llvm.org GIT mirror llvm / 06d6207 lib / Transforms / IPO / WholeProgramDevirt.cpp
06d6207

Tree @06d6207 (Download .tar.gz)

WholeProgramDevirt.cpp @06d6207raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements whole program optimization of virtual calls in cases
// where we know (via !type metadata) that the list of callees is fixed. This
// includes the following:
// - Single implementation devirtualization: if a virtual call has a single
//   possible callee, replace all calls with a direct call to that callee.
// - Virtual constant propagation: if the virtual function's return type is an
//   integer <=64 bits and all possible callees are readnone, for each class and
//   each list of constant arguments: evaluate the function, store the return
//   value alongside the virtual table, and rewrite each virtual call as a load
//   from the virtual table.
// - Uniform return value optimization: if the conditions for virtual constant
//   propagation hold and each function returns the same constant value, replace
//   each virtual call with that constant.
// - Unique return value optimization for i1 return values: if the conditions
//   for virtual constant propagation hold and a single vtable's function
//   returns 0, or a single vtable's function returns 1, replace each virtual
//   call with a comparison of the vptr against that vtable's address.
//
// This pass is intended to be used during the regular and thin LTO pipelines.
// During regular LTO, the pass determines the best optimization for each
// virtual call and applies the resolutions directly to virtual calls that are
// eligible for virtual call optimization (i.e. calls that use either of the
// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
// ThinLTO, the pass operates in two phases:
// - Export phase: this is run during the thin link over a single merged module
//   that contains all vtables with !type metadata that participate in the link.
//   The pass computes a resolution for each virtual call and stores it in the
//   type identifier summary.
// - Import phase: this is run during the thin backends over the individual
//   modules. The pass applies the resolutions previously computed during the
//   import phase to each eligible virtual call.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndexYAML.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include <algorithm>
#include <cstddef>
#include <map>
#include <set>
#include <string>

using namespace llvm;
using namespace wholeprogramdevirt;

#define DEBUG_TYPE "wholeprogramdevirt"

static cl::opt<PassSummaryAction> ClSummaryAction(
    "wholeprogramdevirt-summary-action",
    cl::desc("What to do with the summary when running this pass"),
    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
               clEnumValN(PassSummaryAction::Import, "import",
                          "Import typeid resolutions from summary and globals"),
               clEnumValN(PassSummaryAction::Export, "export",
                          "Export typeid resolutions to summary and globals")),
    cl::Hidden);

static cl::opt<std::string> ClReadSummary(
    "wholeprogramdevirt-read-summary",
    cl::desc("Read summary from given YAML file before running pass"),
    cl::Hidden);

static cl::opt<std::string> ClWriteSummary(
    "wholeprogramdevirt-write-summary",
    cl::desc("Write summary to given YAML file after running pass"),
    cl::Hidden);

// Find the minimum offset that we may store a value of size Size bits at. If
// IsAfter is set, look for an offset before the object, otherwise look for an
// offset after the object.
uint64_t
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
                                     bool IsAfter, uint64_t Size) {
  // Find a minimum offset taking into account only vtable sizes.
  uint64_t MinByte = 0;
  for (const VirtualCallTarget &Target : Targets) {
    if (IsAfter)
      MinByte = std::max(MinByte, Target.minAfterBytes());
    else
      MinByte = std::max(MinByte, Target.minBeforeBytes());
  }

  // Build a vector of arrays of bytes covering, for each target, a slice of the
  // used region (see AccumBitVector::BytesUsed in
  // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
  // this aligns the used regions to start at MinByte.
  //
  // In this example, A, B and C are vtables, # is a byte already allocated for
  // a virtual function pointer, AAAA... (etc.) are the used regions for the
  // vtables and Offset(X) is the value computed for the Offset variable below
  // for X.
  //
  //                    Offset(A)
  //                    |       |
  //                            |MinByte
  // A: ################AAAAAAAA|AAAAAAAA
  // B: ########BBBBBBBBBBBBBBBB|BBBB
  // C: ########################|CCCCCCCCCCCCCCCC
  //            |   Offset(B)   |
  //
  // This code produces the slices of A, B and C that appear after the divider
  // at MinByte.
  std::vector<ArrayRef<uint8_t>> Used;
  for (const VirtualCallTarget &Target : Targets) {
    ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
                                       : Target.TM->Bits->Before.BytesUsed;
    uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
                              : MinByte - Target.minBeforeBytes();

    // Disregard used regions that are smaller than Offset. These are
    // effectively all-free regions that do not need to be checked.
    if (VTUsed.size() > Offset)
      Used.push_back(VTUsed.slice(Offset));
  }

  if (Size == 1) {
    // Find a free bit in each member of Used.
    for (unsigned I = 0;; ++I) {
      uint8_t BitsUsed = 0;
      for (auto &&B : Used)
        if (I < B.size())
          BitsUsed |= B[I];
      if (BitsUsed != 0xff)
        return (MinByte + I) * 8 +
               countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
    }
  } else {
    // Find a free (Size/8) byte region in each member of Used.
    // FIXME: see if alignment helps.
    for (unsigned I = 0;; ++I) {
      for (auto &&B : Used) {
        unsigned Byte = 0;
        while ((I + Byte) < B.size() && Byte < (Size / 8)) {
          if (B[I + Byte])
            goto NextI;
          ++Byte;
        }
      }
      return (MinByte + I) * 8;
    NextI:;
    }
  }
}

void wholeprogramdevirt::setBeforeReturnValues(
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
  if (BitWidth == 1)
    OffsetByte = -(AllocBefore / 8 + 1);
  else
    OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
  OffsetBit = AllocBefore % 8;

  for (VirtualCallTarget &Target : Targets) {
    if (BitWidth == 1)
      Target.setBeforeBit(AllocBefore);
    else
      Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
  }
}

void wholeprogramdevirt::setAfterReturnValues(
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
  if (BitWidth == 1)
    OffsetByte = AllocAfter / 8;
  else
    OffsetByte = (AllocAfter + 7) / 8;
  OffsetBit = AllocAfter % 8;

  for (VirtualCallTarget &Target : Targets) {
    if (BitWidth == 1)
      Target.setAfterBit(AllocAfter);
    else
      Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
  }
}

VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
    : Fn(Fn), TM(TM),
      IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}

namespace {

// A slot in a set of virtual tables. The TypeID identifies the set of virtual
// tables, and the ByteOffset is the offset in bytes from the address point to
// the virtual function pointer.
struct VTableSlot {
  Metadata *TypeID;
  uint64_t ByteOffset;
};

} // end anonymous namespace

namespace llvm {

template <> struct DenseMapInfo<VTableSlot> {
  static VTableSlot getEmptyKey() {
    return {DenseMapInfo<Metadata *>::getEmptyKey(),
            DenseMapInfo<uint64_t>::getEmptyKey()};
  }
  static VTableSlot getTombstoneKey() {
    return {DenseMapInfo<Metadata *>::getTombstoneKey(),
            DenseMapInfo<uint64_t>::getTombstoneKey()};
  }
  static unsigned getHashValue(const VTableSlot &I) {
    return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
  }
  static bool isEqual(const VTableSlot &LHS,
                      const VTableSlot &RHS) {
    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
  }
};

} // end namespace llvm

namespace {

// A virtual call site. VTable is the loaded virtual table pointer, and CS is
// the indirect virtual call.
struct VirtualCallSite {
  Value *VTable;
  CallSite CS;

  // If non-null, this field points to the associated unsafe use count stored in
  // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
  // of that field for details.
  unsigned *NumUnsafeUses;

  void
  emitRemark(const StringRef OptName, const StringRef TargetName,
             function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
    Function *F = CS.getCaller();
    DebugLoc DLoc = CS->getDebugLoc();
    BasicBlock *Block = CS.getParent();

    using namespace ore;
    OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
                      << NV("Optimization", OptName)
                      << ": devirtualized a call to "
                      << NV("FunctionName", TargetName));
  }

  void replaceAndErase(
      const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
      Value *New) {
    if (RemarksEnabled)
      emitRemark(OptName, TargetName, OREGetter);
    CS->replaceAllUsesWith(New);
    if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
      BranchInst::Create(II->getNormalDest(), CS.getInstruction());
      II->getUnwindDest()->removePredecessor(II->getParent());
    }
    CS->eraseFromParent();
    // This use is no longer unsafe.
    if (NumUnsafeUses)
      --*NumUnsafeUses;
  }
};

// Call site information collected for a specific VTableSlot and possibly a list
// of constant integer arguments. The grouping by arguments is handled by the
// VTableSlotInfo class.
struct CallSiteInfo {
  /// The set of call sites for this slot. Used during regular LTO and the
  /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
  /// call sites that appear in the merged module itself); in each of these
  /// cases we are directly operating on the call sites at the IR level.
  std::vector<VirtualCallSite> CallSites;

  // These fields are used during the export phase of ThinLTO and reflect
  // information collected from function summaries.

  /// Whether any function summary contains an llvm.assume(llvm.type.test) for
  /// this slot.
  bool SummaryHasTypeTestAssumeUsers;

  /// CFI-specific: a vector containing the list of function summaries that use
  /// the llvm.type.checked.load intrinsic and therefore will require
  /// resolutions for llvm.type.test in order to implement CFI checks if
  /// devirtualization was unsuccessful. If devirtualization was successful, the
  /// pass will clear this vector by calling markDevirt(). If at the end of the
  /// pass the vector is non-empty, we will need to add a use of llvm.type.test
  /// to each of the function summaries in the vector.
  std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;

  bool isExported() const {
    return SummaryHasTypeTestAssumeUsers ||
           !SummaryTypeCheckedLoadUsers.empty();
  }

  /// As explained in the comment for SummaryTypeCheckedLoadUsers.
  void markDevirt() { SummaryTypeCheckedLoadUsers.clear(); }
};

// Call site information collected for a specific VTableSlot.
struct VTableSlotInfo {
  // The set of call sites which do not have all constant integer arguments
  // (excluding "this").
  CallSiteInfo CSInfo;

  // The set of call sites with all constant integer arguments (excluding
  // "this"), grouped by argument list.
  std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;

  void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);

private:
  CallSiteInfo &findCallSiteInfo(CallSite CS);
};

CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
  std::vector<uint64_t> Args;
  auto *CI = dyn_cast<IntegerType>(CS.getType());
  if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
    return CSInfo;
  for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
    auto *CI = dyn_cast<ConstantInt>(Arg);
    if (!CI || CI->getBitWidth() > 64)
      return CSInfo;
    Args.push_back(CI->getZExtValue());
  }
  return ConstCSInfo[Args];
}

void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
                                 unsigned *NumUnsafeUses) {
  findCallSiteInfo(CS).CallSites.push_back({VTable, CS, NumUnsafeUses});
}

struct DevirtModule {
  Module &M;
  function_ref<AAResults &(Function &)> AARGetter;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  IntegerType *Int8Ty;
  PointerType *Int8PtrTy;
  IntegerType *Int32Ty;
  IntegerType *Int64Ty;
  IntegerType *IntPtrTy;

  bool RemarksEnabled;
  function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;

  MapVector<VTableSlot, VTableSlotInfo> CallSlots;

  // This map keeps track of the number of "unsafe" uses of a loaded function
  // pointer. The key is the associated llvm.type.test intrinsic call generated
  // by this pass. An unsafe use is one that calls the loaded function pointer
  // directly. Every time we eliminate an unsafe use (for example, by
  // devirtualizing it or by applying virtual constant propagation), we
  // decrement the value stored in this map. If a value reaches zero, we can
  // eliminate the type check by RAUWing the associated llvm.type.test call with
  // true.
  std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;

  DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
               function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
               ModuleSummaryIndex *ExportSummary,
               const ModuleSummaryIndex *ImportSummary)
      : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary),
        ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())),
        Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
        Int32Ty(Type::getInt32Ty(M.getContext())),
        Int64Ty(Type::getInt64Ty(M.getContext())),
        IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
        RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
    assert(!(ExportSummary && ImportSummary));
  }

  bool areRemarksEnabled();

  void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
  void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);

  void buildTypeIdentifierMap(
      std::vector<VTableBits> &Bits,
      DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
  Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
  bool
  tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
                            const std::set<TypeMemberInfo> &TypeMemberInfos,
                            uint64_t ByteOffset);

  void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
                             bool &IsExported);
  bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res);

  bool tryEvaluateFunctionsWithArgs(
      MutableArrayRef<VirtualCallTarget> TargetsForSlot,
      ArrayRef<uint64_t> Args);

  void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                             uint64_t TheRetVal);
  bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           CallSiteInfo &CSInfo,
                           WholeProgramDevirtResolution::ByArg *Res);

  // Returns the global symbol name that is used to export information about the
  // given vtable slot and list of arguments.
  std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
                            StringRef Name);

  bool shouldExportConstantsAsAbsoluteSymbols();

  // This function is called during the export phase to create a symbol
  // definition containing information about the given vtable slot and list of
  // arguments.
  void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
                    Constant *C);
  void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
                      uint32_t Const, uint32_t &Storage);

  // This function is called during the import phase to create a reference to
  // the symbol definition created during the export phase.
  Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                         StringRef Name);
  Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                           StringRef Name, IntegerType *IntTy,
                           uint32_t Storage);

  void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
                            Constant *UniqueMemberAddr);
  bool tryUniqueRetValOpt(unsigned BitWidth,
                          MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                          CallSiteInfo &CSInfo,
                          WholeProgramDevirtResolution::ByArg *Res,
                          VTableSlot Slot, ArrayRef<uint64_t> Args);

  void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
                             Constant *Byte, Constant *Bit);
  bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
                           VTableSlotInfo &SlotInfo,
                           WholeProgramDevirtResolution *Res, VTableSlot Slot);

  void rebuildGlobal(VTableBits &B);

  // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
  void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);

  // If we were able to eliminate all unsafe uses for a type checked load,
  // eliminate the associated type tests by replacing them with true.
  void removeRedundantTypeTests();

  bool run();

  // Lower the module using the action and summary passed as command line
  // arguments. For testing purposes only.
  static bool runForTesting(
      Module &M, function_ref<AAResults &(Function &)> AARGetter,
      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
};

struct WholeProgramDevirt : public ModulePass {
  static char ID;

  bool UseCommandLine = false;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
  }

  WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
                     const ModuleSummaryIndex *ImportSummary)
      : ModulePass(ID), ExportSummary(ExportSummary),
        ImportSummary(ImportSummary) {
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;

    // In the new pass manager, we can request the optimization
    // remark emitter pass on a per-function-basis, which the
    // OREGetter will do for us.
    // In the old pass manager, this is harder, so we just build
    // an optimization remark emitter on the fly, when we need it.
    std::unique_ptr<OptimizationRemarkEmitter> ORE;
    auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
      ORE = make_unique<OptimizationRemarkEmitter>(F);
      return *ORE;
    };

    if (UseCommandLine)
      return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter);

    return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary,
                        ImportSummary)
        .run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }
};

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
                      "Whole program devirtualization", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
                    "Whole program devirtualization", false, false)
char WholeProgramDevirt::ID = 0;

ModulePass *
llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
                                   const ModuleSummaryIndex *ImportSummary) {
  return new WholeProgramDevirt(ExportSummary, ImportSummary);
}

PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
                                              ModuleAnalysisManager &AM) {
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto AARGetter = [&](Function &F) -> AAResults & {
    return FAM.getResult<AAManager>(F);
  };
  auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
  };
  if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run())
    return PreservedAnalyses::all();
  return PreservedAnalyses::none();
}

bool DevirtModule::runForTesting(
    Module &M, function_ref<AAResults &(Function &)> AARGetter,
    function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
  ModuleSummaryIndex Summary(/*IsPerformingAnalysis=*/false);

  // Handle the command-line summary arguments. This code is for testing
  // purposes only, so we handle errors directly.
  if (!ClReadSummary.empty()) {
    ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
                          ": ");
    auto ReadSummaryFile =
        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));

    yaml::Input In(ReadSummaryFile->getBuffer());
    In >> Summary;
    ExitOnErr(errorCodeToError(In.error()));
  }

  bool Changed =
      DevirtModule(
          M, AARGetter, OREGetter,
          ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
          ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
          .run();

  if (!ClWriteSummary.empty()) {
    ExitOnError ExitOnErr(
        "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
    std::error_code EC;
    raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
    ExitOnErr(errorCodeToError(EC));

    yaml::Output Out(OS);
    Out << Summary;
  }

  return Changed;
}

void DevirtModule::buildTypeIdentifierMap(
    std::vector<VTableBits> &Bits,
    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
  DenseMap<GlobalVariable *, VTableBits *> GVToBits;
  Bits.reserve(M.getGlobalList().size());
  SmallVector<MDNode *, 2> Types;
  for (GlobalVariable &GV : M.globals()) {
    Types.clear();
    GV.getMetadata(LLVMContext::MD_type, Types);
    if (Types.empty())
      continue;

    VTableBits *&BitsPtr = GVToBits[&GV];
    if (!BitsPtr) {
      Bits.emplace_back();
      Bits.back().GV = &GV;
      Bits.back().ObjectSize =
          M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
      BitsPtr = &Bits.back();
    }

    for (MDNode *Type : Types) {
      auto TypeID = Type->getOperand(1).get();

      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();

      TypeIdMap[TypeID].insert({BitsPtr, Offset});
    }
  }
}

Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
  if (I->getType()->isPointerTy()) {
    if (Offset == 0)
      return I;
    return nullptr;
  }

  const DataLayout &DL = M.getDataLayout();

  if (auto *C = dyn_cast<ConstantStruct>(I)) {
    const StructLayout *SL = DL.getStructLayout(C->getType());
    if (Offset >= SL->getSizeInBytes())
      return nullptr;

    unsigned Op = SL->getElementContainingOffset(Offset);
    return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
                              Offset - SL->getElementOffset(Op));
  }
  if (auto *C = dyn_cast<ConstantArray>(I)) {
    ArrayType *VTableTy = C->getType();
    uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());

    unsigned Op = Offset / ElemSize;
    if (Op >= C->getNumOperands())
      return nullptr;

    return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
                              Offset % ElemSize);
  }
  return nullptr;
}

bool DevirtModule::tryFindVirtualCallTargets(
    std::vector<VirtualCallTarget> &TargetsForSlot,
    const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
  for (const TypeMemberInfo &TM : TypeMemberInfos) {
    if (!TM.Bits->GV->isConstant())
      return false;

    Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
                                       TM.Offset + ByteOffset);
    if (!Ptr)
      return false;

    auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
    if (!Fn)
      return false;

    // We can disregard __cxa_pure_virtual as a possible call target, as
    // calls to pure virtuals are UB.
    if (Fn->getName() == "__cxa_pure_virtual")
      continue;

    TargetsForSlot.push_back({Fn, &TM});
  }

  // Give up if we couldn't find any targets.
  return !TargetsForSlot.empty();
}

void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
                                         Constant *TheFn, bool &IsExported) {
  auto Apply = [&](CallSiteInfo &CSInfo) {
    for (auto &&VCallSite : CSInfo.CallSites) {
      if (RemarksEnabled)
        VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter);
      VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
          TheFn, VCallSite.CS.getCalledValue()->getType()));
      // This use is no longer unsafe.
      if (VCallSite.NumUnsafeUses)
        --*VCallSite.NumUnsafeUses;
    }
    if (CSInfo.isExported()) {
      IsExported = true;
      CSInfo.markDevirt();
    }
  };
  Apply(SlotInfo.CSInfo);
  for (auto &P : SlotInfo.ConstCSInfo)
    Apply(P.second);
}

bool DevirtModule::trySingleImplDevirt(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
    VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
  // See if the program contains a single implementation of this virtual
  // function.
  Function *TheFn = TargetsForSlot[0].Fn;
  for (auto &&Target : TargetsForSlot)
    if (TheFn != Target.Fn)
      return false;

  // If so, update each call site to call that implementation directly.
  if (RemarksEnabled)
    TargetsForSlot[0].WasDevirt = true;

  bool IsExported = false;
  applySingleImplDevirt(SlotInfo, TheFn, IsExported);
  if (!IsExported)
    return false;

  // If the only implementation has local linkage, we must promote to external
  // to make it visible to thin LTO objects. We can only get here during the
  // ThinLTO export phase.
  if (TheFn->hasLocalLinkage()) {
    std::string NewName = (TheFn->getName() + "$merged").str();

    // Since we are renaming the function, any comdats with the same name must
    // also be renamed. This is required when targeting COFF, as the comdat name
    // must match one of the names of the symbols in the comdat.
    if (Comdat *C = TheFn->getComdat()) {
      if (C->getName() == TheFn->getName()) {
        Comdat *NewC = M.getOrInsertComdat(NewName);
        NewC->setSelectionKind(C->getSelectionKind());
        for (GlobalObject &GO : M.global_objects())
          if (GO.getComdat() == C)
            GO.setComdat(NewC);
      }
    }

    TheFn->setLinkage(GlobalValue::ExternalLinkage);
    TheFn->setVisibility(GlobalValue::HiddenVisibility);
    TheFn->setName(NewName);
  }

  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
  Res->SingleImplName = TheFn->getName();

  return true;
}

bool DevirtModule::tryEvaluateFunctionsWithArgs(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
    ArrayRef<uint64_t> Args) {
  // Evaluate each function and store the result in each target's RetVal
  // field.
  for (VirtualCallTarget &Target : TargetsForSlot) {
    if (Target.Fn->arg_size() != Args.size() + 1)
      return false;

    Evaluator Eval(M.getDataLayout(), nullptr);
    SmallVector<Constant *, 2> EvalArgs;
    EvalArgs.push_back(
        Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
    for (unsigned I = 0; I != Args.size(); ++I) {
      auto *ArgTy = dyn_cast<IntegerType>(
          Target.Fn->getFunctionType()->getParamType(I + 1));
      if (!ArgTy)
        return false;
      EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
    }

    Constant *RetVal;
    if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
        !isa<ConstantInt>(RetVal))
      return false;
    Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
  }
  return true;
}

void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                                         uint64_t TheRetVal) {
  for (auto Call : CSInfo.CallSites)
    Call.replaceAndErase(
        "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
        ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
  CSInfo.markDevirt();
}

bool DevirtModule::tryUniformRetValOpt(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
    WholeProgramDevirtResolution::ByArg *Res) {
  // Uniform return value optimization. If all functions return the same
  // constant, replace all calls with that constant.
  uint64_t TheRetVal = TargetsForSlot[0].RetVal;
  for (const VirtualCallTarget &Target : TargetsForSlot)
    if (Target.RetVal != TheRetVal)
      return false;

  if (CSInfo.isExported()) {
    Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
    Res->Info = TheRetVal;
  }

  applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
  if (RemarksEnabled)
    for (auto &&Target : TargetsForSlot)
      Target.WasDevirt = true;
  return true;
}

std::string DevirtModule::getGlobalName(VTableSlot Slot,
                                        ArrayRef<uint64_t> Args,
                                        StringRef Name) {
  std::string FullName = "__typeid_";
  raw_string_ostream OS(FullName);
  OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
  for (uint64_t Arg : Args)
    OS << '_' << Arg;
  OS << '_' << Name;
  return OS.str();
}

bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
  Triple T(M.getTargetTriple());
  return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
         T.getObjectFormat() == Triple::ELF;
}

void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                StringRef Name, Constant *C) {
  GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
                                        getGlobalName(Slot, Args, Name), C, &M);
  GA->setVisibility(GlobalValue::HiddenVisibility);
}

void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                  StringRef Name, uint32_t Const,
                                  uint32_t &Storage) {
  if (shouldExportConstantsAsAbsoluteSymbols()) {
    exportGlobal(
        Slot, Args, Name,
        ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
    return;
  }

  Storage = Const;
}

Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                     StringRef Name) {
  Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
  auto *GV = dyn_cast<GlobalVariable>(C);
  if (GV)
    GV->setVisibility(GlobalValue::HiddenVisibility);
  return C;
}

Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
                                       StringRef Name, IntegerType *IntTy,
                                       uint32_t Storage) {
  if (!shouldExportConstantsAsAbsoluteSymbols())
    return ConstantInt::get(IntTy, Storage);

  Constant *C = importGlobal(Slot, Args, Name);
  auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
  C = ConstantExpr::getPtrToInt(C, IntTy);

  // We only need to set metadata if the global is newly created, in which
  // case it would not have hidden visibility.
  if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
    return C;

  auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
    auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
    auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
    GV->setMetadata(LLVMContext::MD_absolute_symbol,
                    MDNode::get(M.getContext(), {MinC, MaxC}));
  };
  unsigned AbsWidth = IntTy->getBitWidth();
  if (AbsWidth == IntPtrTy->getBitWidth())
    SetAbsRange(~0ull, ~0ull); // Full set.
  else
    SetAbsRange(0, 1ull << AbsWidth);
  return C;
}

void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
                                        bool IsOne,
                                        Constant *UniqueMemberAddr) {
  for (auto &&Call : CSInfo.CallSites) {
    IRBuilder<> B(Call.CS.getInstruction());
    Value *Cmp =
        B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
                     B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
    Cmp = B.CreateZExt(Cmp, Call.CS->getType());
    Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
                         Cmp);
  }
  CSInfo.markDevirt();
}

bool DevirtModule::tryUniqueRetValOpt(
    unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
    CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
    VTableSlot Slot, ArrayRef<uint64_t> Args) {
  // IsOne controls whether we look for a 0 or a 1.
  auto tryUniqueRetValOptFor = [&](bool IsOne) {
    const TypeMemberInfo *UniqueMember = nullptr;
    for (const VirtualCallTarget &Target : TargetsForSlot) {
      if (Target.RetVal == (IsOne ? 1 : 0)) {
        if (UniqueMember)
          return false;
        UniqueMember = Target.TM;
      }
    }

    // We should have found a unique member or bailed out by now. We already
    // checked for a uniform return value in tryUniformRetValOpt.
    assert(UniqueMember);

    Constant *UniqueMemberAddr =
        ConstantExpr::getBitCast(UniqueMember->Bits->GV, Int8PtrTy);
    UniqueMemberAddr = ConstantExpr::getGetElementPtr(
        Int8Ty, UniqueMemberAddr,
        ConstantInt::get(Int64Ty, UniqueMember->Offset));

    if (CSInfo.isExported()) {
      Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
      Res->Info = IsOne;

      exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
    }

    // Replace each call with the comparison.
    applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
                         UniqueMemberAddr);

    // Update devirtualization statistics for targets.
    if (RemarksEnabled)
      for (auto &&Target : TargetsForSlot)
        Target.WasDevirt = true;

    return true;
  };

  if (BitWidth == 1) {
    if (tryUniqueRetValOptFor(true))
      return true;
    if (tryUniqueRetValOptFor(false))
      return true;
  }
  return false;
}

void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
                                         Constant *Byte, Constant *Bit) {
  for (auto Call : CSInfo.CallSites) {
    auto *RetType = cast<IntegerType>(Call.CS.getType());
    IRBuilder<> B(Call.CS.getInstruction());
    Value *Addr =
        B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
    if (RetType->getBitWidth() == 1) {
      Value *Bits = B.CreateLoad(Addr);
      Value *BitsAndBit = B.CreateAnd(Bits, Bit);
      auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
      Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
                           OREGetter, IsBitSet);
    } else {
      Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
      Value *Val = B.CreateLoad(RetType, ValAddr);
      Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
                           OREGetter, Val);
    }
  }
  CSInfo.markDevirt();
}

bool DevirtModule::tryVirtualConstProp(
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
  // This only works if the function returns an integer.
  auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
  if (!RetType)
    return false;
  unsigned BitWidth = RetType->getBitWidth();
  if (BitWidth > 64)
    return false;

  // Make sure that each function is defined, does not access memory, takes at
  // least one argument, does not use its first argument (which we assume is
  // 'this'), and has the same return type.
  //
  // Note that we test whether this copy of the function is readnone, rather
  // than testing function attributes, which must hold for any copy of the
  // function, even a less optimized version substituted at link time. This is
  // sound because the virtual constant propagation optimizations effectively
  // inline all implementations of the virtual function into each call site,
  // rather than using function attributes to perform local optimization.
  for (VirtualCallTarget &Target : TargetsForSlot) {
    if (Target.Fn->isDeclaration() ||
        computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
            MAK_ReadNone ||
        Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
        Target.Fn->getReturnType() != RetType)
      return false;
  }

  for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
    if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
      continue;

    WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
    if (Res)
      ResByArg = &Res->ResByArg[CSByConstantArg.first];

    if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
      continue;

    if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
                           ResByArg, Slot, CSByConstantArg.first))
      continue;

    // Find an allocation offset in bits in all vtables associated with the
    // type.
    uint64_t AllocBefore =
        findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
    uint64_t AllocAfter =
        findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);

    // Calculate the total amount of padding needed to store a value at both
    // ends of the object.
    uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
    for (auto &&Target : TargetsForSlot) {
      TotalPaddingBefore += std::max<int64_t>(
          (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
      TotalPaddingAfter += std::max<int64_t>(
          (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
    }

    // If the amount of padding is too large, give up.
    // FIXME: do something smarter here.
    if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
      continue;

    // Calculate the offset to the value as a (possibly negative) byte offset
    // and (if applicable) a bit offset, and store the values in the targets.
    int64_t OffsetByte;
    uint64_t OffsetBit;
    if (TotalPaddingBefore <= TotalPaddingAfter)
      setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
                            OffsetBit);
    else
      setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
                           OffsetBit);

    if (RemarksEnabled)
      for (auto &&Target : TargetsForSlot)
        Target.WasDevirt = true;


    if (CSByConstantArg.second.isExported()) {
      ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
      exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
                     ResByArg->Byte);
      exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
                     ResByArg->Bit);
    }

    // Rewrite each call to a load from OffsetByte/OffsetBit.
    Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
    Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
    applyVirtualConstProp(CSByConstantArg.second,
                          TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
  }
  return true;
}

void DevirtModule::rebuildGlobal(VTableBits &B) {
  if (B.Before.Bytes.empty() && B.After.Bytes.empty())
    return;

  // Align each byte array to pointer width.
  unsigned PointerSize = M.getDataLayout().getPointerSize();
  B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
  B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));

  // Before was stored in reverse order; flip it now.
  for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
    std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);

  // Build an anonymous global containing the before bytes, followed by the
  // original initializer, followed by the after bytes.
  auto NewInit = ConstantStruct::getAnon(
      {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
       B.GV->getInitializer(),
       ConstantDataArray::get(M.getContext(), B.After.Bytes)});
  auto NewGV =
      new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
                         GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
  NewGV->setSection(B.GV->getSection());
  NewGV->setComdat(B.GV->getComdat());

  // Copy the original vtable's metadata to the anonymous global, adjusting
  // offsets as required.
  NewGV->copyMetadata(B.GV, B.Before.Bytes.size());

  // Build an alias named after the original global, pointing at the second
  // element (the original initializer).
  auto Alias = GlobalAlias::create(
      B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
      ConstantExpr::getGetElementPtr(
          NewInit->getType(), NewGV,
          ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
                               ConstantInt::get(Int32Ty, 1)}),
      &M);
  Alias->setVisibility(B.GV->getVisibility());
  Alias->takeName(B.GV);

  B.GV->replaceAllUsesWith(Alias);
  B.GV->eraseFromParent();
}

bool DevirtModule::areRemarksEnabled() {
  const auto &FL = M.getFunctionList();
  if (FL.empty())
    return false;
  const Function &Fn = FL.front();

  const auto &BBL = Fn.getBasicBlockList();
  if (BBL.empty())
    return false;
  auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
  return DI.isEnabled();
}

void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
                                     Function *AssumeFunc) {
  // Find all virtual calls via a virtual table pointer %p under an assumption
  // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
  // points to a member of the type identifier %md. Group calls by (type ID,
  // offset) pair (effectively the identity of the virtual function) and store
  // to CallSlots.
  DenseSet<Value *> SeenPtrs;
  for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
       I != E;) {
    auto CI = dyn_cast<CallInst>(I->getUser());
    ++I;
    if (!CI)
      continue;

    // Search for virtual calls based on %p and add them to DevirtCalls.
    SmallVector<DevirtCallSite, 1> DevirtCalls;
    SmallVector<CallInst *, 1> Assumes;
    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);

    // If we found any, add them to CallSlots. Only do this if we haven't seen
    // the vtable pointer before, as it may have been CSE'd with pointers from
    // other call sites, and we don't want to process call sites multiple times.
    if (!Assumes.empty()) {
      Metadata *TypeId =
          cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
      Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
      if (SeenPtrs.insert(Ptr).second) {
        for (DevirtCallSite Call : DevirtCalls) {
          CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
        }
      }
    }

    // We no longer need the assumes or the type test.
    for (auto Assume : Assumes)
      Assume->eraseFromParent();
    // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
    // may use the vtable argument later.
    if (CI->use_empty())
      CI->eraseFromParent();
  }
}

void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
  Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);

  for (auto I = TypeCheckedLoadFunc->use_begin(),
            E = TypeCheckedLoadFunc->use_end();
       I != E;) {
    auto CI = dyn_cast<CallInst>(I->getUser());
    ++I;
    if (!CI)
      continue;

    Value *Ptr = CI->getArgOperand(0);
    Value *Offset = CI->getArgOperand(1);
    Value *TypeIdValue = CI->getArgOperand(2);
    Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();

    SmallVector<DevirtCallSite, 1> DevirtCalls;
    SmallVector<Instruction *, 1> LoadedPtrs;
    SmallVector<Instruction *, 1> Preds;
    bool HasNonCallUses = false;
    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
                                               HasNonCallUses, CI);

    // Start by generating "pessimistic" code that explicitly loads the function
    // pointer from the vtable and performs the type check. If possible, we will
    // eliminate the load and the type check later.

    // If possible, only generate the load at the point where it is used.
    // This helps avoid unnecessary spills.
    IRBuilder<> LoadB(
        (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
    Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
    Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
    Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);

    for (Instruction *LoadedPtr : LoadedPtrs) {
      LoadedPtr->replaceAllUsesWith(LoadedValue);
      LoadedPtr->eraseFromParent();
    }

    // Likewise for the type test.
    IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
    CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});

    for (Instruction *Pred : Preds) {
      Pred->replaceAllUsesWith(TypeTestCall);
      Pred->eraseFromParent();
    }

    // We have already erased any extractvalue instructions that refer to the
    // intrinsic call, but the intrinsic may have other non-extractvalue uses
    // (although this is unlikely). In that case, explicitly build a pair and
    // RAUW it.
    if (!CI->use_empty()) {
      Value *Pair = UndefValue::get(CI->getType());
      IRBuilder<> B(CI);
      Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
      Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
      CI->replaceAllUsesWith(Pair);
    }

    // The number of unsafe uses is initially the number of uses.
    auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
    NumUnsafeUses = DevirtCalls.size();

    // If the function pointer has a non-call user, we cannot eliminate the type
    // check, as one of those users may eventually call the pointer. Increment
    // the unsafe use count to make sure it cannot reach zero.
    if (HasNonCallUses)
      ++NumUnsafeUses;
    for (DevirtCallSite Call : DevirtCalls) {
      CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
                                                   &NumUnsafeUses);
    }

    CI->eraseFromParent();
  }
}

void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
  const TypeIdSummary *TidSummary =
      ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
  if (!TidSummary)
    return;
  auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
  if (ResI == TidSummary->WPDRes.end())
    return;
  const WholeProgramDevirtResolution &Res = ResI->second;

  if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
    // The type of the function in the declaration is irrelevant because every
    // call site will cast it to the correct type.
    auto *SingleImpl = M.getOrInsertFunction(
        Res.SingleImplName, Type::getVoidTy(M.getContext()));

    // This is the import phase so we should not be exporting anything.
    bool IsExported = false;
    applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
    assert(!IsExported);
  }

  for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
    auto I = Res.ResByArg.find(CSByConstantArg.first);
    if (I == Res.ResByArg.end())
      continue;
    auto &ResByArg = I->second;
    // FIXME: We should figure out what to do about the "function name" argument
    // to the apply* functions, as the function names are unavailable during the
    // importing phase. For now we just pass the empty string. This does not
    // impact correctness because the function names are just used for remarks.
    switch (ResByArg.TheKind) {
    case WholeProgramDevirtResolution::ByArg::UniformRetVal:
      applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
      break;
    case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
      Constant *UniqueMemberAddr =
          importGlobal(Slot, CSByConstantArg.first, "unique_member");
      applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
                           UniqueMemberAddr);
      break;
    }
    case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
      Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
                                      Int32Ty, ResByArg.Byte);
      Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
                                     ResByArg.Bit);
      applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
      break;
    }
    default:
      break;
    }
  }
}

void DevirtModule::removeRedundantTypeTests() {
  auto True = ConstantInt::getTrue(M.getContext());
  for (auto &&U : NumUnsafeUsesForTypeTest) {
    if (U.second == 0) {
      U.first->replaceAllUsesWith(True);
      U.first->eraseFromParent();
    }
  }
}

bool DevirtModule::run() {
  Function *TypeTestFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
  Function *TypeCheckedLoadFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
  Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));

  // Normally if there are no users of the devirtualization intrinsics in the
  // module, this pass has nothing to do. But if we are exporting, we also need
  // to handle any users that appear only in the function summaries.
  if (!ExportSummary &&
      (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
       AssumeFunc->use_empty()) &&
      (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
    return false;

  if (TypeTestFunc && AssumeFunc)
    scanTypeTestUsers(TypeTestFunc, AssumeFunc);

  if (TypeCheckedLoadFunc)
    scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);

  if (ImportSummary) {
    for (auto &S : CallSlots)
      importResolution(S.first, S.second);

    removeRedundantTypeTests();

    // The rest of the code is only necessary when exporting or during regular
    // LTO, so we are done.
    return true;
  }

  // Rebuild type metadata into a map for easy lookup.
  std::vector<VTableBits> Bits;
  DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
  buildTypeIdentifierMap(Bits, TypeIdMap);
  if (TypeIdMap.empty())
    return true;

  // Collect information from summary about which calls to try to devirtualize.
  if (ExportSummary) {
    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
    for (auto &P : TypeIdMap) {
      if (auto *TypeId = dyn_cast<MDString>(P.first))
        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
            TypeId);
    }

    for (auto &P : *ExportSummary) {
      for (auto &S : P.second.SummaryList) {
        auto *FS = dyn_cast<FunctionSummary>(S.get());
        if (!FS)
          continue;
        // FIXME: Only add live functions.
        for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
            CallSlots[{MD, VF.Offset}].CSInfo.SummaryHasTypeTestAssumeUsers =
                true;
          }
        }
        for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
            CallSlots[{MD, VF.Offset}]
                .CSInfo.SummaryTypeCheckedLoadUsers.push_back(FS);
          }
        }
        for (const FunctionSummary::ConstVCall &VC :
             FS->type_test_assume_const_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
            CallSlots[{MD, VC.VFunc.Offset}]
                .ConstCSInfo[VC.Args]
                .SummaryHasTypeTestAssumeUsers = true;
          }
        }
        for (const FunctionSummary::ConstVCall &VC :
             FS->type_checked_load_const_vcalls()) {
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
            CallSlots[{MD, VC.VFunc.Offset}]
                .ConstCSInfo[VC.Args]
                .SummaryTypeCheckedLoadUsers.push_back(FS);
          }
        }
      }
    }
  }

  // For each (type, offset) pair:
  bool DidVirtualConstProp = false;
  std::map<std::string, Function*> DevirtTargets;
  for (auto &S : CallSlots) {
    // Search each of the members of the type identifier for the virtual
    // function implementation at offset S.first.ByteOffset, and add to
    // TargetsForSlot.
    std::vector<VirtualCallTarget> TargetsForSlot;
    if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
                                  S.first.ByteOffset)) {
      WholeProgramDevirtResolution *Res = nullptr;
      if (ExportSummary && isa<MDString>(S.first.TypeID))
        Res = &ExportSummary
                   ->getOrInsertTypeIdSummary(
                       cast<MDString>(S.first.TypeID)->getString())
                   .WPDRes[S.first.ByteOffset];

      if (!trySingleImplDevirt(TargetsForSlot, S.second, Res) &&
          tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first))
        DidVirtualConstProp = true;

      // Collect functions devirtualized at least for one call site for stats.
      if (RemarksEnabled)
        for (const auto &T : TargetsForSlot)
          if (T.WasDevirt)
            DevirtTargets[T.Fn->getName()] = T.Fn;
    }

    // CFI-specific: if we are exporting and any llvm.type.checked.load
    // intrinsics were *not* devirtualized, we need to add the resulting
    // llvm.type.test intrinsics to the function summaries so that the
    // LowerTypeTests pass will export them.
    if (ExportSummary && isa<MDString>(S.first.TypeID)) {
      auto GUID =
          GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
      for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
        FS->addTypeTest(GUID);
      for (auto &CCS : S.second.ConstCSInfo)
        for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
          FS->addTypeTest(GUID);
    }
  }

  if (RemarksEnabled) {
    // Generate remarks for each devirtualized function.
    for (const auto &DT : DevirtTargets) {
      Function *F = DT.second;

      using namespace ore;
      OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
                        << "devirtualized "
                        << NV("FunctionName", F->getName()));
    }
  }

  removeRedundantTypeTests();

  // Rebuild each global we touched as part of virtual constant propagation to
  // include the before and after bytes.
  if (DidVirtualConstProp)
    for (VTableBits &B : Bits)
      rebuildGlobal(B);

  return true;
}