llvm.org GIT mirror llvm / release_36 lib / CodeGen / AsmPrinter / DbgValueHistoryCalculator.cpp
release_36

Tree @release_36 (Download .tar.gz)

DbgValueHistoryCalculator.cpp @release_36

d51ae64
 
 
 
 
 
 
 
 
 
8ea5b71
447a7ce
d51ae64
 
2a39c99
d51ae64
 
447a7ce
 
8ea5b71
d51ae64
 
 
447a7ce
 
 
 
 
02474a3
447a7ce
 
 
 
 
a807d67
 
 
 
02474a3
a807d67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447a7ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a807d67
 
 
447a7ce
 
8ea5b71
 
 
 
 
 
 
 
 
 
 
 
 
447a7ce
 
 
 
 
 
 
 
8ea5b71
447a7ce
 
6cdc374
 
 
 
 
 
 
 
 
 
f4a702c
6cdc374
447a7ce
 
 
f4a702c
6cdc374
447a7ce
 
 
f4a702c
 
 
 
 
 
 
 
 
 
8ea5b71
 
 
f4a702c
 
8ea5b71
f4a702c
 
 
 
 
 
 
6cdc374
f4a702c
 
8ea5b71
f4a702c
 
6e62bbd
f4a702c
6e62bbd
 
 
8ea5b71
f4a702c
 
447a7ce
 
8ea5b71
 
 
 
f4a702c
447a7ce
f4a702c
447a7ce
 
 
 
 
6cdc374
8ea5b71
f4a702c
6cdc374
447a7ce
d51ae64
 
50adf38
2a39c99
 
 
02474a3
d51ae64
a807d67
 
 
 
447a7ce
a807d67
 
d51ae64
447a7ce
 
 
 
8ea5b71
 
 
 
 
 
f4a702c
d51ae64
 
//===-- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "DbgValueHistoryCalculator.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
#include <map>
using namespace llvm;

#define DEBUG_TYPE "dwarfdebug"

// \brief If @MI is a DBG_VALUE with debug value described by a
// defined register, returns the number of this register.
// In the other case, returns 0.
static unsigned isDescribedByReg(const MachineInstr &MI) {
  assert(MI.isDebugValue());
  assert(MI.getNumOperands() == 4);
  // If location of variable is described using a register (directly or
  // indirecltly), this register is always a first operand.
  return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
}

void DbgValueHistoryMap::startInstrRange(const MDNode *Var,
                                         const MachineInstr &MI) {
  // Instruction range should start with a DBG_VALUE instruction for the
  // variable.
  assert(MI.isDebugValue() && "not a DBG_VALUE");
  auto &Ranges = VarInstrRanges[Var];
  if (!Ranges.empty() && Ranges.back().second == nullptr &&
      Ranges.back().first->isIdenticalTo(&MI)) {
    DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n"
                 << "\t" << Ranges.back().first << "\t" << MI << "\n");
    return;
  }
  Ranges.push_back(std::make_pair(&MI, nullptr));
}

void DbgValueHistoryMap::endInstrRange(const MDNode *Var,
                                       const MachineInstr &MI) {
  auto &Ranges = VarInstrRanges[Var];
  // Verify that the current instruction range is not yet closed.
  assert(!Ranges.empty() && Ranges.back().second == nullptr);
  // For now, instruction ranges are not allowed to cross basic block
  // boundaries.
  assert(Ranges.back().first->getParent() == MI.getParent());
  Ranges.back().second = &MI;
}

unsigned DbgValueHistoryMap::getRegisterForVar(const MDNode *Var) const {
  const auto &I = VarInstrRanges.find(Var);
  if (I == VarInstrRanges.end())
    return 0;
  const auto &Ranges = I->second;
  if (Ranges.empty() || Ranges.back().second != nullptr)
    return 0;
  return isDescribedByReg(*Ranges.back().first);
}

namespace {
// Maps physreg numbers to the variables they describe.
typedef std::map<unsigned, SmallVector<const MDNode *, 1>> RegDescribedVarsMap;
}

// \brief Claim that @Var is not described by @RegNo anymore.
static void dropRegDescribedVar(RegDescribedVarsMap &RegVars,
                                unsigned RegNo, const MDNode *Var) {
  const auto &I = RegVars.find(RegNo);
  assert(RegNo != 0U && I != RegVars.end());
  auto &VarSet = I->second;
  const auto &VarPos = std::find(VarSet.begin(), VarSet.end(), Var);
  assert(VarPos != VarSet.end());
  VarSet.erase(VarPos);
  // Don't keep empty sets in a map to keep it as small as possible.
  if (VarSet.empty())
    RegVars.erase(I);
}

// \brief Claim that @Var is now described by @RegNo.
static void addRegDescribedVar(RegDescribedVarsMap &RegVars,
                               unsigned RegNo, const MDNode *Var) {
  assert(RegNo != 0U);
  auto &VarSet = RegVars[RegNo];
  assert(std::find(VarSet.begin(), VarSet.end(), Var) == VarSet.end());
  VarSet.push_back(Var);
}

// \brief Terminate the location range for variables described by register at
// @I by inserting @ClobberingInstr to their history.
static void clobberRegisterUses(RegDescribedVarsMap &RegVars,
                                RegDescribedVarsMap::iterator I,
                                DbgValueHistoryMap &HistMap,
                                const MachineInstr &ClobberingInstr) {
  // Iterate over all variables described by this register and add this
  // instruction to their history, clobbering it.
  for (const auto &Var : I->second)
    HistMap.endInstrRange(Var, ClobberingInstr);
  RegVars.erase(I);
}

// \brief Terminate the location range for variables described by register
// @RegNo by inserting @ClobberingInstr to their history.
static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo,
                                DbgValueHistoryMap &HistMap,
                                const MachineInstr &ClobberingInstr) {
  const auto &I = RegVars.find(RegNo);
  if (I == RegVars.end())
    return;
  clobberRegisterUses(RegVars, I, HistMap, ClobberingInstr);
}

// \brief Collect all registers clobbered by @MI and apply the functor
// @Func to their RegNo.
// @Func should be a functor with a void(unsigned) signature. We're
// not using std::function here for performance reasons. It has a
// small but measurable impact. By using a functor instead of a
// std::set& here, we can avoid the overhead of constructing
// temporaries in calculateDbgValueHistory, which has a significant
// performance impact.
template<typename Callable>
static void applyToClobberedRegisters(const MachineInstr &MI,
                                      const TargetRegisterInfo *TRI,
                                      Callable Func) {
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef() || !MO.getReg())
      continue;
    for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
      Func(*AI);
  }
}

// \brief Returns the first instruction in @MBB which corresponds to
// the function epilogue, or nullptr if @MBB doesn't contain an epilogue.
static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) {
  auto LastMI = MBB.getLastNonDebugInstr();
  if (LastMI == MBB.end() || !LastMI->isReturn())
    return nullptr;
  // Assume that epilogue starts with instruction having the same debug location
  // as the return instruction.
  DebugLoc LastLoc = LastMI->getDebugLoc();
  auto Res = LastMI;
  for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)),
       E = MBB.rend();
       I != E; ++I) {
    if (I->getDebugLoc() != LastLoc)
      return Res;
    Res = &*I;
  }
  // If all instructions have the same debug location, assume whole MBB is
  // an epilogue.
  return MBB.begin();
}

// \brief Collect registers that are modified in the function body (their
// contents is changed outside of the prologue and epilogue).
static void collectChangingRegs(const MachineFunction *MF,
                                const TargetRegisterInfo *TRI,
                                BitVector &Regs) {
  for (const auto &MBB : *MF) {
    auto FirstEpilogueInst = getFirstEpilogueInst(MBB);

    for (const auto &MI : MBB) {
      if (&MI == FirstEpilogueInst)
        break;
      if (!MI.getFlag(MachineInstr::FrameSetup))
        applyToClobberedRegisters(MI, TRI, [&](unsigned r) { Regs.set(r); });
    }
  }
}

void llvm::calculateDbgValueHistory(const MachineFunction *MF,
                                    const TargetRegisterInfo *TRI,
                                    DbgValueHistoryMap &Result) {
  BitVector ChangingRegs(TRI->getNumRegs());
  collectChangingRegs(MF, TRI, ChangingRegs);

  RegDescribedVarsMap RegVars;
  for (const auto &MBB : *MF) {
    for (const auto &MI : MBB) {
      if (!MI.isDebugValue()) {
        // Not a DBG_VALUE instruction. It may clobber registers which describe
        // some variables.
        applyToClobberedRegisters(MI, TRI, [&](unsigned RegNo) {
          if (ChangingRegs.test(RegNo))
            clobberRegisterUses(RegVars, RegNo, Result, MI);
        });
        continue;
      }

      assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!");
      // Use the base variable (without any DW_OP_piece expressions)
      // as index into History. The full variables including the
      // piece expressions are attached to the MI.
      DIVariable Var = MI.getDebugVariable();

      if (unsigned PrevReg = Result.getRegisterForVar(Var))
        dropRegDescribedVar(RegVars, PrevReg, Var);

      Result.startInstrRange(Var, MI);

      if (unsigned NewReg = isDescribedByReg(MI))
        addRegDescribedVar(RegVars, NewReg, Var);
    }

    // Make sure locations for register-described variables are valid only
    // until the end of the basic block (unless it's the last basic block, in
    // which case let their liveness run off to the end of the function).
    if (!MBB.empty() && &MBB != &MF->back()) {
      for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) {
        auto CurElem = I++; // CurElem can be erased below.
        if (ChangingRegs.test(CurElem->first))
          clobberRegisterUses(RegVars, CurElem, Result, MBB.back());
      }
    }
  }
}