llvm.org GIT mirror llvm / testing include / llvm / ADT / iterator.h
testing

Tree @testing (Download .tar.gz)

iterator.h @testing

beee61d
 
 
 
 
 
 
 
 
 
 
 
acec6ed
79ebf19
eadbda3
1b27914
904bc55
79ebf19
beee61d
 
 
18cd5b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b1ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cd5b1
eadbda3
18cd5b1
91cc143
 
 
 
 
a4f110d
 
 
 
91cc143
 
b29c290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91cc143
18cd5b1
167cdd0
 
91cc143
 
 
18cd5b1
 
 
 
 
91cc143
 
 
18cd5b1
 
 
91cc143
 
 
18cd5b1
 
 
 
 
 
167cdd0
 
18cd5b1
 
 
 
 
 
 
 
91cc143
 
 
18cd5b1
 
 
91cc143
 
 
18cd5b1
 
 
 
 
 
 
 
 
 
91cc143
 
 
18cd5b1
 
 
 
91cc143
 
 
18cd5b1
 
 
91cc143
 
 
18cd5b1
 
 
ddfada2
18cd5b1
 
 
ddfada2
 
 
 
 
b29c290
91cc143
 
b29c290
18cd5b1
 
 
beee61d
 
 
 
 
b913bd4
 
 
 
 
 
 
2962e3e
 
 
 
 
 
 
 
b913bd4
 
beee61d
b913bd4
 
79ebf19
3c1f8e0
beee61d
 
 
822147f
beee61d
167cdd0
 
 
 
beee61d
73e3fb6
 
beee61d
79ebf19
beee61d
 
91cc143
 
 
beee61d
 
 
 
91cc143
 
 
beee61d
 
 
3c1f8e0
91cc143
 
 
 
 
 
beee61d
18cd5b1
 
3c1f8e0
beee61d
 
 
 
3c1f8e0
beee61d
91cc143
 
 
beee61d
 
 
 
 
91cc143
 
 
 
 
 
beee61d
 
 
 
 
 
 
 
 
 
 
79ebf19
beee61d
01f2134
 
 
beee61d
b913bd4
 
 
 
822147f
beee61d
 
 
 
 
 
 
acec6ed
 
 
 
 
 
 
 
 
878c720
 
 
 
 
 
 
 
904bc55
878c720
 
 
 
 
 
 
 
acec6ed
 
 
 
 
 
 
 
 
904bc55
a5afae3
904bc55
//===- iterator.h - Utilities for using and defining iterators --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_ITERATOR_H
#define LLVM_ADT_ITERATOR_H

#include "llvm/ADT/iterator_range.h"
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>

namespace llvm {

/// \brief CRTP base class which implements the entire standard iterator facade
/// in terms of a minimal subset of the interface.
///
/// Use this when it is reasonable to implement most of the iterator
/// functionality in terms of a core subset. If you need special behavior or
/// there are performance implications for this, you may want to override the
/// relevant members instead.
///
/// Note, one abstraction that this does *not* provide is implementing
/// subtraction in terms of addition by negating the difference. Negation isn't
/// always information preserving, and I can see very reasonable iterator
/// designs where this doesn't work well. It doesn't really force much added
/// boilerplate anyways.
///
/// Another abstraction that this doesn't provide is implementing increment in
/// terms of addition of one. These aren't equivalent for all iterator
/// categories, and respecting that adds a lot of complexity for little gain.
///
/// Classes wishing to use `iterator_facade_base` should implement the following
/// methods:
///
/// Forward Iterators:
///   (All of the following methods)
///   - DerivedT &operator=(const DerivedT &R);
///   - bool operator==(const DerivedT &R) const;
///   - const T &operator*() const;
///   - T &operator*();
///   - DerivedT &operator++();
///
/// Bidirectional Iterators:
///   (All methods of forward iterators, plus the following)
///   - DerivedT &operator--();
///
/// Random-access Iterators:
///   (All methods of bidirectional iterators excluding the following)
///   - DerivedT &operator++();
///   - DerivedT &operator--();
///   (and plus the following)
///   - bool operator<(const DerivedT &RHS) const;
///   - DifferenceTypeT operator-(const DerivedT &R) const;
///   - DerivedT &operator+=(DifferenceTypeT N);
///   - DerivedT &operator-=(DifferenceTypeT N);
///
template <typename DerivedT, typename IteratorCategoryT, typename T,
          typename DifferenceTypeT = std::ptrdiff_t, typename PointerT = T *,
          typename ReferenceT = T &>
class iterator_facade_base
    : public std::iterator<IteratorCategoryT, T, DifferenceTypeT, PointerT,
                           ReferenceT> {
protected:
  enum {
    IsRandomAccess = std::is_base_of<std::random_access_iterator_tag,
                                     IteratorCategoryT>::value,
    IsBidirectional = std::is_base_of<std::bidirectional_iterator_tag,
                                      IteratorCategoryT>::value,
  };

  /// A proxy object for computing a reference via indirecting a copy of an
  /// iterator. This is used in APIs which need to produce a reference via
  /// indirection but for which the iterator object might be a temporary. The
  /// proxy preserves the iterator internally and exposes the indirected
  /// reference via a conversion operator.
  class ReferenceProxy {
    friend iterator_facade_base;

    DerivedT I;

    ReferenceProxy(DerivedT I) : I(std::move(I)) {}

  public:
    operator ReferenceT() const { return *I; }
  };

public:
  DerivedT operator+(DifferenceTypeT n) const {
    static_assert(std::is_base_of<iterator_facade_base, DerivedT>::value,
                  "Must pass the derived type to this template!");
    static_assert(
        IsRandomAccess,
        "The '+' operator is only defined for random access iterators.");
    DerivedT tmp = *static_cast<const DerivedT *>(this);
    tmp += n;
    return tmp;
  }
  friend DerivedT operator+(DifferenceTypeT n, const DerivedT &i) {
    static_assert(
        IsRandomAccess,
        "The '+' operator is only defined for random access iterators.");
    return i + n;
  }
  DerivedT operator-(DifferenceTypeT n) const {
    static_assert(
        IsRandomAccess,
        "The '-' operator is only defined for random access iterators.");
    DerivedT tmp = *static_cast<const DerivedT *>(this);
    tmp -= n;
    return tmp;
  }

  DerivedT &operator++() {
    static_assert(std::is_base_of<iterator_facade_base, DerivedT>::value,
                  "Must pass the derived type to this template!");
    return static_cast<DerivedT *>(this)->operator+=(1);
  }
  DerivedT operator++(int) {
    DerivedT tmp = *static_cast<DerivedT *>(this);
    ++*static_cast<DerivedT *>(this);
    return tmp;
  }
  DerivedT &operator--() {
    static_assert(
        IsBidirectional,
        "The decrement operator is only defined for bidirectional iterators.");
    return static_cast<DerivedT *>(this)->operator-=(1);
  }
  DerivedT operator--(int) {
    static_assert(
        IsBidirectional,
        "The decrement operator is only defined for bidirectional iterators.");
    DerivedT tmp = *static_cast<DerivedT *>(this);
    --*static_cast<DerivedT *>(this);
    return tmp;
  }

  bool operator!=(const DerivedT &RHS) const {
    return !static_cast<const DerivedT *>(this)->operator==(RHS);
  }

  bool operator>(const DerivedT &RHS) const {
    static_assert(
        IsRandomAccess,
        "Relational operators are only defined for random access iterators.");
    return !static_cast<const DerivedT *>(this)->operator<(RHS) &&
           !static_cast<const DerivedT *>(this)->operator==(RHS);
  }
  bool operator<=(const DerivedT &RHS) const {
    static_assert(
        IsRandomAccess,
        "Relational operators are only defined for random access iterators.");
    return !static_cast<const DerivedT *>(this)->operator>(RHS);
  }
  bool operator>=(const DerivedT &RHS) const {
    static_assert(
        IsRandomAccess,
        "Relational operators are only defined for random access iterators.");
    return !static_cast<const DerivedT *>(this)->operator<(RHS);
  }

  PointerT operator->() { return &static_cast<DerivedT *>(this)->operator*(); }
  PointerT operator->() const {
    return &static_cast<const DerivedT *>(this)->operator*();
  }
  ReferenceProxy operator[](DifferenceTypeT n) {
    static_assert(IsRandomAccess,
                  "Subscripting is only defined for random access iterators.");
    return ReferenceProxy(static_cast<DerivedT *>(this)->operator+(n));
  }
  ReferenceProxy operator[](DifferenceTypeT n) const {
    static_assert(IsRandomAccess,
                  "Subscripting is only defined for random access iterators.");
    return ReferenceProxy(static_cast<const DerivedT *>(this)->operator+(n));
  }
};

/// \brief CRTP base class for adapting an iterator to a different type.
///
/// This class can be used through CRTP to adapt one iterator into another.
/// Typically this is done through providing in the derived class a custom \c
/// operator* implementation. Other methods can be overridden as well.
template <
    typename DerivedT, typename WrappedIteratorT,
    typename IteratorCategoryT =
        typename std::iterator_traits<WrappedIteratorT>::iterator_category,
    typename T = typename std::iterator_traits<WrappedIteratorT>::value_type,
    typename DifferenceTypeT =
        typename std::iterator_traits<WrappedIteratorT>::difference_type,
    typename PointerT = typename std::conditional<
        std::is_same<T, typename std::iterator_traits<
                            WrappedIteratorT>::value_type>::value,
        typename std::iterator_traits<WrappedIteratorT>::pointer, T *>::type,
    typename ReferenceT = typename std::conditional<
        std::is_same<T, typename std::iterator_traits<
                            WrappedIteratorT>::value_type>::value,
        typename std::iterator_traits<WrappedIteratorT>::reference, T &>::type,
    // Don't provide these, they are mostly to act as aliases below.
    typename WrappedTraitsT = std::iterator_traits<WrappedIteratorT>>
class iterator_adaptor_base
    : public iterator_facade_base<DerivedT, IteratorCategoryT, T,
                                  DifferenceTypeT, PointerT, ReferenceT> {
  using BaseT = typename iterator_adaptor_base::iterator_facade_base;

protected:
  WrappedIteratorT I;

  iterator_adaptor_base() = default;

  explicit iterator_adaptor_base(WrappedIteratorT u) : I(std::move(u)) {
    static_assert(std::is_base_of<iterator_adaptor_base, DerivedT>::value,
                  "Must pass the derived type to this template!");
  }

  const WrappedIteratorT &wrapped() const { return I; }

public:
  using difference_type = DifferenceTypeT;

  DerivedT &operator+=(difference_type n) {
    static_assert(
        BaseT::IsRandomAccess,
        "The '+=' operator is only defined for random access iterators.");
    I += n;
    return *static_cast<DerivedT *>(this);
  }
  DerivedT &operator-=(difference_type n) {
    static_assert(
        BaseT::IsRandomAccess,
        "The '-=' operator is only defined for random access iterators.");
    I -= n;
    return *static_cast<DerivedT *>(this);
  }
  using BaseT::operator-;
  difference_type operator-(const DerivedT &RHS) const {
    static_assert(
        BaseT::IsRandomAccess,
        "The '-' operator is only defined for random access iterators.");
    return I - RHS.I;
  }

  // We have to explicitly provide ++ and -- rather than letting the facade
  // forward to += because WrappedIteratorT might not support +=.
  using BaseT::operator++;
  DerivedT &operator++() {
    ++I;
    return *static_cast<DerivedT *>(this);
  }
  using BaseT::operator--;
  DerivedT &operator--() {
    static_assert(
        BaseT::IsBidirectional,
        "The decrement operator is only defined for bidirectional iterators.");
    --I;
    return *static_cast<DerivedT *>(this);
  }

  bool operator==(const DerivedT &RHS) const { return I == RHS.I; }
  bool operator<(const DerivedT &RHS) const {
    static_assert(
        BaseT::IsRandomAccess,
        "Relational operators are only defined for random access iterators.");
    return I < RHS.I;
  }

  ReferenceT operator*() const { return *I; }
};

/// \brief An iterator type that allows iterating over the pointees via some
/// other iterator.
///
/// The typical usage of this is to expose a type that iterates over Ts, but
/// which is implemented with some iterator over T*s:
///
/// \code
///   using iterator = pointee_iterator<SmallVectorImpl<T *>::iterator>;
/// \endcode
template <typename WrappedIteratorT,
          typename T = typename std::remove_reference<
              decltype(**std::declval<WrappedIteratorT>())>::type>
struct pointee_iterator
    : iterator_adaptor_base<
          pointee_iterator<WrappedIteratorT>, WrappedIteratorT,
          typename std::iterator_traits<WrappedIteratorT>::iterator_category,
          T> {
  pointee_iterator() = default;
  template <typename U>
  pointee_iterator(U &&u)
      : pointee_iterator::iterator_adaptor_base(std::forward<U &&>(u)) {}

  T &operator*() const { return **this->I; }
};

template <typename RangeT, typename WrappedIteratorT =
                               decltype(std::begin(std::declval<RangeT>()))>
iterator_range<pointee_iterator<WrappedIteratorT>>
make_pointee_range(RangeT &&Range) {
  using PointeeIteratorT = pointee_iterator<WrappedIteratorT>;
  return make_range(PointeeIteratorT(std::begin(std::forward<RangeT>(Range))),
                    PointeeIteratorT(std::end(std::forward<RangeT>(Range))));
}

template <typename WrappedIteratorT,
          typename T = decltype(&*std::declval<WrappedIteratorT>())>
class pointer_iterator
    : public iterator_adaptor_base<pointer_iterator<WrappedIteratorT>,
                                   WrappedIteratorT, T> {
  mutable T Ptr;

public:
  pointer_iterator() = default;

  explicit pointer_iterator(WrappedIteratorT u)
      : pointer_iterator::iterator_adaptor_base(std::move(u)) {}

  T &operator*() { return Ptr = &*this->I; }
  const T &operator*() const { return Ptr = &*this->I; }
};

template <typename RangeT, typename WrappedIteratorT =
                               decltype(std::begin(std::declval<RangeT>()))>
iterator_range<pointer_iterator<WrappedIteratorT>>
make_pointer_range(RangeT &&Range) {
  using PointerIteratorT = pointer_iterator<WrappedIteratorT>;
  return make_range(PointerIteratorT(std::begin(std::forward<RangeT>(Range))),
                    PointerIteratorT(std::end(std::forward<RangeT>(Range))));
}

} // end namespace llvm

#endif // LLVM_ADT_ITERATOR_H