llvm.org GIT mirror llvm / 06d6207 lib / Transforms / IPO / LowerTypeTests.cpp
06d6207

Tree @06d6207 (Download .tar.gz)

LowerTypeTests.cpp @06d6207raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
//===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers type metadata and calls to the llvm.type.test intrinsic.
// See http://llvm.org/docs/TypeMetadata.html for more information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/ModuleSummaryIndexYAML.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TrailingObjects.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;
using namespace lowertypetests;

#define DEBUG_TYPE "lowertypetests"

STATISTIC(ByteArraySizeBits, "Byte array size in bits");
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");

static cl::opt<bool> AvoidReuse(
    "lowertypetests-avoid-reuse",
    cl::desc("Try to avoid reuse of byte array addresses using aliases"),
    cl::Hidden, cl::init(true));

static cl::opt<PassSummaryAction> ClSummaryAction(
    "lowertypetests-summary-action",
    cl::desc("What to do with the summary when running this pass"),
    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
               clEnumValN(PassSummaryAction::Import, "import",
                          "Import typeid resolutions from summary and globals"),
               clEnumValN(PassSummaryAction::Export, "export",
                          "Export typeid resolutions to summary and globals")),
    cl::Hidden);

static cl::opt<std::string> ClReadSummary(
    "lowertypetests-read-summary",
    cl::desc("Read summary from given YAML file before running pass"),
    cl::Hidden);

static cl::opt<std::string> ClWriteSummary(
    "lowertypetests-write-summary",
    cl::desc("Write summary to given YAML file after running pass"),
    cl::Hidden);

bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
  if (Offset < ByteOffset)
    return false;

  if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
    return false;

  uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
  if (BitOffset >= BitSize)
    return false;

  return Bits.count(BitOffset);
}

void BitSetInfo::print(raw_ostream &OS) const {
  OS << "offset " << ByteOffset << " size " << BitSize << " align "
     << (1 << AlignLog2);

  if (isAllOnes()) {
    OS << " all-ones\n";
    return;
  }

  OS << " { ";
  for (uint64_t B : Bits)
    OS << B << ' ';
  OS << "}\n";
}

BitSetInfo BitSetBuilder::build() {
  if (Min > Max)
    Min = 0;

  // Normalize each offset against the minimum observed offset, and compute
  // the bitwise OR of each of the offsets. The number of trailing zeros
  // in the mask gives us the log2 of the alignment of all offsets, which
  // allows us to compress the bitset by only storing one bit per aligned
  // address.
  uint64_t Mask = 0;
  for (uint64_t &Offset : Offsets) {
    Offset -= Min;
    Mask |= Offset;
  }

  BitSetInfo BSI;
  BSI.ByteOffset = Min;

  BSI.AlignLog2 = 0;
  if (Mask != 0)
    BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);

  // Build the compressed bitset while normalizing the offsets against the
  // computed alignment.
  BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
  for (uint64_t Offset : Offsets) {
    Offset >>= BSI.AlignLog2;
    BSI.Bits.insert(Offset);
  }

  return BSI;
}

void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
  // Create a new fragment to hold the layout for F.
  Fragments.emplace_back();
  std::vector<uint64_t> &Fragment = Fragments.back();
  uint64_t FragmentIndex = Fragments.size() - 1;

  for (auto ObjIndex : F) {
    uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
    if (OldFragmentIndex == 0) {
      // We haven't seen this object index before, so just add it to the current
      // fragment.
      Fragment.push_back(ObjIndex);
    } else {
      // This index belongs to an existing fragment. Copy the elements of the
      // old fragment into this one and clear the old fragment. We don't update
      // the fragment map just yet, this ensures that any further references to
      // indices from the old fragment in this fragment do not insert any more
      // indices.
      std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
      Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
      OldFragment.clear();
    }
  }

  // Update the fragment map to point our object indices to this fragment.
  for (uint64_t ObjIndex : Fragment)
    FragmentMap[ObjIndex] = FragmentIndex;
}

void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
                                uint64_t BitSize, uint64_t &AllocByteOffset,
                                uint8_t &AllocMask) {
  // Find the smallest current allocation.
  unsigned Bit = 0;
  for (unsigned I = 1; I != BitsPerByte; ++I)
    if (BitAllocs[I] < BitAllocs[Bit])
      Bit = I;

  AllocByteOffset = BitAllocs[Bit];

  // Add our size to it.
  unsigned ReqSize = AllocByteOffset + BitSize;
  BitAllocs[Bit] = ReqSize;
  if (Bytes.size() < ReqSize)
    Bytes.resize(ReqSize);

  // Set our bits.
  AllocMask = 1 << Bit;
  for (uint64_t B : Bits)
    Bytes[AllocByteOffset + B] |= AllocMask;
}

namespace {

struct ByteArrayInfo {
  std::set<uint64_t> Bits;
  uint64_t BitSize;
  GlobalVariable *ByteArray;
  GlobalVariable *MaskGlobal;
  uint8_t *MaskPtr = nullptr;
};

/// A POD-like structure that we use to store a global reference together with
/// its metadata types. In this pass we frequently need to query the set of
/// metadata types referenced by a global, which at the IR level is an expensive
/// operation involving a map lookup; this data structure helps to reduce the
/// number of times we need to do this lookup.
class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
  friend TrailingObjects;

  GlobalObject *GO;
  size_t NTypes;

  // For functions: true if this is a definition (either in the merged module or
  // in one of the thinlto modules).
  bool IsDefinition;

  // For functions: true if this function is either defined or used in a thinlto
  // module and its jumptable entry needs to be exported to thinlto backends.
  bool IsExported;

  size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }

public:
  static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
                                  bool IsDefinition, bool IsExported,
                                  ArrayRef<MDNode *> Types) {
    auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
        totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
    GTM->GO = GO;
    GTM->NTypes = Types.size();
    GTM->IsDefinition = IsDefinition;
    GTM->IsExported = IsExported;
    std::uninitialized_copy(Types.begin(), Types.end(),
                            GTM->getTrailingObjects<MDNode *>());
    return GTM;
  }

  GlobalObject *getGlobal() const {
    return GO;
  }

  bool isDefinition() const {
    return IsDefinition;
  }

  bool isExported() const {
    return IsExported;
  }

  ArrayRef<MDNode *> types() const {
    return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
  }
};

class LowerTypeTestsModule {
  Module &M;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  Triple::ArchType Arch;
  Triple::OSType OS;
  Triple::ObjectFormatType ObjectFormat;

  IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
  IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
  PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
  ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
  IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
  PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
  IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
  IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);

  // Indirect function call index assignment counter for WebAssembly
  uint64_t IndirectIndex = 1;

  // Mapping from type identifiers to the call sites that test them, as well as
  // whether the type identifier needs to be exported to ThinLTO backends as
  // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
  struct TypeIdUserInfo {
    std::vector<CallInst *> CallSites;
    bool IsExported = false;
  };
  DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;

  /// This structure describes how to lower type tests for a particular type
  /// identifier. It is either built directly from the global analysis (during
  /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
  /// identifier summaries and external symbol references (in ThinLTO backends).
  struct TypeIdLowering {
    TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;

    /// All except Unsat: the start address within the combined global.
    Constant *OffsetedGlobal;

    /// ByteArray, Inline, AllOnes: log2 of the required global alignment
    /// relative to the start address.
    Constant *AlignLog2;

    /// ByteArray, Inline, AllOnes: one less than the size of the memory region
    /// covering members of this type identifier as a multiple of 2^AlignLog2.
    Constant *SizeM1;

    /// ByteArray: the byte array to test the address against.
    Constant *TheByteArray;

    /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
    Constant *BitMask;

    /// Inline: the bit mask to test the address against.
    Constant *InlineBits;
  };

  std::vector<ByteArrayInfo> ByteArrayInfos;

  Function *WeakInitializerFn = nullptr;

  bool shouldExportConstantsAsAbsoluteSymbols();
  uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
  TypeIdLowering importTypeId(StringRef TypeId);
  void importTypeTest(CallInst *CI);
  void importFunction(Function *F, bool isDefinition);

  BitSetInfo
  buildBitSet(Metadata *TypeId,
              const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
  ByteArrayInfo *createByteArray(BitSetInfo &BSI);
  void allocateByteArrays();
  Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
                          Value *BitOffset);
  void lowerTypeTestCalls(
      ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
      const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
  Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
                           const TypeIdLowering &TIL);
  void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
                                       ArrayRef<GlobalTypeMember *> Globals);
  unsigned getJumpTableEntrySize();
  Type *getJumpTableEntryType();
  void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
                            Triple::ArchType JumpTableArch,
                            SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
  void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
  void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
                                 ArrayRef<GlobalTypeMember *> Functions);
  void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
                                    ArrayRef<GlobalTypeMember *> Functions);
  void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
                                     ArrayRef<GlobalTypeMember *> Functions);
  void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
                                   ArrayRef<GlobalTypeMember *> Globals);

  void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT);
  void moveInitializerToModuleConstructor(GlobalVariable *GV);
  void findGlobalVariableUsersOf(Constant *C,
                                 SmallSetVector<GlobalVariable *, 8> &Out);

  void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);

public:
  LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
                       const ModuleSummaryIndex *ImportSummary);

  bool lower();

  // Lower the module using the action and summary passed as command line
  // arguments. For testing purposes only.
  static bool runForTesting(Module &M);
};

struct LowerTypeTests : public ModulePass {
  static char ID;

  bool UseCommandLine = false;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
    initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
  }

  LowerTypeTests(ModuleSummaryIndex *ExportSummary,
                 const ModuleSummaryIndex *ImportSummary)
      : ModulePass(ID), ExportSummary(ExportSummary),
        ImportSummary(ImportSummary) {
    initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;
    if (UseCommandLine)
      return LowerTypeTestsModule::runForTesting(M);
    return LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
  }
};

} // end anonymous namespace

char LowerTypeTests::ID = 0;

INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
                false)

ModulePass *
llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
                               const ModuleSummaryIndex *ImportSummary) {
  return new LowerTypeTests(ExportSummary, ImportSummary);
}

/// Build a bit set for TypeId using the object layouts in
/// GlobalLayout.
BitSetInfo LowerTypeTestsModule::buildBitSet(
    Metadata *TypeId,
    const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
  BitSetBuilder BSB;

  // Compute the byte offset of each address associated with this type
  // identifier.
  for (auto &GlobalAndOffset : GlobalLayout) {
    for (MDNode *Type : GlobalAndOffset.first->types()) {
      if (Type->getOperand(1) != TypeId)
        continue;
      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();
      BSB.addOffset(GlobalAndOffset.second + Offset);
    }
  }

  return BSB.build();
}

/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
/// Bits. This pattern matches to the bt instruction on x86.
static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
                                  Value *BitOffset) {
  auto BitsType = cast<IntegerType>(Bits->getType());
  unsigned BitWidth = BitsType->getBitWidth();

  BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
  Value *BitIndex =
      B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
  Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
  Value *MaskedBits = B.CreateAnd(Bits, BitMask);
  return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
}

ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
  // Create globals to stand in for byte arrays and masks. These never actually
  // get initialized, we RAUW and erase them later in allocateByteArrays() once
  // we know the offset and mask to use.
  auto ByteArrayGlobal = new GlobalVariable(
      M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
  auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
                                       GlobalValue::PrivateLinkage, nullptr);

  ByteArrayInfos.emplace_back();
  ByteArrayInfo *BAI = &ByteArrayInfos.back();

  BAI->Bits = BSI.Bits;
  BAI->BitSize = BSI.BitSize;
  BAI->ByteArray = ByteArrayGlobal;
  BAI->MaskGlobal = MaskGlobal;
  return BAI;
}

void LowerTypeTestsModule::allocateByteArrays() {
  std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
                   [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
                     return BAI1.BitSize > BAI2.BitSize;
                   });

  std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());

  ByteArrayBuilder BAB;
  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    uint8_t Mask;
    BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);

    BAI->MaskGlobal->replaceAllUsesWith(
        ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
    BAI->MaskGlobal->eraseFromParent();
    if (BAI->MaskPtr)
      *BAI->MaskPtr = Mask;
  }

  Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
  auto ByteArray =
      new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, ByteArrayConst);

  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
                        ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
    Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
        ByteArrayConst->getType(), ByteArray, Idxs);

    // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
    // that the pc-relative displacement is folded into the lea instead of the
    // test instruction getting another displacement.
    GlobalAlias *Alias = GlobalAlias::create(
        Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
    BAI->ByteArray->replaceAllUsesWith(Alias);
    BAI->ByteArray->eraseFromParent();
  }

  ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
                      BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
                      BAB.BitAllocs[6] + BAB.BitAllocs[7];
  ByteArraySizeBytes = BAB.Bytes.size();
}

/// Build a test that bit BitOffset is set in the type identifier that was
/// lowered to TIL, which must be either an Inline or a ByteArray.
Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
                                              const TypeIdLowering &TIL,
                                              Value *BitOffset) {
  if (TIL.TheKind == TypeTestResolution::Inline) {
    // If the bit set is sufficiently small, we can avoid a load by bit testing
    // a constant.
    return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
  } else {
    Constant *ByteArray = TIL.TheByteArray;
    if (AvoidReuse && !ImportSummary) {
      // Each use of the byte array uses a different alias. This makes the
      // backend less likely to reuse previously computed byte array addresses,
      // improving the security of the CFI mechanism based on this pass.
      // This won't work when importing because TheByteArray is external.
      ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
                                      "bits_use", ByteArray, &M);
    }

    Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
    Value *Byte = B.CreateLoad(ByteAddr);

    Value *ByteAndMask =
        B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
    return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
  }
}

static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
                                Value *V, uint64_t COffset) {
  if (auto GV = dyn_cast<GlobalObject>(V)) {
    SmallVector<MDNode *, 2> Types;
    GV->getMetadata(LLVMContext::MD_type, Types);
    for (MDNode *Type : Types) {
      if (Type->getOperand(1) != TypeId)
        continue;
      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();
      if (COffset == Offset)
        return true;
    }
    return false;
  }

  if (auto GEP = dyn_cast<GEPOperator>(V)) {
    APInt APOffset(DL.getPointerSizeInBits(0), 0);
    bool Result = GEP->accumulateConstantOffset(DL, APOffset);
    if (!Result)
      return false;
    COffset += APOffset.getZExtValue();
    return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
  }

  if (auto Op = dyn_cast<Operator>(V)) {
    if (Op->getOpcode() == Instruction::BitCast)
      return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);

    if (Op->getOpcode() == Instruction::Select)
      return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
             isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
  }

  return false;
}

/// Lower a llvm.type.test call to its implementation. Returns the value to
/// replace the call with.
Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
                                               const TypeIdLowering &TIL) {
  if (TIL.TheKind == TypeTestResolution::Unsat)
    return ConstantInt::getFalse(M.getContext());

  Value *Ptr = CI->getArgOperand(0);
  const DataLayout &DL = M.getDataLayout();
  if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
    return ConstantInt::getTrue(M.getContext());

  BasicBlock *InitialBB = CI->getParent();

  IRBuilder<> B(CI);

  Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);

  Constant *OffsetedGlobalAsInt =
      ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
  if (TIL.TheKind == TypeTestResolution::Single)
    return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);

  Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);

  // We need to check that the offset both falls within our range and is
  // suitably aligned. We can check both properties at the same time by
  // performing a right rotate by log2(alignment) followed by an integer
  // comparison against the bitset size. The rotate will move the lower
  // order bits that need to be zero into the higher order bits of the
  // result, causing the comparison to fail if they are nonzero. The rotate
  // also conveniently gives us a bit offset to use during the load from
  // the bitset.
  Value *OffsetSHR =
      B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
  Value *OffsetSHL = B.CreateShl(
      PtrOffset, ConstantExpr::getZExt(
                     ConstantExpr::getSub(
                         ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
                         TIL.AlignLog2),
                     IntPtrTy));
  Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);

  Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);

  // If the bit set is all ones, testing against it is unnecessary.
  if (TIL.TheKind == TypeTestResolution::AllOnes)
    return OffsetInRange;

  // See if the intrinsic is used in the following common pattern:
  //   br(llvm.type.test(...), thenbb, elsebb)
  // where nothing happens between the type test and the br.
  // If so, create slightly simpler IR.
  if (CI->hasOneUse())
    if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
      if (CI->getNextNode() == Br) {
        BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
        BasicBlock *Else = Br->getSuccessor(1);
        BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
        NewBr->setMetadata(LLVMContext::MD_prof,
                           Br->getMetadata(LLVMContext::MD_prof));
        ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);

        // Update phis in Else resulting from InitialBB being split
        for (auto &Phi : Else->phis())
          Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);

        IRBuilder<> ThenB(CI);
        return createBitSetTest(ThenB, TIL, BitOffset);
      }

  IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));

  // Now that we know that the offset is in range and aligned, load the
  // appropriate bit from the bitset.
  Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);

  // The value we want is 0 if we came directly from the initial block
  // (having failed the range or alignment checks), or the loaded bit if
  // we came from the block in which we loaded it.
  B.SetInsertPoint(CI);
  PHINode *P = B.CreatePHI(Int1Ty, 2);
  P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
  P->addIncoming(Bit, ThenB.GetInsertBlock());
  return P;
}

/// Given a disjoint set of type identifiers and globals, lay out the globals,
/// build the bit sets and lower the llvm.type.test calls.
void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
  // Build a new global with the combined contents of the referenced globals.
  // This global is a struct whose even-indexed elements contain the original
  // contents of the referenced globals and whose odd-indexed elements contain
  // any padding required to align the next element to the next power of 2.
  std::vector<Constant *> GlobalInits;
  const DataLayout &DL = M.getDataLayout();
  for (GlobalTypeMember *G : Globals) {
    GlobalVariable *GV = cast<GlobalVariable>(G->getGlobal());
    GlobalInits.push_back(GV->getInitializer());
    uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());

    // Compute the amount of padding required.
    uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;

    // Cap at 128 was found experimentally to have a good data/instruction
    // overhead tradeoff.
    if (Padding > 128)
      Padding = alignTo(InitSize, 128) - InitSize;

    GlobalInits.push_back(
        ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
  }
  if (!GlobalInits.empty())
    GlobalInits.pop_back();
  Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
  auto *CombinedGlobal =
      new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, NewInit);

  StructType *NewTy = cast<StructType>(NewInit->getType());
  const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);

  // Compute the offsets of the original globals within the new global.
  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
  for (unsigned I = 0; I != Globals.size(); ++I)
    // Multiply by 2 to account for padding elements.
    GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);

  lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);

  // Build aliases pointing to offsets into the combined global for each
  // global from which we built the combined global, and replace references
  // to the original globals with references to the aliases.
  for (unsigned I = 0; I != Globals.size(); ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());

    // Multiply by 2 to account for padding elements.
    Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
                                      ConstantInt::get(Int32Ty, I * 2)};
    Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
        NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
    assert(GV->getType()->getAddressSpace() == 0);
    GlobalAlias *GAlias =
        GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
                            "", CombinedGlobalElemPtr, &M);
    GAlias->setVisibility(GV->getVisibility());
    GAlias->takeName(GV);
    GV->replaceAllUsesWith(GAlias);
    GV->eraseFromParent();
  }
}

bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
  return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
         ObjectFormat == Triple::ELF;
}

/// Export the given type identifier so that ThinLTO backends may import it.
/// Type identifiers are exported by adding coarse-grained information about how
/// to test the type identifier to the summary, and creating symbols in the
/// object file (aliases and absolute symbols) containing fine-grained
/// information about the type identifier.
///
/// Returns a pointer to the location in which to store the bitmask, if
/// applicable.
uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
                                            const TypeIdLowering &TIL) {
  TypeTestResolution &TTRes =
      ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
  TTRes.TheKind = TIL.TheKind;

  auto ExportGlobal = [&](StringRef Name, Constant *C) {
    GlobalAlias *GA =
        GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
                            "__typeid_" + TypeId + "_" + Name, C, &M);
    GA->setVisibility(GlobalValue::HiddenVisibility);
  };

  auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
    if (shouldExportConstantsAsAbsoluteSymbols())
      ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
    else
      Storage = cast<ConstantInt>(C)->getZExtValue();
  };

  if (TIL.TheKind != TypeTestResolution::Unsat)
    ExportGlobal("global_addr", TIL.OffsetedGlobal);

  if (TIL.TheKind == TypeTestResolution::ByteArray ||
      TIL.TheKind == TypeTestResolution::Inline ||
      TIL.TheKind == TypeTestResolution::AllOnes) {
    ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
    ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);

    uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
    if (TIL.TheKind == TypeTestResolution::Inline)
      TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
    else
      TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
  }

  if (TIL.TheKind == TypeTestResolution::ByteArray) {
    ExportGlobal("byte_array", TIL.TheByteArray);
    if (shouldExportConstantsAsAbsoluteSymbols())
      ExportGlobal("bit_mask", TIL.BitMask);
    else
      return &TTRes.BitMask;
  }

  if (TIL.TheKind == TypeTestResolution::Inline)
    ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);

  return nullptr;
}

LowerTypeTestsModule::TypeIdLowering
LowerTypeTestsModule::importTypeId(StringRef TypeId) {
  const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
  if (!TidSummary)
    return {}; // Unsat: no globals match this type id.
  const TypeTestResolution &TTRes = TidSummary->TTRes;

  TypeIdLowering TIL;
  TIL.TheKind = TTRes.TheKind;

  auto ImportGlobal = [&](StringRef Name) {
    // Give the global a type of length 0 so that it is not assumed not to alias
    // with any other global.
    Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
                                      Int8Arr0Ty);
    if (auto *GV = dyn_cast<GlobalVariable>(C))
      GV->setVisibility(GlobalValue::HiddenVisibility);
    C = ConstantExpr::getBitCast(C, Int8PtrTy);
    return C;
  };

  auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
                            Type *Ty) {
    if (!shouldExportConstantsAsAbsoluteSymbols()) {
      Constant *C =
          ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
      if (!isa<IntegerType>(Ty))
        C = ConstantExpr::getIntToPtr(C, Ty);
      return C;
    }

    Constant *C = ImportGlobal(Name);
    auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
    if (isa<IntegerType>(Ty))
      C = ConstantExpr::getPtrToInt(C, Ty);
    if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
      return C;

    auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
      auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
      auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
      GV->setMetadata(LLVMContext::MD_absolute_symbol,
                      MDNode::get(M.getContext(), {MinC, MaxC}));
    };
    if (AbsWidth == IntPtrTy->getBitWidth())
      SetAbsRange(~0ull, ~0ull); // Full set.
    else
      SetAbsRange(0, 1ull << AbsWidth);
    return C;
  };

  if (TIL.TheKind != TypeTestResolution::Unsat)
    TIL.OffsetedGlobal = ImportGlobal("global_addr");

  if (TIL.TheKind == TypeTestResolution::ByteArray ||
      TIL.TheKind == TypeTestResolution::Inline ||
      TIL.TheKind == TypeTestResolution::AllOnes) {
    TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
    TIL.SizeM1 =
        ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
  }

  if (TIL.TheKind == TypeTestResolution::ByteArray) {
    TIL.TheByteArray = ImportGlobal("byte_array");
    TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
  }

  if (TIL.TheKind == TypeTestResolution::Inline)
    TIL.InlineBits = ImportConstant(
        "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
        TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);

  return TIL;
}

void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
  auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
  if (!TypeIdMDVal)
    report_fatal_error("Second argument of llvm.type.test must be metadata");

  auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
  if (!TypeIdStr)
    report_fatal_error(
        "Second argument of llvm.type.test must be a metadata string");

  TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
  Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
  CI->replaceAllUsesWith(Lowered);
  CI->eraseFromParent();
}

// ThinLTO backend: the function F has a jump table entry; update this module
// accordingly. isDefinition describes the type of the jump table entry.
void LowerTypeTestsModule::importFunction(Function *F, bool isDefinition) {
  assert(F->getType()->getAddressSpace() == 0);

  // Declaration of a local function - nothing to do.
  if (F->isDeclarationForLinker() && isDefinition)
    return;

  GlobalValue::VisibilityTypes Visibility = F->getVisibility();
  std::string Name = F->getName();
  Function *FDecl;

  if (F->isDeclarationForLinker() && !isDefinition) {
    // Declaration of an external function.
    FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
                             Name + ".cfi_jt", &M);
    FDecl->setVisibility(GlobalValue::HiddenVisibility);
  } else if (isDefinition) {
    F->setName(Name + ".cfi");
    F->setLinkage(GlobalValue::ExternalLinkage);
    F->setVisibility(GlobalValue::HiddenVisibility);
    FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
                             Name, &M);
    FDecl->setVisibility(Visibility);

    // Delete aliases pointing to this function, they'll be re-created in the
    // merged output
    SmallVector<GlobalAlias*, 4> ToErase;
    for (auto &U : F->uses()) {
      if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
        Function *AliasDecl = Function::Create(
            F->getFunctionType(), GlobalValue::ExternalLinkage, "", &M);
        AliasDecl->takeName(A);
        A->replaceAllUsesWith(AliasDecl);
        ToErase.push_back(A);
      }
    }
    for (auto *A : ToErase)
      A->eraseFromParent();
  } else {
    // Function definition without type metadata, where some other translation
    // unit contained a declaration with type metadata. This normally happens
    // during mixed CFI + non-CFI compilation. We do nothing with the function
    // so that it is treated the same way as a function defined outside of the
    // LTO unit.
    return;
  }

  if (F->isWeakForLinker())
    replaceWeakDeclarationWithJumpTablePtr(F, FDecl);
  else
    F->replaceUsesExceptBlockAddr(FDecl);
}

void LowerTypeTestsModule::lowerTypeTestCalls(
    ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
    const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
  CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);

  // For each type identifier in this disjoint set...
  for (Metadata *TypeId : TypeIds) {
    // Build the bitset.
    BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
    DEBUG({
      if (auto MDS = dyn_cast<MDString>(TypeId))
        dbgs() << MDS->getString() << ": ";
      else
        dbgs() << "<unnamed>: ";
      BSI.print(dbgs());
    });

    ByteArrayInfo *BAI = nullptr;
    TypeIdLowering TIL;
    TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
        Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
    TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
    TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
    if (BSI.isAllOnes()) {
      TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
                                       : TypeTestResolution::AllOnes;
    } else if (BSI.BitSize <= 64) {
      TIL.TheKind = TypeTestResolution::Inline;
      uint64_t InlineBits = 0;
      for (auto Bit : BSI.Bits)
        InlineBits |= uint64_t(1) << Bit;
      if (InlineBits == 0)
        TIL.TheKind = TypeTestResolution::Unsat;
      else
        TIL.InlineBits = ConstantInt::get(
            (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
    } else {
      TIL.TheKind = TypeTestResolution::ByteArray;
      ++NumByteArraysCreated;
      BAI = createByteArray(BSI);
      TIL.TheByteArray = BAI->ByteArray;
      TIL.BitMask = BAI->MaskGlobal;
    }

    TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];

    if (TIUI.IsExported) {
      uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
      if (BAI)
        BAI->MaskPtr = MaskPtr;
    }

    // Lower each call to llvm.type.test for this type identifier.
    for (CallInst *CI : TIUI.CallSites) {
      ++NumTypeTestCallsLowered;
      Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
      CI->replaceAllUsesWith(Lowered);
      CI->eraseFromParent();
    }
  }
}

void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
  if (Type->getNumOperands() != 2)
    report_fatal_error("All operands of type metadata must have 2 elements");

  if (GO->isThreadLocal())
    report_fatal_error("Bit set element may not be thread-local");
  if (isa<GlobalVariable>(GO) && GO->hasSection())
    report_fatal_error(
        "A member of a type identifier may not have an explicit section");

  // FIXME: We previously checked that global var member of a type identifier
  // must be a definition, but the IR linker may leave type metadata on
  // declarations. We should restore this check after fixing PR31759.

  auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
  if (!OffsetConstMD)
    report_fatal_error("Type offset must be a constant");
  auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
  if (!OffsetInt)
    report_fatal_error("Type offset must be an integer constant");
}

static const unsigned kX86JumpTableEntrySize = 8;
static const unsigned kARMJumpTableEntrySize = 4;

unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
  switch (Arch) {
    case Triple::x86:
    case Triple::x86_64:
      return kX86JumpTableEntrySize;
    case Triple::arm:
    case Triple::thumb:
    case Triple::aarch64:
      return kARMJumpTableEntrySize;
    default:
      report_fatal_error("Unsupported architecture for jump tables");
  }
}

// Create a jump table entry for the target. This consists of an instruction
// sequence containing a relative branch to Dest. Appends inline asm text,
// constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
void LowerTypeTestsModule::createJumpTableEntry(
    raw_ostream &AsmOS, raw_ostream &ConstraintOS,
    Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
    Function *Dest) {
  unsigned ArgIndex = AsmArgs.size();

  if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
    AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
    AsmOS << "int3\nint3\nint3\n";
  } else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
    AsmOS << "b $" << ArgIndex << "\n";
  } else if (JumpTableArch == Triple::thumb) {
    AsmOS << "b.w $" << ArgIndex << "\n";
  } else {
    report_fatal_error("Unsupported architecture for jump tables");
  }

  ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
  AsmArgs.push_back(Dest);
}

Type *LowerTypeTestsModule::getJumpTableEntryType() {
  return ArrayType::get(Int8Ty, getJumpTableEntrySize());
}

/// Given a disjoint set of type identifiers and functions, build the bit sets
/// and lower the llvm.type.test calls, architecture dependently.
void LowerTypeTestsModule::buildBitSetsFromFunctions(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
  if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
      Arch == Triple::thumb || Arch == Triple::aarch64)
    buildBitSetsFromFunctionsNative(TypeIds, Functions);
  else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
    buildBitSetsFromFunctionsWASM(TypeIds, Functions);
  else
    report_fatal_error("Unsupported architecture for jump tables");
}

void LowerTypeTestsModule::moveInitializerToModuleConstructor(
    GlobalVariable *GV) {
  if (WeakInitializerFn == nullptr) {
    WeakInitializerFn = Function::Create(
        FunctionType::get(Type::getVoidTy(M.getContext()),
                          /* IsVarArg */ false),
        GlobalValue::InternalLinkage, "__cfi_global_var_init", &M);
    BasicBlock *BB =
        BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
    ReturnInst::Create(M.getContext(), BB);
    WeakInitializerFn->setSection(
        ObjectFormat == Triple::MachO
            ? "__TEXT,__StaticInit,regular,pure_instructions"
            : ".text.startup");
    // This code is equivalent to relocation application, and should run at the
    // earliest possible time (i.e. with the highest priority).
    appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
  }

  IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
  GV->setConstant(false);
  IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment());
  GV->setInitializer(Constant::getNullValue(GV->getValueType()));
}

void LowerTypeTestsModule::findGlobalVariableUsersOf(
    Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
  for (auto *U : C->users()){
    if (auto *GV = dyn_cast<GlobalVariable>(U))
      Out.insert(GV);
    else if (auto *C2 = dyn_cast<Constant>(U))
      findGlobalVariableUsersOf(C2, Out);
  }
}

// Replace all uses of F with (F ? JT : 0).
void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
    Function *F, Constant *JT) {
  // The target expression can not appear in a constant initializer on most
  // (all?) targets. Switch to a runtime initializer.
  SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
  findGlobalVariableUsersOf(F, GlobalVarUsers);
  for (auto GV : GlobalVarUsers)
    moveInitializerToModuleConstructor(GV);

  // Can not RAUW F with an expression that uses F. Replace with a temporary
  // placeholder first.
  Function *PlaceholderFn =
      Function::Create(cast<FunctionType>(F->getValueType()),
                       GlobalValue::ExternalWeakLinkage, "", &M);
  F->replaceAllUsesWith(PlaceholderFn);

  Constant *Target = ConstantExpr::getSelect(
      ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
                            Constant::getNullValue(F->getType())),
      JT, Constant::getNullValue(F->getType()));
  PlaceholderFn->replaceAllUsesWith(Target);
  PlaceholderFn->eraseFromParent();
}

static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
  Attribute TFAttr = F->getFnAttribute("target-features");
  if (!TFAttr.hasAttribute(Attribute::None)) {
    SmallVector<StringRef, 6> Features;
    TFAttr.getValueAsString().split(Features, ',');
    for (StringRef Feature : Features) {
      if (Feature == "-thumb-mode")
        return false;
      else if (Feature == "+thumb-mode")
        return true;
    }
  }

  return ModuleArch == Triple::thumb;
}

// Each jump table must be either ARM or Thumb as a whole for the bit-test math
// to work. Pick one that matches the majority of members to minimize interop
// veneers inserted by the linker.
static Triple::ArchType
selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
                           Triple::ArchType ModuleArch) {
  if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
    return ModuleArch;

  unsigned ArmCount = 0, ThumbCount = 0;
  for (const auto GTM : Functions) {
    if (!GTM->isDefinition()) {
      // PLT stubs are always ARM.
      ++ArmCount;
      continue;
    }

    Function *F = cast<Function>(GTM->getGlobal());
    ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
  }

  return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
}

void LowerTypeTestsModule::createJumpTable(
    Function *F, ArrayRef<GlobalTypeMember *> Functions) {
  std::string AsmStr, ConstraintStr;
  raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
  SmallVector<Value *, 16> AsmArgs;
  AsmArgs.reserve(Functions.size() * 2);

  Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);

  for (unsigned I = 0; I != Functions.size(); ++I)
    createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
                         cast<Function>(Functions[I]->getGlobal()));

  // Try to emit the jump table at the end of the text segment.
  // Jump table must come after __cfi_check in the cross-dso mode.
  // FIXME: this magic section name seems to do the trick.
  F->setSection(ObjectFormat == Triple::MachO
                    ? "__TEXT,__text,regular,pure_instructions"
                    : ".text.cfi");
  // Align the whole table by entry size.
  F->setAlignment(getJumpTableEntrySize());
  // Skip prologue.
  // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
  // Luckily, this function does not get any prologue even without the
  // attribute.
  if (OS != Triple::Win32)
    F->addFnAttr(Attribute::Naked);
  if (JumpTableArch == Triple::arm)
    F->addFnAttr("target-features", "-thumb-mode");
  if (JumpTableArch == Triple::thumb) {
    F->addFnAttr("target-features", "+thumb-mode");
    // Thumb jump table assembly needs Thumb2. The following attribute is added
    // by Clang for -march=armv7.
    F->addFnAttr("target-cpu", "cortex-a8");
  }

  BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
  IRBuilder<> IRB(BB);

  SmallVector<Type *, 16> ArgTypes;
  ArgTypes.reserve(AsmArgs.size());
  for (const auto &Arg : AsmArgs)
    ArgTypes.push_back(Arg->getType());
  InlineAsm *JumpTableAsm =
      InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
                     AsmOS.str(), ConstraintOS.str(),
                     /*hasSideEffects=*/true);

  IRB.CreateCall(JumpTableAsm, AsmArgs);
  IRB.CreateUnreachable();
}

/// Given a disjoint set of type identifiers and functions, build a jump table
/// for the functions, build the bit sets and lower the llvm.type.test calls.
void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
  // Unlike the global bitset builder, the function bitset builder cannot
  // re-arrange functions in a particular order and base its calculations on the
  // layout of the functions' entry points, as we have no idea how large a
  // particular function will end up being (the size could even depend on what
  // this pass does!) Instead, we build a jump table, which is a block of code
  // consisting of one branch instruction for each of the functions in the bit
  // set that branches to the target function, and redirect any taken function
  // addresses to the corresponding jump table entry. In the object file's
  // symbol table, the symbols for the target functions also refer to the jump
  // table entries, so that addresses taken outside the module will pass any
  // verification done inside the module.
  //
  // In more concrete terms, suppose we have three functions f, g, h which are
  // of the same type, and a function foo that returns their addresses:
  //
  // f:
  // mov 0, %eax
  // ret
  //
  // g:
  // mov 1, %eax
  // ret
  //
  // h:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // We output the jump table as module-level inline asm string. The end result
  // will (conceptually) look like this:
  //
  // f = .cfi.jumptable
  // g = .cfi.jumptable + 4
  // h = .cfi.jumptable + 8
  // .cfi.jumptable:
  // jmp f.cfi  ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  // jmp g.cfi  ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  // jmp h.cfi  ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // f.cfi:
  // mov 0, %eax
  // ret
  //
  // g.cfi:
  // mov 1, %eax
  // ret
  //
  // h.cfi:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
  // normal case the check can be carried out using the same kind of simple
  // arithmetic that we normally use for globals.

  // FIXME: find a better way to represent the jumptable in the IR.
  assert(!Functions.empty());

  // Build a simple layout based on the regular layout of jump tables.
  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
  unsigned EntrySize = getJumpTableEntrySize();
  for (unsigned I = 0; I != Functions.size(); ++I)
    GlobalLayout[Functions[I]] = I * EntrySize;

  Function *JumpTableFn =
      Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
                                         /* IsVarArg */ false),
                       GlobalValue::PrivateLinkage, ".cfi.jumptable", &M);
  ArrayType *JumpTableType =
      ArrayType::get(getJumpTableEntryType(), Functions.size());
  auto JumpTable =
      ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));

  lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);

  // Build aliases pointing to offsets into the jump table, and replace
  // references to the original functions with references to the aliases.
  for (unsigned I = 0; I != Functions.size(); ++I) {
    Function *F = cast<Function>(Functions[I]->getGlobal());
    bool IsDefinition = Functions[I]->isDefinition();

    Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
        ConstantExpr::getInBoundsGetElementPtr(
            JumpTableType, JumpTable,
            ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
                                 ConstantInt::get(IntPtrTy, I)}),
        F->getType());
    if (Functions[I]->isExported()) {
      if (IsDefinition) {
        ExportSummary->cfiFunctionDefs().insert(F->getName());
      } else {
        GlobalAlias *JtAlias = GlobalAlias::create(
            F->getValueType(), 0, GlobalValue::ExternalLinkage,
            F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
        JtAlias->setVisibility(GlobalValue::HiddenVisibility);
        ExportSummary->cfiFunctionDecls().insert(F->getName());
      }
    }
    if (!IsDefinition) {
      if (F->isWeakForLinker())
        replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr);
      else
        F->replaceAllUsesWith(CombinedGlobalElemPtr);
    } else {
      assert(F->getType()->getAddressSpace() == 0);

      GlobalAlias *FAlias = GlobalAlias::create(
          F->getValueType(), 0, F->getLinkage(), "", CombinedGlobalElemPtr, &M);
      FAlias->setVisibility(F->getVisibility());
      FAlias->takeName(F);
      if (FAlias->hasName())
        F->setName(FAlias->getName() + ".cfi");
      F->replaceUsesExceptBlockAddr(FAlias);
    }
    if (!F->isDeclarationForLinker())
      F->setLinkage(GlobalValue::InternalLinkage);
  }

  createJumpTable(JumpTableFn, Functions);
}

/// Assign a dummy layout using an incrementing counter, tag each function
/// with its index represented as metadata, and lower each type test to an
/// integer range comparison. During generation of the indirect function call
/// table in the backend, it will assign the given indexes.
/// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
/// been finalized.
void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
  assert(!Functions.empty());

  // Build consecutive monotonic integer ranges for each call target set
  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;

  for (GlobalTypeMember *GTM : Functions) {
    Function *F = cast<Function>(GTM->getGlobal());

    // Skip functions that are not address taken, to avoid bloating the table
    if (!F->hasAddressTaken())
      continue;

    // Store metadata with the index for each function
    MDNode *MD = MDNode::get(F->getContext(),
                             ArrayRef<Metadata *>(ConstantAsMetadata::get(
                                 ConstantInt::get(Int64Ty, IndirectIndex))));
    F->setMetadata("wasm.index", MD);

    // Assign the counter value
    GlobalLayout[GTM] = IndirectIndex++;
  }

  // The indirect function table index space starts at zero, so pass a NULL
  // pointer as the subtracted "jump table" offset.
  lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
                     GlobalLayout);
}

void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
  DenseMap<Metadata *, uint64_t> TypeIdIndices;
  for (unsigned I = 0; I != TypeIds.size(); ++I)
    TypeIdIndices[TypeIds[I]] = I;

  // For each type identifier, build a set of indices that refer to members of
  // the type identifier.
  std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
  unsigned GlobalIndex = 0;
  for (GlobalTypeMember *GTM : Globals) {
    for (MDNode *Type : GTM->types()) {
      // Type = { offset, type identifier }
      unsigned TypeIdIndex = TypeIdIndices[Type->getOperand(1)];
      TypeMembers[TypeIdIndex].insert(GlobalIndex);
    }
    GlobalIndex++;
  }

  // Order the sets of indices by size. The GlobalLayoutBuilder works best
  // when given small index sets first.
  std::stable_sort(
      TypeMembers.begin(), TypeMembers.end(),
      [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
        return O1.size() < O2.size();
      });

  // Create a GlobalLayoutBuilder and provide it with index sets as layout
  // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
  // close together as possible.
  GlobalLayoutBuilder GLB(Globals.size());
  for (auto &&MemSet : TypeMembers)
    GLB.addFragment(MemSet);

  // Build a vector of globals with the computed layout.
  bool IsGlobalSet =
      Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
  std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
  auto OGTMI = OrderedGTMs.begin();
  for (auto &&F : GLB.Fragments) {
    for (auto &&Offset : F) {
      if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
        report_fatal_error("Type identifier may not contain both global "
                           "variables and functions");
      *OGTMI++ = Globals[Offset];
    }
  }

  // Build the bitsets from this disjoint set.
  if (IsGlobalSet)
    buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
  else
    buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
}

/// Lower all type tests in this module.
LowerTypeTestsModule::LowerTypeTestsModule(
    Module &M, ModuleSummaryIndex *ExportSummary,
    const ModuleSummaryIndex *ImportSummary)
    : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
  assert(!(ExportSummary && ImportSummary));
  Triple TargetTriple(M.getTargetTriple());
  Arch = TargetTriple.getArch();
  OS = TargetTriple.getOS();
  ObjectFormat = TargetTriple.getObjectFormat();
}

bool LowerTypeTestsModule::runForTesting(Module &M) {
  ModuleSummaryIndex Summary(/*IsPerformingAnalysis=*/false);

  // Handle the command-line summary arguments. This code is for testing
  // purposes only, so we handle errors directly.
  if (!ClReadSummary.empty()) {
    ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
                          ": ");
    auto ReadSummaryFile =
        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));

    yaml::Input In(ReadSummaryFile->getBuffer());
    In >> Summary;
    ExitOnErr(errorCodeToError(In.error()));
  }

  bool Changed =
      LowerTypeTestsModule(
          M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
          ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
          .lower();

  if (!ClWriteSummary.empty()) {
    ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
                          ": ");
    std::error_code EC;
    raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
    ExitOnErr(errorCodeToError(EC));

    yaml::Output Out(OS);
    Out << Summary;
  }

  return Changed;
}

bool LowerTypeTestsModule::lower() {
  Function *TypeTestFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
  if ((!TypeTestFunc || TypeTestFunc->use_empty()) && !ExportSummary &&
      !ImportSummary)
    return false;

  if (ImportSummary) {
    if (TypeTestFunc) {
      for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
           UI != UE;) {
        auto *CI = cast<CallInst>((*UI++).getUser());
        importTypeTest(CI);
      }
    }

    SmallVector<Function *, 8> Defs;
    SmallVector<Function *, 8> Decls;
    for (auto &F : M) {
      // CFI functions are either external, or promoted. A local function may
      // have the same name, but it's not the one we are looking for.
      if (F.hasLocalLinkage())
        continue;
      if (ImportSummary->cfiFunctionDefs().count(F.getName()))
        Defs.push_back(&F);
      else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
        Decls.push_back(&F);
    }

    for (auto F : Defs)
      importFunction(F, /*isDefinition*/ true);
    for (auto F : Decls)
      importFunction(F, /*isDefinition*/ false);

    return true;
  }

  // Equivalence class set containing type identifiers and the globals that
  // reference them. This is used to partition the set of type identifiers in
  // the module into disjoint sets.
  using GlobalClassesTy =
      EquivalenceClasses<PointerUnion<GlobalTypeMember *, Metadata *>>;
  GlobalClassesTy GlobalClasses;

  // Verify the type metadata and build a few data structures to let us
  // efficiently enumerate the type identifiers associated with a global:
  // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
  // of associated type metadata) and a mapping from type identifiers to their
  // list of GlobalTypeMembers and last observed index in the list of globals.
  // The indices will be used later to deterministically order the list of type
  // identifiers.
  BumpPtrAllocator Alloc;
  struct TIInfo {
    unsigned Index;
    std::vector<GlobalTypeMember *> RefGlobals;
  };
  DenseMap<Metadata *, TIInfo> TypeIdInfo;
  unsigned I = 0;
  SmallVector<MDNode *, 2> Types;

  struct ExportedFunctionInfo {
    CfiFunctionLinkage Linkage;
    MDNode *FuncMD; // {name, linkage, type[, type...]}
  };
  DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
  if (ExportSummary) {
    NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
    if (CfiFunctionsMD) {
      for (auto FuncMD : CfiFunctionsMD->operands()) {
        assert(FuncMD->getNumOperands() >= 2);
        StringRef FunctionName =
            cast<MDString>(FuncMD->getOperand(0))->getString();
        if (!ExportSummary->isGUIDLive(GlobalValue::getGUID(
                GlobalValue::dropLLVMManglingEscape(FunctionName))))
          continue;
        CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
            cast<ConstantAsMetadata>(FuncMD->getOperand(1))
                ->getValue()
                ->getUniqueInteger()
                .getZExtValue());
        auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
        if (!P.second && P.first->second.Linkage != CFL_Definition)
          P.first->second = {Linkage, FuncMD};
      }

      for (const auto &P : ExportedFunctions) {
        StringRef FunctionName = P.first;
        CfiFunctionLinkage Linkage = P.second.Linkage;
        MDNode *FuncMD = P.second.FuncMD;
        Function *F = M.getFunction(FunctionName);
        if (!F)
          F = Function::Create(
              FunctionType::get(Type::getVoidTy(M.getContext()), false),
              GlobalVariable::ExternalLinkage, FunctionName, &M);

        // If the function is available_externally, remove its definition so
        // that it is handled the same way as a declaration. Later we will try
        // to create an alias using this function's linkage, which will fail if
        // the linkage is available_externally. This will also result in us
        // following the code path below to replace the type metadata.
        if (F->hasAvailableExternallyLinkage()) {
          F->setLinkage(GlobalValue::ExternalLinkage);
          F->deleteBody();
          F->setComdat(nullptr);
          F->clearMetadata();
        }

        // If the function in the full LTO module is a declaration, replace its
        // type metadata with the type metadata we found in cfi.functions. That
        // metadata is presumed to be more accurate than the metadata attached
        // to the declaration.
        if (F->isDeclaration()) {
          if (Linkage == CFL_WeakDeclaration)
            F->setLinkage(GlobalValue::ExternalWeakLinkage);

          F->eraseMetadata(LLVMContext::MD_type);
          for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
            F->addMetadata(LLVMContext::MD_type,
                           *cast<MDNode>(FuncMD->getOperand(I).get()));
        }
      }
    }
  }

  for (GlobalObject &GO : M.global_objects()) {
    if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
      continue;

    Types.clear();
    GO.getMetadata(LLVMContext::MD_type, Types);
    if (Types.empty())
      continue;

    bool IsDefinition = !GO.isDeclarationForLinker();
    bool IsExported = false;
    if (isa<Function>(GO) && ExportedFunctions.count(GO.getName())) {
      IsDefinition |= ExportedFunctions[GO.getName()].Linkage == CFL_Definition;
      IsExported = true;
    }

    auto *GTM =
        GlobalTypeMember::create(Alloc, &GO, IsDefinition, IsExported, Types);
    for (MDNode *Type : Types) {
      verifyTypeMDNode(&GO, Type);
      auto &Info = TypeIdInfo[Type->getOperand(1)];
      Info.Index = ++I;
      Info.RefGlobals.push_back(GTM);
    }
  }

  auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
    // Add the call site to the list of call sites for this type identifier. We
    // also use TypeIdUsers to keep track of whether we have seen this type
    // identifier before. If we have, we don't need to re-add the referenced
    // globals to the equivalence class.
    auto Ins = TypeIdUsers.insert({TypeId, {}});
    if (Ins.second) {
      // Add the type identifier to the equivalence class.
      GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
      GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);

      // Add the referenced globals to the type identifier's equivalence class.
      for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
        CurSet = GlobalClasses.unionSets(
            CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
    }

    return Ins.first->second;
  };

  if (TypeTestFunc) {
    for (const Use &U : TypeTestFunc->uses()) {
      auto CI = cast<CallInst>(U.getUser());

      auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
      if (!TypeIdMDVal)
        report_fatal_error("Second argument of llvm.type.test must be metadata");
      auto TypeId = TypeIdMDVal->getMetadata();
      AddTypeIdUse(TypeId).CallSites.push_back(CI);
    }
  }

  if (ExportSummary) {
    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
    for (auto &P : TypeIdInfo) {
      if (auto *TypeId = dyn_cast<MDString>(P.first))
        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
            TypeId);
    }

    for (auto &P : *ExportSummary) {
      for (auto &S : P.second.SummaryList) {
        if (!ExportSummary->isGlobalValueLive(S.get()))
          continue;
        if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
          for (GlobalValue::GUID G : FS->type_tests())
            for (Metadata *MD : MetadataByGUID[G])
              AddTypeIdUse(MD).IsExported = true;
      }
    }
  }

  if (GlobalClasses.empty())
    return false;

  // Build a list of disjoint sets ordered by their maximum global index for
  // determinism.
  std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
  for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
                                 E = GlobalClasses.end();
       I != E; ++I) {
    if (!I->isLeader())
      continue;
    ++NumTypeIdDisjointSets;

    unsigned MaxIndex = 0;
    for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        MaxIndex = std::max(MaxIndex, TypeIdInfo[MI->get<Metadata *>()].Index);
    }
    Sets.emplace_back(I, MaxIndex);
  }
  std::sort(Sets.begin(), Sets.end(),
            [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
               const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
              return S1.second < S2.second;
            });

  // For each disjoint set we found...
  for (const auto &S : Sets) {
    // Build the list of type identifiers in this disjoint set.
    std::vector<Metadata *> TypeIds;
    std::vector<GlobalTypeMember *> Globals;
    for (GlobalClassesTy::member_iterator MI =
             GlobalClasses.member_begin(S.first);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        TypeIds.push_back(MI->get<Metadata *>());
      else
        Globals.push_back(MI->get<GlobalTypeMember *>());
    }

    // Order type identifiers by global index for determinism. This ordering is
    // stable as there is a one-to-one mapping between metadata and indices.
    std::sort(TypeIds.begin(), TypeIds.end(), [&](Metadata *M1, Metadata *M2) {
      return TypeIdInfo[M1].Index < TypeIdInfo[M2].Index;
    });

    // Build bitsets for this disjoint set.
    buildBitSetsFromDisjointSet(TypeIds, Globals);
  }

  allocateByteArrays();

  // Parse alias data to replace stand-in function declarations for aliases
  // with an alias to the intended target.
  if (ExportSummary) {
    if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
      for (auto AliasMD : AliasesMD->operands()) {
        assert(AliasMD->getNumOperands() >= 4);
        StringRef AliasName =
            cast<MDString>(AliasMD->getOperand(0))->getString();
        StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();

        if (!ExportedFunctions.count(Aliasee) ||
            ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
            !M.getNamedAlias(Aliasee))
          continue;

        GlobalValue::VisibilityTypes Visibility =
            static_cast<GlobalValue::VisibilityTypes>(
                cast<ConstantAsMetadata>(AliasMD->getOperand(2))
                    ->getValue()
                    ->getUniqueInteger()
                    .getZExtValue());
        bool Weak =
            static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
                                  ->getValue()
                                  ->getUniqueInteger()
                                  .getZExtValue());

        auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
        Alias->setVisibility(Visibility);
        if (Weak)
          Alias->setLinkage(GlobalValue::WeakAnyLinkage);

        if (auto *F = M.getFunction(AliasName)) {
          Alias->takeName(F);
          F->replaceAllUsesWith(Alias);
          F->eraseFromParent();
        } else {
          Alias->setName(AliasName);
        }
      }
    }
  }

  return true;
}

PreservedAnalyses LowerTypeTestsPass::run(Module &M,
                                          ModuleAnalysisManager &AM) {
  bool Changed = LowerTypeTestsModule(M, /*ExportSummary=*/nullptr,
                                      /*ImportSummary=*/nullptr)
                     .lower();
  if (!Changed)
    return PreservedAnalyses::all();
  return PreservedAnalyses::none();
}