ICmp predicate into something simpler.
    // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change
    // the predicate to eq.

    // XXX: once we do full PHI handling, modifying the instruction in the
    // Forwards visitor will cause missed optimizations.

    ICmpInst::Predicate Pred = IC.getPredicate();

    switch (Pred) {
      default: break;
      case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break;
      case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break;
      case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break;
      case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break;
    }
    if (Pred != IC.getPredicate()) {
      VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
      if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0),
                          ICmpInst::ICMP_NE)) {
        ++NumSnuggle;
        PS->modified = true;
        IC.setPredicate(Pred);
      }
    }

    Pred = IC.getPredicate();

    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) {
      ConstantInt *NextVal = 0;
      switch (Pred) {
        default: break;
        case ICmpInst::ICMP_SLT:
        case ICmpInst::ICMP_ULT:
          if (Op1->getValue() != 0)
            NextVal = ConstantInt::get(Op1->getValue()-1);
         break;
        case ICmpInst::ICMP_SGT:
        case ICmpInst::ICMP_UGT:
          if (!Op1->getValue().isAllOnesValue())
            NextVal = ConstantInt::get(Op1->getValue()+1);
         break;
      }

      if (NextVal) {
        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
        if (VRP.isRelatedBy(IC.getOperand(0), NextVal,
                            ICmpInst::getInversePredicate(Pred))) {
          ICmpInst *NewIC = new ICmpInst(&IC, ICmpInst::ICMP_EQ, 
                                         IC.getOperand(0), NextVal, "");
          NewIC->takeName(&IC);
          IC.replaceAllUsesWith(NewIC);

          // XXX: prove this isn't necessary
          if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode()))
            if (VN.value(n) == &IC) IG.remove(n);
          VN.remove(&IC);

          IC.eraseFromParent();
          ++NumSnuggle;
          PS->modified = true;
        }
      }
    }
  }
}

char PredicateSimplifier::ID = 0;
static RegisterPass<PredicateSimplifier>
X("predsimplify", "Predicate Simplifier");

FunctionPass *llvm::createPredicateSimplifierPass() {
  return new PredicateSimplifier();
}