llvm.org GIT mirror llvm / release_35@215010 include / llvm / ADT / ArrayRef.h
release_35@215010

Tree @release_35@215010 (Download .tar.gz)

ArrayRef.h @release_35@215010

2b9bc42
 
 
 
 
 
 
 
 
 
 
 
5c332db
2b9bc42
 
 
 
fced294
2b9bc42
04df049
 
2b9bc42
 
 
715c80a
 
2b9bc42
 
 
 
 
 
 
 
 
fced294
827de05
 
2b9bc42
 
 
fced294
2b9bc42
5d4f990
fced294
2b9bc42
 
 
fced294
2b9bc42
ec0f0bc
fced294
5c332db
34bc6b6
5c332db
2b9bc42
 
 
fced294
2b9bc42
04df049
2b9bc42
fced294
5d4f990
 
 
fced294
bc36393
 
 
 
 
 
 
2b9bc42
 
bc36393
 
d5ba2d2
fced294
438208e
 
2f02ded
438208e
fced294
43ed63b
 
 
 
 
 
 
2b9bc42
 
 
 
 
 
fced294
827de05
 
 
04b2f0d
2b9bc42
fced294
878ad7a
fced294
04b2f0d
2b9bc42
fced294
2b9bc42
 
 
 
 
fced294
04df049
2b9bc42
 
 
 
fced294
98b539a
 
 
8147752
 
 
 
5d4f990
 
 
 
98b539a
5d4f990
 
fa09685
1752e45
fa09685
 
 
 
 
 
1752e45
fa09685
 
 
fced294
38dbb02
 
 
 
 
 
2b9bc42
 
 
04df049
2b9bc42
 
 
fced294
2b9bc42
 
 
 
 
 
fced294
2b9bc42
2a4a6fe
 
 
 
 
fced294
2a4a6fe
2b9bc42
c48e1ef
46ada15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4062ed8
 
5c332db
46ada15
2f0a4e1
5c332db
 
 
46ada15
 
2f0a4e1
46ada15
 
 
2f0a4e1
46ada15
 
2f0a4e1
46ada15
 
 
2f0a4e1
46ada15
 
 
2f0a4e1
46ada15
 
98b539a
46ada15
2f0a4e1
46ada15
 
 
 
2f0a4e1
4062ed8
 
 
46ada15
 
 
 
 
2f0a4e1
46ada15
 
 
 
 
 
 
 
 
 
 
2f0a4e1
46ada15
 
 
 
 
 
2f0a4e1
46ada15
 
 
 
 
 
 
 
 
c48e1ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f627530
c48e1ef
 
 
5d4f990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9bc42
 
 
 
 
 
2f0a4e1
2b9bc42
//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_ARRAYREF_H
#define LLVM_ADT_ARRAYREF_H

#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>

namespace llvm {

  /// ArrayRef - Represent a constant reference to an array (0 or more elements
  /// consecutively in memory), i.e. a start pointer and a length.  It allows
  /// various APIs to take consecutive elements easily and conveniently.
  ///
  /// This class does not own the underlying data, it is expected to be used in
  /// situations where the data resides in some other buffer, whose lifetime
  /// extends past that of the ArrayRef. For this reason, it is not in general
  /// safe to store an ArrayRef.
  ///
  /// This is intended to be trivially copyable, so it should be passed by
  /// value.
  template<typename T>
  class ArrayRef {
  public:
    typedef const T *iterator;
    typedef const T *const_iterator;
    typedef size_t size_type;

    typedef std::reverse_iterator<iterator> reverse_iterator;

  private:
    /// The start of the array, in an external buffer.
    const T *Data;

    /// The number of elements.
    size_type Length;

  public:
    /// @name Constructors
    /// @{

    /// Construct an empty ArrayRef.
    /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}

    /// Construct an empty ArrayRef from None.
    /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}

    /// Construct an ArrayRef from a single element.
    /*implicit*/ ArrayRef(const T &OneElt)
      : Data(&OneElt), Length(1) {}

    /// Construct an ArrayRef from a pointer and length.
    /*implicit*/ ArrayRef(const T *data, size_t length)
      : Data(data), Length(length) {}

    /// Construct an ArrayRef from a range.
    ArrayRef(const T *begin, const T *end)
      : Data(begin), Length(end - begin) {}

    /// Construct an ArrayRef from a SmallVector. This is templated in order to
    /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
    /// copy-construct an ArrayRef.
    template<typename U>
    /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
      : Data(Vec.data()), Length(Vec.size()) {
    }

    /// Construct an ArrayRef from a std::vector.
    template<typename A>
    /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
      : Data(Vec.data()), Length(Vec.size()) {}

    /// Construct an ArrayRef from a C array.
    template <size_t N>
    /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
      : Data(Arr), Length(N) {}

#if LLVM_HAS_INITIALIZER_LISTS
    /// Construct an ArrayRef from a std::initializer_list.
    /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
    : Data(Vec.begin() == Vec.end() ? (T*)0 : Vec.begin()),
      Length(Vec.size()) {}
#endif

    /// @}
    /// @name Simple Operations
    /// @{

    iterator begin() const { return Data; }
    iterator end() const { return Data + Length; }

    reverse_iterator rbegin() const { return reverse_iterator(end()); }
    reverse_iterator rend() const { return reverse_iterator(begin()); }

    /// empty - Check if the array is empty.
    bool empty() const { return Length == 0; }

    const T *data() const { return Data; }

    /// size - Get the array size.
    size_t size() const { return Length; }

    /// front - Get the first element.
    const T &front() const {
      assert(!empty());
      return Data[0];
    }

    /// back - Get the last element.
    const T &back() const {
      assert(!empty());
      return Data[Length-1];
    }

    // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
    template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
      T *Buff = A.template Allocate<T>(Length);
      std::copy(begin(), end(), Buff);
      return ArrayRef<T>(Buff, Length);
    }

    /// equals - Check for element-wise equality.
    bool equals(ArrayRef RHS) const {
      if (Length != RHS.Length)
        return false;
      return std::equal(begin(), end(), RHS.begin());
    }

    /// slice(n) - Chop off the first N elements of the array.
    ArrayRef<T> slice(unsigned N) const {
      assert(N <= size() && "Invalid specifier");
      return ArrayRef<T>(data()+N, size()-N);
    }

    /// slice(n, m) - Chop off the first N elements of the array, and keep M
    /// elements in the array.
    ArrayRef<T> slice(unsigned N, unsigned M) const {
      assert(N+M <= size() && "Invalid specifier");
      return ArrayRef<T>(data()+N, M);
    }

    // \brief Drop the last \p N elements of the array.
    ArrayRef<T> drop_back(unsigned N = 1) const {
      assert(size() >= N && "Dropping more elements than exist");
      return slice(0, size() - N);
    }

    /// @}
    /// @name Operator Overloads
    /// @{
    const T &operator[](size_t Index) const {
      assert(Index < Length && "Invalid index!");
      return Data[Index];
    }

    /// @}
    /// @name Expensive Operations
    /// @{
    std::vector<T> vec() const {
      return std::vector<T>(Data, Data+Length);
    }

    /// @}
    /// @name Conversion operators
    /// @{
    operator std::vector<T>() const {
      return std::vector<T>(Data, Data+Length);
    }

    /// @}
  };

  /// MutableArrayRef - Represent a mutable reference to an array (0 or more
  /// elements consecutively in memory), i.e. a start pointer and a length.  It
  /// allows various APIs to take and modify consecutive elements easily and
  /// conveniently.
  ///
  /// This class does not own the underlying data, it is expected to be used in
  /// situations where the data resides in some other buffer, whose lifetime
  /// extends past that of the MutableArrayRef. For this reason, it is not in
  /// general safe to store a MutableArrayRef.
  ///
  /// This is intended to be trivially copyable, so it should be passed by
  /// value.
  template<typename T>
  class MutableArrayRef : public ArrayRef<T> {
  public:
    typedef T *iterator;

    typedef std::reverse_iterator<iterator> reverse_iterator;

    /// Construct an empty MutableArrayRef.
    /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}

    /// Construct an empty MutableArrayRef from None.
    /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}

    /// Construct an MutableArrayRef from a single element.
    /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}

    /// Construct an MutableArrayRef from a pointer and length.
    /*implicit*/ MutableArrayRef(T *data, size_t length)
      : ArrayRef<T>(data, length) {}

    /// Construct an MutableArrayRef from a range.
    MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}

    /// Construct an MutableArrayRef from a SmallVector.
    /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
    : ArrayRef<T>(Vec) {}

    /// Construct a MutableArrayRef from a std::vector.
    /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
    : ArrayRef<T>(Vec) {}

    /// Construct an MutableArrayRef from a C array.
    template <size_t N>
    /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N])
      : ArrayRef<T>(Arr) {}

    T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }

    iterator begin() const { return data(); }
    iterator end() const { return data() + this->size(); }

    reverse_iterator rbegin() const { return reverse_iterator(end()); }
    reverse_iterator rend() const { return reverse_iterator(begin()); }

    /// front - Get the first element.
    T &front() const {
      assert(!this->empty());
      return data()[0];
    }

    /// back - Get the last element.
    T &back() const {
      assert(!this->empty());
      return data()[this->size()-1];
    }

    /// slice(n) - Chop off the first N elements of the array.
    MutableArrayRef<T> slice(unsigned N) const {
      assert(N <= this->size() && "Invalid specifier");
      return MutableArrayRef<T>(data()+N, this->size()-N);
    }

    /// slice(n, m) - Chop off the first N elements of the array, and keep M
    /// elements in the array.
    MutableArrayRef<T> slice(unsigned N, unsigned M) const {
      assert(N+M <= this->size() && "Invalid specifier");
      return MutableArrayRef<T>(data()+N, M);
    }

    /// @}
    /// @name Operator Overloads
    /// @{
    T &operator[](size_t Index) const {
      assert(Index < this->size() && "Invalid index!");
      return data()[Index];
    }
  };

  /// @name ArrayRef Convenience constructors
  /// @{

  /// Construct an ArrayRef from a single element.
  template<typename T>
  ArrayRef<T> makeArrayRef(const T &OneElt) {
    return OneElt;
  }

  /// Construct an ArrayRef from a pointer and length.
  template<typename T>
  ArrayRef<T> makeArrayRef(const T *data, size_t length) {
    return ArrayRef<T>(data, length);
  }

  /// Construct an ArrayRef from a range.
  template<typename T>
  ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
    return ArrayRef<T>(begin, end);
  }

  /// Construct an ArrayRef from a SmallVector.
  template <typename T>
  ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
    return Vec;
  }

  /// Construct an ArrayRef from a SmallVector.
  template <typename T, unsigned N>
  ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
    return Vec;
  }

  /// Construct an ArrayRef from a std::vector.
  template<typename T>
  ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
    return Vec;
  }

  /// Construct an ArrayRef from a C array.
  template<typename T, size_t N>
  ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
    return ArrayRef<T>(Arr);
  }

  /// @}
  /// @name ArrayRef Comparison Operators
  /// @{

  template<typename T>
  inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
    return LHS.equals(RHS);
  }

  template<typename T>
  inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
    return !(LHS == RHS);
  }

  /// @}

  // ArrayRefs can be treated like a POD type.
  template <typename T> struct isPodLike;
  template <typename T> struct isPodLike<ArrayRef<T> > {
    static const bool value = true;
  };
}

#endif