llvm.org GIT mirror llvm / 041b3f8 lib / Target / X86 / X86ISelLowering.h
041b3f8

Tree @041b3f8 (Download .tar.gz)

X86ISelLowering.h @041b3f8raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef X86ISELLOWERING_H
#define X86ISELLOWERING_H

#include "X86Subtarget.h"
#include "X86RegisterInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/CallingConvLower.h"

namespace llvm {
  namespace X86ISD {
    // X86 Specific DAG Nodes
    enum NodeType {
      // Start the numbering where the builtin ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,

      /// SHLD, SHRD - Double shift instructions. These correspond to
      /// X86::SHLDxx and X86::SHRDxx instructions.
      SHLD,
      SHRD,

      /// FAND - Bitwise logical AND of floating point values. This corresponds
      /// to X86::ANDPS or X86::ANDPD.
      FAND,

      /// FOR - Bitwise logical OR of floating point values. This corresponds
      /// to X86::ORPS or X86::ORPD.
      FOR,

      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
      /// to X86::XORPS or X86::XORPD.
      FXOR,

      /// FSRL - Bitwise logical right shift of floating point values. These
      /// corresponds to X86::PSRLDQ.
      FSRL,

      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
      /// integer source in memory and FP reg result.  This corresponds to the
      /// X86::FILD*m instructions. It has three inputs (token chain, address,
      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
      /// also produces a flag).
      FILD,
      FILD_FLAG,

      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
      /// integer destination in memory and a FP reg source.  This corresponds
      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
      /// has two inputs (token chain and address) and two outputs (int value
      /// and token chain).
      FP_TO_INT16_IN_MEM,
      FP_TO_INT32_IN_MEM,
      FP_TO_INT64_IN_MEM,

      /// FLD - This instruction implements an extending load to FP stack slots.
      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
      /// operand, ptr to load from, and a ValueType node indicating the type
      /// to load to.
      FLD,

      /// FST - This instruction implements a truncating store to FP stack
      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
      /// chain operand, value to store, address, and a ValueType to store it
      /// as.
      FST,

      /// FP_GET_RESULT - This corresponds to FpGETRESULT pseudo instruction
      /// which copies from ST(0) to the destination. It takes a chain and
      /// writes a RFP result and a chain.
      FP_GET_RESULT,

      /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instruction
      /// which copies the source operand to ST(0). It takes a chain+value and
      /// returns a chain and a flag.
      FP_SET_RESULT,

      /// CALL/TAILCALL - These operations represent an abstract X86 call
      /// instruction, which includes a bunch of information.  In particular the
      /// operands of these node are:
      ///
      ///     #0 - The incoming token chain
      ///     #1 - The callee
      ///     #2 - The number of arg bytes the caller pushes on the stack.
      ///     #3 - The number of arg bytes the callee pops off the stack.
      ///     #4 - The value to pass in AL/AX/EAX (optional)
      ///     #5 - The value to pass in DL/DX/EDX (optional)
      ///
      /// The result values of these nodes are:
      ///
      ///     #0 - The outgoing token chain
      ///     #1 - The first register result value (optional)
      ///     #2 - The second register result value (optional)
      ///
      /// The CALL vs TAILCALL distinction boils down to whether the callee is
      /// known not to modify the caller's stack frame, as is standard with
      /// LLVM.
      CALL,
      TAILCALL,
      
      /// RDTSC_DAG - This operation implements the lowering for 
      /// readcyclecounter
      RDTSC_DAG,

      /// X86 compare and logical compare instructions.
      CMP, COMI, UCOMI,

      /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
      /// operand produced by a CMP instruction.
      SETCC,

      /// X86 conditional moves. Operand 1 and operand 2 are the two values
      /// to select from (operand 1 is a R/W operand). Operand 3 is the
      /// condition code, and operand 4 is the flag operand produced by a CMP
      /// or TEST instruction. It also writes a flag result.
      CMOV,

      /// X86 conditional branches. Operand 1 is the chain operand, operand 2
      /// is the block to branch if condition is true, operand 3 is the
      /// condition code, and operand 4 is the flag operand produced by a CMP
      /// or TEST instruction.
      BRCOND,

      /// Return with a flag operand. Operand 1 is the chain operand, operand
      /// 2 is the number of bytes of stack to pop.
      RET_FLAG,

      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
      REP_STOS,

      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
      REP_MOVS,

      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// Wrapper - A wrapper node for TargetConstantPool,
      /// TargetExternalSymbol, and TargetGlobalAddress.
      Wrapper,

      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
      /// relative displacements.
      WrapperRIP,

      /// S2VEC - X86 version of SCALAR_TO_VECTOR. The destination base does not
      /// have to match the operand type.
      S2VEC,

      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRW.
      PEXTRW,

      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRW.
      PINSRW,

      /// FMAX, FMIN - Floating point max and min.
      ///
      FMAX, FMIN,

      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
      /// approximation.  Note that these typically require refinement
      /// in order to obtain suitable precision.
      FRSQRT, FRCP,

      // Thread Local Storage
      TLSADDR, THREAD_POINTER,

      // Exception Handling helpers
      EH_RETURN,
      
      // tail call return 
      //   oeprand #0 chain
      //   operand #1 callee (register or absolute)
      //   operand #2 stack adjustment
      //   operand #3 optional in flag
      TC_RETURN,

      // Store FP control world into i16 memory
      FNSTCW16m
    };
  }

 /// Define some predicates that are used for node matching.
 namespace X86 {
   /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to PSHUFD.
   bool isPSHUFDMask(SDNode *N);

   /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to PSHUFD.
   bool isPSHUFHWMask(SDNode *N);

   /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to PSHUFD.
   bool isPSHUFLWMask(SDNode *N);

   /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to SHUFP*.
   bool isSHUFPMask(SDNode *N);

   /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
   bool isMOVHLPSMask(SDNode *N);

   /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
   /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
   /// <2, 3, 2, 3>
   bool isMOVHLPS_v_undef_Mask(SDNode *N);

   /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
   bool isMOVLPMask(SDNode *N);

   /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
   /// as well as MOVLHPS.
   bool isMOVHPMask(SDNode *N);

   /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to UNPCKL.
   bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false);

   /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to UNPCKH.
   bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false);

   /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
   /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
   /// <0, 0, 1, 1>
   bool isUNPCKL_v_undef_Mask(SDNode *N);

   /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
   /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
   /// <2, 2, 3, 3>
   bool isUNPCKH_v_undef_Mask(SDNode *N);

   /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to MOVSS,
   /// MOVSD, and MOVD, i.e. setting the lowest element.
   bool isMOVLMask(SDNode *N);

   /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
   bool isMOVSHDUPMask(SDNode *N);

   /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
   bool isMOVSLDUPMask(SDNode *N);

   /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a splat of a single element.
   bool isSplatMask(SDNode *N);

   /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
   /// specifies a splat of zero element.
   bool isSplatLoMask(SDNode *N);

   /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
   /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
   /// instructions.
   unsigned getShuffleSHUFImmediate(SDNode *N);

   /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
   /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
   /// instructions.
   unsigned getShufflePSHUFHWImmediate(SDNode *N);

   /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
   /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
   /// instructions.
   unsigned getShufflePSHUFLWImmediate(SDNode *N);
 }

  //===--------------------------------------------------------------------===//
  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
  class X86TargetLowering : public TargetLowering {
    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
    int RegSaveFrameIndex;            // X86-64 vararg func register save area.
    unsigned VarArgsGPOffset;         // X86-64 vararg func int reg offset.
    unsigned VarArgsFPOffset;         // X86-64 vararg func fp reg offset.
    int BytesToPopOnReturn;           // Number of arg bytes ret should pop.
    int BytesCallerReserves;          // Number of arg bytes caller makes.

  public:
    explicit X86TargetLowering(TargetMachine &TM);

    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    /// jumptable.
    SDOperand getPICJumpTableRelocBase(SDOperand Table,
                                       SelectionDAG &DAG) const;

    // Return the number of bytes that a function should pop when it returns (in
    // addition to the space used by the return address).
    //
    unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }

    // Return the number of bytes that the caller reserves for arguments passed
    // to this function.
    unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
 
    /// getStackPtrReg - Return the stack pointer register we are using: either
    /// ESP or RSP.
    unsigned getStackPtrReg() const { return X86StackPtr; }
    
    /// LowerOperation - Provide custom lowering hooks for some operations.
    ///
    virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);

    /// ExpandOperation - Custom lower the specified operation, splitting the
    /// value into two pieces.
    ///
    virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG);

    
    virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;

    virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
                                                       MachineBasicBlock *MBB);

    /// getTargetNodeName - This method returns the name of a target specific
    /// DAG node.
    virtual const char *getTargetNodeName(unsigned Opcode) const;

    /// computeMaskedBitsForTargetNode - Determine which of the bits specified 
    /// in Mask are known to be either zero or one and return them in the 
    /// KnownZero/KnownOne bitsets.
    virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
                                                uint64_t Mask,
                                                uint64_t &KnownZero, 
                                                uint64_t &KnownOne,
                                                const SelectionDAG &DAG,
                                                unsigned Depth = 0) const;
    
    SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);

    ConstraintType getConstraintType(const std::string &Constraint) const;
     
    std::vector<unsigned> 
      getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                        MVT::ValueType VT) const;

    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    /// vector.  If it is invalid, don't add anything to Ops.
    virtual void LowerAsmOperandForConstraint(SDOperand Op,
                                              char ConstraintLetter,
                                              std::vector<SDOperand> &Ops,
                                              SelectionDAG &DAG);
    
    /// getRegForInlineAsmConstraint - Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass*> 
      getRegForInlineAsmConstraint(const std::string &Constraint,
                                   MVT::ValueType VT) const;
    
    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;

    /// isTruncateFree - Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
    virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const;
  
    /// isShuffleMaskLegal - Targets can use this to indicate that they only
    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
    /// values are assumed to be legal.
    virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;

    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    /// used by Targets can use this to indicate if there is a suitable
    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    /// pool entry.
    virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
                                        MVT::ValueType EVT,
                                        SelectionDAG &DAG) const;
    
    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    /// for tail call optimization. Target which want to do tail call
    /// optimization should implement this function.
    virtual bool IsEligibleForTailCallOptimization(SDOperand Call, 
                                                   SDOperand Ret, 
                                                   SelectionDAG &DAG) const;

    virtual const TargetSubtarget* getSubtarget() {
      return static_cast<const TargetSubtarget*>(Subtarget);
    }

  private:
    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;
    const MRegisterInfo *RegInfo;

    /// X86StackPtr - X86 physical register used as stack ptr.
    unsigned X86StackPtr;
   
    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 
    /// floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    SDNode *LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode*TheCall,
                            unsigned CallingConv, SelectionDAG &DAG);
        

    SDOperand LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
                               const CCValAssign &VA,  MachineFrameInfo *MFI,
                               SDOperand Root, unsigned i);

    SDOperand LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
                               const SDOperand &StackPtr,
                               const CCValAssign &VA, SDOperand Chain,
                               SDOperand Arg);

    // C and StdCall Calling Convention implementation.
    SDOperand LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
                                bool isStdCall = false);
    SDOperand LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG, unsigned CC);

    // X86-64 C Calling Convention implementation.
    SDOperand LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,unsigned CC);

    // fast calling convention (tail call) implementation for 32/64bit
    SDOperand LowerX86_TailCallTo(SDOperand Op, 
                                      SelectionDAG & DAG, unsigned CC);
    unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
    // Fast and FastCall Calling Convention implementation.
    SDOperand LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG, unsigned CC);

    std::pair<SDOperand,SDOperand> FP_TO_SINTHelper(SDOperand Op, 
                                                    SelectionDAG &DAG);
    
    SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerShift(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFABS(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFNEG(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerSELECT(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerBRCOND(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerMEMSET(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerMEMCPYInline(SDOperand Dest, SDOperand Source,
                                SDOperand Chain, unsigned Size, unsigned Align,
                                SelectionDAG &DAG);
    SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerVACOPY(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerTRAMPOLINE(SDOperand Op, SelectionDAG &DAG);
    SDOperand LowerFLT_ROUNDS(SDOperand Op, SelectionDAG &DAG);
    SDNode *ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG);
    SDNode *ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG);
  };
}

#endif    // X86ISELLOWERING_H