llvm.org GIT mirror llvm / 0392724 lib / Target / AMDGPU / GCNHazardRecognizer.cpp
0392724

Tree @0392724 (Download .tar.gz)

GCNHazardRecognizer.cpp @0392724raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements hazard recognizers for scheduling on GCN processors.
//
//===----------------------------------------------------------------------===//

#include "GCNHazardRecognizer.h"
#include "AMDGPUSubtarget.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <set>
#include <vector>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Hazard Recoginizer Implementation
//===----------------------------------------------------------------------===//

GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
  IsHazardRecognizerMode(false),
  CurrCycleInstr(nullptr),
  MF(MF),
  ST(MF.getSubtarget<GCNSubtarget>()),
  TII(*ST.getInstrInfo()),
  TRI(TII.getRegisterInfo()),
  ClauseUses(TRI.getNumRegUnits()),
  ClauseDefs(TRI.getNumRegUnits()) {
  MaxLookAhead = 5;
}

void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
  EmitInstruction(SU->getInstr());
}

void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
  CurrCycleInstr = MI;
}

static bool isDivFMas(unsigned Opcode) {
  return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
}

static bool isSGetReg(unsigned Opcode) {
  return Opcode == AMDGPU::S_GETREG_B32;
}

static bool isSSetReg(unsigned Opcode) {
  return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
}

static bool isRWLane(unsigned Opcode) {
  return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
}

static bool isRFE(unsigned Opcode) {
  return Opcode == AMDGPU::S_RFE_B64;
}

static bool isSMovRel(unsigned Opcode) {
  switch (Opcode) {
  case AMDGPU::S_MOVRELS_B32:
  case AMDGPU::S_MOVRELS_B64:
  case AMDGPU::S_MOVRELD_B32:
  case AMDGPU::S_MOVRELD_B64:
    return true;
  default:
    return false;
  }
}

static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
                                    const MachineInstr &MI) {
  if (TII.isAlwaysGDS(MI.getOpcode()))
    return true;

  switch (MI.getOpcode()) {
  case AMDGPU::S_SENDMSG:
  case AMDGPU::S_SENDMSGHALT:
  case AMDGPU::S_TTRACEDATA:
    return true;
  // These DS opcodes don't support GDS.
  case AMDGPU::DS_NOP:
  case AMDGPU::DS_PERMUTE_B32:
  case AMDGPU::DS_BPERMUTE_B32:
    return false;
  default:
    if (TII.isDS(MI.getOpcode())) {
      int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
                                           AMDGPU::OpName::gds);
      if (MI.getOperand(GDS).getImm())
        return true;
    }
    return false;
  }
}

static bool isPermlane(const MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();
  return Opcode == AMDGPU::V_PERMLANE16_B32 ||
         Opcode == AMDGPU::V_PERMLANEX16_B32;
}

static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
  const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
                                                     AMDGPU::OpName::simm16);
  return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
}

ScheduleHazardRecognizer::HazardType
GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
  MachineInstr *MI = SU->getInstr();
  if (MI->isBundle())
   return NoHazard;

  if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
    return NoopHazard;

  // FIXME: Should flat be considered vmem?
  if ((SIInstrInfo::isVMEM(*MI) ||
       SIInstrInfo::isFLAT(*MI))
      && checkVMEMHazards(MI) > 0)
    return NoopHazard;

  if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
    return NoopHazard;

  if (checkFPAtomicToDenormModeHazard(MI) > 0)
    return NoopHazard;

  if (ST.hasNoDataDepHazard())
    return NoHazard;

  if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
    return NoopHazard;

  if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
    return NoopHazard;

  if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
    return NoopHazard;

  if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
    return NoopHazard;

  if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
    return NoopHazard;

  if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
    return NoopHazard;

  if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
    return NoopHazard;

  if (ST.hasReadM0MovRelInterpHazard() &&
      (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
      checkReadM0Hazards(MI) > 0)
    return NoopHazard;

  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) &&
      checkReadM0Hazards(MI) > 0)
    return NoopHazard;

  if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
    return NoopHazard;

  if (checkAnyInstHazards(MI) > 0)
    return NoopHazard;

  return NoHazard;
}

static void insertNoopInBundle(MachineInstr *MI, const SIInstrInfo &TII) {
  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
      .addImm(0);
}

void GCNHazardRecognizer::processBundle() {
  MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
  MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
  // Check bundled MachineInstr's for hazards.
  for (; MI != E && MI->isInsideBundle(); ++MI) {
    CurrCycleInstr = &*MI;
    unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);

    if (IsHazardRecognizerMode)
      fixHazards(CurrCycleInstr);

    for (unsigned i = 0; i < WaitStates; ++i)
      insertNoopInBundle(CurrCycleInstr, TII);

    // It’s unnecessary to track more than MaxLookAhead instructions. Since we
    // include the bundled MI directly after, only add a maximum of
    // (MaxLookAhead - 1) noops to EmittedInstrs.
    for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
      EmittedInstrs.push_front(nullptr);

    EmittedInstrs.push_front(CurrCycleInstr);
    EmittedInstrs.resize(MaxLookAhead);
  }
  CurrCycleInstr = nullptr;
}

unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
  IsHazardRecognizerMode = false;
  return PreEmitNoopsCommon(SU->getInstr());
}

unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
  IsHazardRecognizerMode = true;
  CurrCycleInstr = MI;
  unsigned W = PreEmitNoopsCommon(MI);
  fixHazards(MI);
  CurrCycleInstr = nullptr;
  return W;
}

unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
  if (MI->isBundle())
    return 0;

  int WaitStates = std::max(0, checkAnyInstHazards(MI));

  if (SIInstrInfo::isSMRD(*MI))
    return std::max(WaitStates, checkSMRDHazards(MI));

  if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
    WaitStates = std::max(WaitStates, checkVMEMHazards(MI));

  if (ST.hasNSAtoVMEMBug())
    WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));

  WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));

  if (ST.hasNoDataDepHazard())
    return WaitStates;

  if (SIInstrInfo::isVALU(*MI))
    WaitStates = std::max(WaitStates, checkVALUHazards(MI));

  if (SIInstrInfo::isDPP(*MI))
    WaitStates = std::max(WaitStates, checkDPPHazards(MI));

  if (isDivFMas(MI->getOpcode()))
    WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));

  if (isRWLane(MI->getOpcode()))
    WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));

  if (MI->isInlineAsm())
    return std::max(WaitStates, checkInlineAsmHazards(MI));

  if (isSGetReg(MI->getOpcode()))
    return std::max(WaitStates, checkGetRegHazards(MI));

  if (isSSetReg(MI->getOpcode()))
    return std::max(WaitStates, checkSetRegHazards(MI));

  if (isRFE(MI->getOpcode()))
    return std::max(WaitStates, checkRFEHazards(MI));

  if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
                                           isSMovRel(MI->getOpcode())))
    return std::max(WaitStates, checkReadM0Hazards(MI));

  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI))
    return std::max(WaitStates, checkReadM0Hazards(MI));

  return WaitStates;
}

void GCNHazardRecognizer::EmitNoop() {
  EmittedInstrs.push_front(nullptr);
}

void GCNHazardRecognizer::AdvanceCycle() {
  // When the scheduler detects a stall, it will call AdvanceCycle() without
  // emitting any instructions.
  if (!CurrCycleInstr)
    return;

  // Do not track non-instructions which do not affect the wait states.
  // If included, these instructions can lead to buffer overflow such that
  // detectable hazards are missed.
  if (CurrCycleInstr->isImplicitDef() || CurrCycleInstr->isDebugInstr() ||
      CurrCycleInstr->isKill())
    return;

  if (CurrCycleInstr->isBundle()) {
    processBundle();
    return;
  }

  unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);

  // Keep track of emitted instructions
  EmittedInstrs.push_front(CurrCycleInstr);

  // Add a nullptr for each additional wait state after the first.  Make sure
  // not to add more than getMaxLookAhead() items to the list, since we
  // truncate the list to that size right after this loop.
  for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
       i < e; ++i) {
    EmittedInstrs.push_front(nullptr);
  }

  // getMaxLookahead() is the largest number of wait states we will ever need
  // to insert, so there is no point in keeping track of more than that many
  // wait states.
  EmittedInstrs.resize(getMaxLookAhead());

  CurrCycleInstr = nullptr;
}

void GCNHazardRecognizer::RecedeCycle() {
  llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
}

//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn;

// Returns a minimum wait states since \p I walking all predecessors.
// Only scans until \p IsExpired does not return true.
// Can only be run in a hazard recognizer mode.
static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
                              MachineBasicBlock *MBB,
                              MachineBasicBlock::reverse_instr_iterator I,
                              int WaitStates,
                              IsExpiredFn IsExpired,
                              DenseSet<const MachineBasicBlock *> &Visited) {
  for (auto E = MBB->instr_rend(); I != E; ++I) {
    // Don't add WaitStates for parent BUNDLE instructions.
    if (I->isBundle())
      continue;

    if (IsHazard(&*I))
      return WaitStates;

    if (I->isInlineAsm() || I->isImplicitDef() || I->isDebugInstr())
      continue;

    WaitStates += SIInstrInfo::getNumWaitStates(*I);

    if (IsExpired(&*I, WaitStates))
      return std::numeric_limits<int>::max();
  }

  int MinWaitStates = WaitStates;
  bool Found = false;
  for (MachineBasicBlock *Pred : MBB->predecessors()) {
    if (!Visited.insert(Pred).second)
      continue;

    int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(),
                               WaitStates, IsExpired, Visited);

    if (W == std::numeric_limits<int>::max())
      continue;

    MinWaitStates = Found ? std::min(MinWaitStates, W) : W;
    if (IsExpired(nullptr, MinWaitStates))
      return MinWaitStates;

    Found = true;
  }

  if (Found)
    return MinWaitStates;

  return std::numeric_limits<int>::max();
}

static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
                              MachineInstr *MI,
                              IsExpiredFn IsExpired) {
  DenseSet<const MachineBasicBlock *> Visited;
  return getWaitStatesSince(IsHazard, MI->getParent(),
                            std::next(MI->getReverseIterator()),
                            0, IsExpired, Visited);
}

int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
  if (IsHazardRecognizerMode) {
    auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) {
      return WaitStates >= Limit;
    };
    return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
  }

  int WaitStates = 0;
  for (MachineInstr *MI : EmittedInstrs) {
    if (MI) {
      if (IsHazard(MI))
        return WaitStates;

      if (MI->isInlineAsm())
        continue;
    }
    ++WaitStates;

    if (WaitStates >= Limit)
      break;
  }
  return std::numeric_limits<int>::max();
}

int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
                                               IsHazardFn IsHazardDef,
                                               int Limit) {
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
    return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
  };

  return getWaitStatesSince(IsHazardFn, Limit);
}

int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
                                                  int Limit) {
  auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
    return isSSetReg(MI->getOpcode()) && IsHazard(MI);
  };

  return getWaitStatesSince(IsHazardFn, Limit);
}

//===----------------------------------------------------------------------===//
// No-op Hazard Detection
//===----------------------------------------------------------------------===//

static void addRegUnits(const SIRegisterInfo &TRI,
                        BitVector &BV, unsigned Reg) {
  for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
    BV.set(*RUI);
}

static void addRegsToSet(const SIRegisterInfo &TRI,
                         iterator_range<MachineInstr::const_mop_iterator> Ops,
                         BitVector &Set) {
  for (const MachineOperand &Op : Ops) {
    if (Op.isReg())
      addRegUnits(TRI, Set, Op.getReg());
  }
}

void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
  // XXX: Do we need to worry about implicit operands
  addRegsToSet(TRI, MI.defs(), ClauseDefs);
  addRegsToSet(TRI, MI.uses(), ClauseUses);
}

int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
  // SMEM soft clause are only present on VI+, and only matter if xnack is
  // enabled.
  if (!ST.isXNACKEnabled())
    return 0;

  bool IsSMRD = TII.isSMRD(*MEM);

  resetClause();

  // A soft-clause is any group of consecutive SMEM instructions.  The
  // instructions in this group may return out of order and/or may be
  // replayed (i.e. the same instruction issued more than once).
  //
  // In order to handle these situations correctly we need to make sure that
  // when a clause has more than one instruction, no instruction in the clause
  // writes to a register that is read by another instruction in the clause
  // (including itself). If we encounter this situaion, we need to break the
  // clause by inserting a non SMEM instruction.

  for (MachineInstr *MI : EmittedInstrs) {
    // When we hit a non-SMEM instruction then we have passed the start of the
    // clause and we can stop.
    if (!MI)
      break;

    if (IsSMRD != SIInstrInfo::isSMRD(*MI))
      break;

    addClauseInst(*MI);
  }

  if (ClauseDefs.none())
    return 0;

  // We need to make sure not to put loads and stores in the same clause if they
  // use the same address. For now, just start a new clause whenever we see a
  // store.
  if (MEM->mayStore())
    return 1;

  addClauseInst(*MEM);

  // If the set of defs and uses intersect then we cannot add this instruction
  // to the clause, so we have a hazard.
  return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
}

int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
  int WaitStatesNeeded = 0;

  WaitStatesNeeded = checkSoftClauseHazards(SMRD);

  // This SMRD hazard only affects SI.
  if (!ST.hasSMRDReadVALUDefHazard())
    return WaitStatesNeeded;

  // A read of an SGPR by SMRD instruction requires 4 wait states when the
  // SGPR was written by a VALU instruction.
  int SmrdSgprWaitStates = 4;
  auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
  auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };

  bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);

  for (const MachineOperand &Use : SMRD->uses()) {
    if (!Use.isReg())
      continue;
    int WaitStatesNeededForUse =
        SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
                                                   SmrdSgprWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    // This fixes what appears to be undocumented hardware behavior in SI where
    // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
    // needs some number of nops in between. We don't know how many we need, but
    // let's use 4. This wasn't discovered before probably because the only
    // case when this happens is when we expand a 64-bit pointer into a full
    // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
    // probably never encountered in the closed-source land.
    if (IsBufferSMRD) {
      int WaitStatesNeededForUse =
        SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
                                                   IsBufferHazardDefFn,
                                                   SmrdSgprWaitStates);
      WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
    }
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
  if (!ST.hasVMEMReadSGPRVALUDefHazard())
    return 0;

  int WaitStatesNeeded = checkSoftClauseHazards(VMEM);

  // A read of an SGPR by a VMEM instruction requires 5 wait states when the
  // SGPR was written by a VALU Instruction.
  const int VmemSgprWaitStates = 5;
  auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
  for (const MachineOperand &Use : VMEM->uses()) {
    if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
      continue;

    int WaitStatesNeededForUse =
        VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
                                                   VmemSgprWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }
  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const SIInstrInfo *TII = ST.getInstrInfo();

  // Check for DPP VGPR read after VALU VGPR write and EXEC write.
  int DppVgprWaitStates = 2;
  int DppExecWaitStates = 5;
  int WaitStatesNeeded = 0;
  auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };

  for (const MachineOperand &Use : DPP->uses()) {
    if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
      continue;
    int WaitStatesNeededForUse =
        DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
                              [](MachineInstr *) { return true; },
                              DppVgprWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  WaitStatesNeeded = std::max(
      WaitStatesNeeded,
      DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
                                                DppExecWaitStates));

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
  const SIInstrInfo *TII = ST.getInstrInfo();

  // v_div_fmas requires 4 wait states after a write to vcc from a VALU
  // instruction.
  const int DivFMasWaitStates = 4;
  auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
  int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
                                               DivFMasWaitStates);

  return DivFMasWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);

  const int GetRegWaitStates = 2;
  auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
    return GetRegHWReg == getHWReg(TII, *MI);
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);

  return GetRegWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned HWReg = getHWReg(TII, *SetRegInstr);

  const int SetRegWaitStates = ST.getSetRegWaitStates();
  auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
    return HWReg == getHWReg(TII, *MI);
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
  return SetRegWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
  if (!MI.mayStore())
    return -1;

  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MI.getDesc();

  int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
  int VDataRCID = -1;
  if (VDataIdx != -1)
    VDataRCID = Desc.OpInfo[VDataIdx].RegClass;

  if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
    // There is no hazard if the instruction does not use vector regs
    // (like wbinvl1)
    if (VDataIdx == -1)
      return -1;
    // For MUBUF/MTBUF instructions this hazard only exists if the
    // instruction is not using a register in the soffset field.
    const MachineOperand *SOffset =
        TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
    // If we have no soffset operand, then assume this field has been
    // hardcoded to zero.
    if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
        (!SOffset || !SOffset->isReg()))
      return VDataIdx;
  }

  // MIMG instructions create a hazard if they don't use a 256-bit T# and
  // the store size is greater than 8 bytes and they have more than two bits
  // of their dmask set.
  // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
  if (TII->isMIMG(MI)) {
    int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
    assert(SRsrcIdx != -1 &&
           AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
    (void)SRsrcIdx;
  }

  if (TII->isFLAT(MI)) {
    int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
    if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
      return DataIdx;
  }

  return -1;
}

int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
						const MachineRegisterInfo &MRI) {
  // Helper to check for the hazard where VMEM instructions that store more than
  // 8 bytes can have there store data over written by the next instruction.
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  const int VALUWaitStates = 1;
  int WaitStatesNeeded = 0;

  if (!TRI->isVGPR(MRI, Def.getReg()))
    return WaitStatesNeeded;
  unsigned Reg = Def.getReg();
  auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
    int DataIdx = createsVALUHazard(*MI);
    return DataIdx >= 0 &&
    TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
  };
  int WaitStatesNeededForDef =
    VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
  // This checks for the hazard where VMEM instructions that store more than
  // 8 bytes can have there store data over written by the next instruction.
  if (!ST.has12DWordStoreHazard())
    return 0;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  int WaitStatesNeeded = 0;

  for (const MachineOperand &Def : VALU->defs()) {
    WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
  // This checks for hazards associated with inline asm statements.
  // Since inline asms can contain just about anything, we use this
  // to call/leverage other check*Hazard routines. Note that
  // this function doesn't attempt to address all possible inline asm
  // hazards (good luck), but is a collection of what has been
  // problematic thus far.

  // see checkVALUHazards()
  if (!ST.has12DWordStoreHazard())
    return 0;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  int WaitStatesNeeded = 0;

  for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
       I != E; ++I) {
    const MachineOperand &Op = IA->getOperand(I);
    if (Op.isReg() && Op.isDef()) {
      WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
    }
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  const MachineOperand *LaneSelectOp =
      TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);

  if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
    return 0;

  unsigned LaneSelectReg = LaneSelectOp->getReg();
  auto IsHazardFn = [TII] (MachineInstr *MI) {
    return TII->isVALU(*MI);
  };

  const int RWLaneWaitStates = 4;
  int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
                                              RWLaneWaitStates);
  return RWLaneWaitStates - WaitStatesSince;
}

int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
  if (!ST.hasRFEHazards())
    return 0;

  const SIInstrInfo *TII = ST.getInstrInfo();

  const int RFEWaitStates = 1;

  auto IsHazardFn = [TII] (MachineInstr *MI) {
    return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
  return RFEWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
  if (MI->isDebugInstr())
    return 0;

  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  if (!ST.hasSMovFedHazard())
    return 0;

  // Check for any instruction reading an SGPR after a write from
  // s_mov_fed_b32.
  int MovFedWaitStates = 1;
  int WaitStatesNeeded = 0;

  for (const MachineOperand &Use : MI->uses()) {
    if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
      continue;
    auto IsHazardFn = [] (MachineInstr *MI) {
      return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
    };
    int WaitStatesNeededForUse =
        MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn,
                                                 MovFedWaitStates);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const int SMovRelWaitStates = 1;
  auto IsHazardFn = [TII] (MachineInstr *MI) {
    return TII->isSALU(*MI);
  };
  return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn,
                                                   SMovRelWaitStates);
}

void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
  fixVMEMtoScalarWriteHazards(MI);
  fixVcmpxPermlaneHazards(MI);
  fixSMEMtoVectorWriteHazards(MI);
  fixVcmpxExecWARHazard(MI);
  fixLdsBranchVmemWARHazard(MI);
}

bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
  if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
    return false;

  const SIInstrInfo *TII = ST.getInstrInfo();
  auto IsHazardFn = [TII] (MachineInstr *MI) {
    return TII->isVOPC(*MI);
  };

  auto IsExpiredFn = [] (MachineInstr *MI, int) {
    if (!MI)
      return false;
    unsigned Opc = MI->getOpcode();
    return SIInstrInfo::isVALU(*MI) &&
           Opc != AMDGPU::V_NOP_e32 &&
           Opc != AMDGPU::V_NOP_e64 &&
           Opc != AMDGPU::V_NOP_sdwa;
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  // V_NOP will be discarded by SQ.
  // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
  // which is always a VGPR and available.
  auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
  unsigned Reg = Src0->getReg();
  bool IsUndef = Src0->isUndef();
  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::V_MOV_B32_e32))
    .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
    .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);

  return true;
}

bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
  if (!ST.hasVMEMtoScalarWriteHazard())
    return false;

  if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
    return false;

  if (MI->getNumDefs() == 0)
    return false;

  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  auto IsHazardFn = [TRI, MI] (MachineInstr *I) {
    if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isDS(*I) &&
        !SIInstrInfo::isFLAT(*I))
      return false;

    for (const MachineOperand &Def : MI->defs()) {
      MachineOperand *Op = I->findRegisterUseOperand(Def.getReg(), false, TRI);
      if (!Op || (Op->isImplicit() && Op->getReg() == AMDGPU::EXEC))
        continue;
      return true;
    }
    return false;
  };

  auto IsExpiredFn = [] (MachineInstr *MI, int) {
    return MI && (SIInstrInfo::isVALU(*MI) ||
                  (MI->getOpcode() == AMDGPU::S_WAITCNT &&
                   !MI->getOperand(0).getImm()));
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  const SIInstrInfo *TII = ST.getInstrInfo();
  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32));
  return true;
}

bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
  if (!ST.hasSMEMtoVectorWriteHazard())
    return false;

  if (!SIInstrInfo::isVALU(*MI))
    return false;

  unsigned SDSTName;
  switch (MI->getOpcode()) {
  case AMDGPU::V_READLANE_B32:
  case AMDGPU::V_READFIRSTLANE_B32:
    SDSTName = AMDGPU::OpName::vdst;
    break;
  default:
    SDSTName = AMDGPU::OpName::sdst;
    break;
  }

  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
  const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
  if (!SDST) {
    for (const auto &MO : MI->implicit_operands()) {
      if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
        SDST = &MO;
        break;
      }
    }
  }

  if (!SDST)
    return false;

  const unsigned SDSTReg = SDST->getReg();
  auto IsHazardFn = [SDSTReg, TRI] (MachineInstr *I) {
    return SIInstrInfo::isSMRD(*I) && I->readsRegister(SDSTReg, TRI);
  };

  auto IsExpiredFn = [TII, IV] (MachineInstr *MI, int) {
    if (MI) {
      if (TII->isSALU(*MI)) {
        switch (MI->getOpcode()) {
        case AMDGPU::S_SETVSKIP:
        case AMDGPU::S_VERSION:
        case AMDGPU::S_WAITCNT_VSCNT:
        case AMDGPU::S_WAITCNT_VMCNT:
        case AMDGPU::S_WAITCNT_EXPCNT:
          // These instructions cannot not mitigate the hazard.
          return false;
        case AMDGPU::S_WAITCNT_LGKMCNT:
          // Reducing lgkmcnt count to 0 always mitigates the hazard.
          return (MI->getOperand(1).getImm() == 0) &&
                 (MI->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
        case AMDGPU::S_WAITCNT: {
          const int64_t Imm = MI->getOperand(0).getImm();
          AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
          return (Decoded.LgkmCnt == 0);
        }
        default:
          // SOPP instructions cannot mitigate the hazard.
          if (TII->isSOPP(*MI))
            return false;
          // At this point the SALU can be assumed to mitigate the hazard
          // because either:
          // (a) it is independent of the at risk SMEM (breaking chain),
          // or
          // (b) it is dependent on the SMEM, in which case an appropriate
          //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
          //     SMEM instruction.
          return true;
        }
      }
    }
    return false;
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
      .addImm(0);
  return true;
}

bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
  if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
    return false;

  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
    return false;

  auto IsHazardFn = [TRI] (MachineInstr *I) {
    if (SIInstrInfo::isVALU(*I))
      return false;
    return I->readsRegister(AMDGPU::EXEC, TRI);
  };

  const SIInstrInfo *TII = ST.getInstrInfo();
  auto IsExpiredFn = [TII, TRI] (MachineInstr *MI, int) {
    if (!MI)
      return false;
    if (SIInstrInfo::isVALU(*MI)) {
      if (TII->getNamedOperand(*MI, AMDGPU::OpName::sdst))
        return true;
      for (auto MO : MI->implicit_operands())
        if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
          return true;
    }
    if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
        (MI->getOperand(0).getImm() & 0xfffe) == 0xfffe)
      return true;
    return false;
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::S_WAITCNT_DEPCTR))
    .addImm(0xfffe);
  return true;
}

bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
  if (!ST.hasLdsBranchVmemWARHazard())
    return false;

  auto IsHazardInst = [] (const MachineInstr *MI) {
    if (SIInstrInfo::isDS(*MI))
      return 1;
    if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isSegmentSpecificFLAT(*MI))
      return 2;
    return 0;
  };

  auto InstType = IsHazardInst(MI);
  if (!InstType)
    return false;

  auto IsExpiredFn = [&IsHazardInst] (MachineInstr *I, int) {
    return I && (IsHazardInst(I) ||
                 (I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
                  I->getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
                  !I->getOperand(1).getImm()));
  };

  auto IsHazardFn = [InstType, &IsHazardInst] (MachineInstr *I) {
    if (!I->isBranch())
      return false;

    auto IsHazardFn = [InstType, IsHazardInst] (MachineInstr *I) {
      auto InstType2 = IsHazardInst(I);
      return InstType2 && InstType != InstType2;
    };

    auto IsExpiredFn = [InstType, &IsHazardInst] (MachineInstr *I, int) {
      if (!I)
        return false;

      auto InstType2 = IsHazardInst(I);
      if (InstType == InstType2)
        return true;

      return I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
             I->getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
             !I->getOperand(1).getImm();
    };

    return ::getWaitStatesSince(IsHazardFn, I, IsExpiredFn) !=
           std::numeric_limits<int>::max();
  };

  if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
      std::numeric_limits<int>::max())
    return false;

  const SIInstrInfo *TII = ST.getInstrInfo();
  BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
          TII->get(AMDGPU::S_WAITCNT_VSCNT))
    .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
    .addImm(0);

  return true;
}

int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
  int NSAtoVMEMWaitStates = 1;

  if (!ST.hasNSAtoVMEMBug())
    return 0;

  if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
    return 0;

  const SIInstrInfo *TII = ST.getInstrInfo();
  const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
  if (!Offset || (Offset->getImm() & 6) == 0)
    return 0;

  auto IsHazardFn = [TII] (MachineInstr *I) {
    if (!SIInstrInfo::isMIMG(*I))
      return false;
    const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I->getOpcode());
    return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
           TII->getInstSizeInBytes(*I) >= 16;
  };

  return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
}

int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
  int FPAtomicToDenormModeWaitStates = 3;

  if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
    return 0;

  auto IsHazardFn = [] (MachineInstr *I) {
    if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isFLAT(*I))
      return false;
    return SIInstrInfo::isFPAtomic(*I);
  };

  auto IsExpiredFn = [] (MachineInstr *MI, int WaitStates) {
    if (WaitStates >= 3 || SIInstrInfo::isVALU(*MI))
      return true;

    switch (MI->getOpcode()) {
    case AMDGPU::S_WAITCNT:
    case AMDGPU::S_WAITCNT_VSCNT:
    case AMDGPU::S_WAITCNT_VMCNT:
    case AMDGPU::S_WAITCNT_EXPCNT:
    case AMDGPU::S_WAITCNT_LGKMCNT:
    case AMDGPU::S_WAITCNT_IDLE:
      return true;
    default:
      break;
    }

    return false;
  };


  return FPAtomicToDenormModeWaitStates -
         ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
}