llvm.org GIT mirror llvm / release_21 lib / Target / ARM / ARMInstrInfo.cpp
release_21

Tree @release_21 (Download .tar.gz)

ARMInstrInfo.cpp @release_21

7bc59bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8e2989
7bc59bc
a8e2989
718cb66
a8e2989
29836c3
 
 
a8e2989
7bc59bc
 
a8e2989
 
 
 
718cb66
a8e2989
 
 
46adf81
a8e2989
46adf81
 
7bc59bc
 
 
 
a8e2989
49e4415
 
a8e2989
 
 
 
 
 
 
9f6636f
 
44bec52
 
bed2946
 
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e59ea9
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cca7c5
a8e2989
8e59ea9
a8e2989
 
 
 
 
 
 
49e4415
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ad5e5c
a8e2989
7bc59bc
578e64a
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bec52
 
 
a8e2989
 
44bec52
a8e2989
 
 
44bec52
 
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
 
13ab020
 
a8e2989
 
 
 
13ab020
 
a8e2989
 
13ab020
 
a8e2989
 
 
 
 
 
 
 
13ab020
 
a8e2989
 
13ab020
 
a8e2989
 
 
 
 
 
 
 
44bec52
a8e2989
 
44bec52
a8e2989
 
 
 
 
44bec52
a8e2989
 
44bec52
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa5107
3c5ad82
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd2ec4
a8e2989
 
 
 
 
 
 
4b9cb7d
a8e2989
 
 
 
 
 
 
 
0e1d379
a8e2989
 
 
 
 
 
 
 
 
4b9cb7d
a8e2989
 
 
 
 
 
 
 
0e1d379
a8e2989
 
 
 
66a2a8f
 
13e8b51
 
 
 
 
 
 
 
66a2a8f
 
 
 
 
 
 
 
 
 
 
a8e2989
 
 
 
 
6ae3626
a8e2989
 
 
 
 
 
6ae3626
a8e2989
 
6ae3626
a8e2989
 
 
 
 
 
6ae3626
a8e2989
 
6ae3626
a8e2989
 
 
6ae3626
a8e2989
 
6ae3626
a8e2989
 
 
 
 
 
 
 
 
0e1d379
a8e2989
 
 
 
 
 
0e1d379
 
6ae3626
a8e2989
 
 
0e1d379
 
a8e2989
6ae3626
a8e2989
 
 
 
 
 
5a18ebc
 
 
 
 
a8e2989
 
c322a9a
a8e2989
 
 
 
 
 
 
 
 
 
 
 
 
3d7d39a
29836c3
62ccdbf
 
 
69d5556
 
02c602b
62ccdbf
9307292
 
 
69d5556
0e1d379
02c602b
9307292
 
62ccdbf
 
 
 
0e1d379
02c602b
 
 
9307292
 
62ccdbf
 
 
0e1d379
69d5556
 
 
 
 
 
 
 
 
 
 
 
 
1fc7cb6
69d5556
 
 
1fc7cb6
9328c1a
1fc7cb6
69d5556
 
29836c3
13ab020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29836c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bec52
 
29836c3
 
 
 
 
 
ad1b9a5
 
29836c3
 
 
 
 
 
 
 
 
 
 
 
 
ad1b9a5
 
29836c3
 
44bec52
94679e6
 
 
29836c3
 
 
ad1b9a5
 
8593e41
 
ad1b9a5
 
 
8593e41
 
29836c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
//===- ARMInstrInfo.cpp - ARM Instruction Information -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the "Instituto Nokia de Tecnologia" and
// is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "ARMInstrInfo.h"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMGenInstrInfo.inc"
#include "ARMMachineFunctionInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;

static cl::opt<bool> EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
                                  cl::desc("Enable ARM 2-addr to 3-addr conv"));

ARMInstrInfo::ARMInstrInfo(const ARMSubtarget &STI)
  : TargetInstrInfo(ARMInsts, array_lengthof(ARMInsts)),
    RI(*this, STI) {
}

const TargetRegisterClass *ARMInstrInfo::getPointerRegClass() const {
  return &ARM::GPRRegClass;
}

/// Return true if the instruction is a register to register move and
/// leave the source and dest operands in the passed parameters.
///
bool ARMInstrInfo::isMoveInstr(const MachineInstr &MI,
                               unsigned &SrcReg, unsigned &DstReg) const {
  MachineOpCode oc = MI.getOpcode();
  switch (oc) {
  default:
    return false;
  case ARM::FCPYS:
  case ARM::FCPYD:
    SrcReg = MI.getOperand(1).getReg();
    DstReg = MI.getOperand(0).getReg();
    return true;
  case ARM::MOVr:
  case ARM::tMOVr:
    assert(MI.getInstrDescriptor()->numOperands >= 2 &&
           MI.getOperand(0).isRegister() &&
           MI.getOperand(1).isRegister() &&
           "Invalid ARM MOV instruction");
    SrcReg = MI.getOperand(1).getReg();
    DstReg = MI.getOperand(0).getReg();
    return true;
  }
}

unsigned ARMInstrInfo::isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
  switch (MI->getOpcode()) {
  default: break;
  case ARM::LDR:
    if (MI->getOperand(1).isFrameIndex() &&
        MI->getOperand(2).isReg() &&
        MI->getOperand(3).isImmediate() && 
        MI->getOperand(2).getReg() == 0 &&
        MI->getOperand(3).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(1).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::FLDD:
  case ARM::FLDS:
    if (MI->getOperand(1).isFrameIndex() &&
        MI->getOperand(2).isImmediate() && 
        MI->getOperand(2).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(1).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::tRestore:
    if (MI->getOperand(1).isFrameIndex() &&
        MI->getOperand(2).isImmediate() && 
        MI->getOperand(2).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(1).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

unsigned ARMInstrInfo::isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case ARM::STR:
    if (MI->getOperand(1).isFrameIndex() &&
        MI->getOperand(2).isReg() &&
        MI->getOperand(3).isImmediate() && 
        MI->getOperand(2).getReg() == 0 &&
        MI->getOperand(3).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(1).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::FSTD:
  case ARM::FSTS:
    if (MI->getOperand(1).isFrameIndex() &&
        MI->getOperand(2).isImmediate() && 
        MI->getOperand(2).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(1).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::tSpill:
    if (MI->getOperand(1).isFrameIndex() &&
        MI->getOperand(2).isImmediate() && 
        MI->getOperand(2).getImmedValue() == 0) {
      FrameIndex = MI->getOperand(1).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

static unsigned getUnindexedOpcode(unsigned Opc) {
  switch (Opc) {
  default: break;
  case ARM::LDR_PRE:
  case ARM::LDR_POST:
    return ARM::LDR;
  case ARM::LDRH_PRE:
  case ARM::LDRH_POST:
    return ARM::LDRH;
  case ARM::LDRB_PRE:
  case ARM::LDRB_POST:
    return ARM::LDRB;
  case ARM::LDRSH_PRE:
  case ARM::LDRSH_POST:
    return ARM::LDRSH;
  case ARM::LDRSB_PRE:
  case ARM::LDRSB_POST:
    return ARM::LDRSB;
  case ARM::STR_PRE:
  case ARM::STR_POST:
    return ARM::STR;
  case ARM::STRH_PRE:
  case ARM::STRH_POST:
    return ARM::STRH;
  case ARM::STRB_PRE:
  case ARM::STRB_POST:
    return ARM::STRB;
  }
  return 0;
}

MachineInstr *
ARMInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
                                    MachineBasicBlock::iterator &MBBI,
                                    LiveVariables &LV) const {
  if (!EnableARM3Addr)
    return NULL;

  MachineInstr *MI = MBBI;
  unsigned TSFlags = MI->getInstrDescriptor()->TSFlags;
  bool isPre = false;
  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
  default: return NULL;
  case ARMII::IndexModePre:
    isPre = true;
    break;
  case ARMII::IndexModePost:
    break;
  }

  // Try spliting an indexed load / store to a un-indexed one plus an add/sub
  // operation.
  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
  if (MemOpc == 0)
    return NULL;

  MachineInstr *UpdateMI = NULL;
  MachineInstr *MemMI = NULL;
  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
  const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
  unsigned NumOps = TID->numOperands;
  bool isLoad = (TID->Flags & M_LOAD_FLAG) != 0;
  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
  const MachineOperand &Base = MI->getOperand(2);
  const MachineOperand &Offset = MI->getOperand(NumOps-3);
  unsigned WBReg = WB.getReg();
  unsigned BaseReg = Base.getReg();
  unsigned OffReg = Offset.getReg();
  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
  switch (AddrMode) {
  default:
    assert(false && "Unknown indexed op!");
    return NULL;
  case ARMII::AddrMode2: {
    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    if (OffReg == 0) {
      int SOImmVal = ARM_AM::getSOImmVal(Amt);
      if (SOImmVal == -1)
        // Can't encode it in a so_imm operand. This transformation will
        // add more than 1 instruction. Abandon!
        return NULL;
      UpdateMI = BuildMI(get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
        .addReg(BaseReg).addImm(SOImmVal)
        .addImm(Pred).addReg(0).addReg(0);
    } else if (Amt != 0) {
      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
      UpdateMI = BuildMI(get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
        .addImm(Pred).addReg(0).addReg(0);
    } else 
      UpdateMI = BuildMI(get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
        .addReg(BaseReg).addReg(OffReg)
        .addImm(Pred).addReg(0).addReg(0);
    break;
  }
  case ARMII::AddrMode3 : {
    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    if (OffReg == 0)
      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
      UpdateMI = BuildMI(get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
        .addReg(BaseReg).addImm(Amt)
        .addImm(Pred).addReg(0).addReg(0);
    else
      UpdateMI = BuildMI(get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
        .addReg(BaseReg).addReg(OffReg)
        .addImm(Pred).addReg(0).addReg(0);
    break;
  }
  }

  std::vector<MachineInstr*> NewMIs;
  if (isPre) {
    if (isLoad)
      MemMI = BuildMI(get(MemOpc), MI->getOperand(0).getReg())
        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    else
      MemMI = BuildMI(get(MemOpc)).addReg(MI->getOperand(1).getReg())
        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    NewMIs.push_back(MemMI);
    NewMIs.push_back(UpdateMI);
  } else {
    if (isLoad)
      MemMI = BuildMI(get(MemOpc), MI->getOperand(0).getReg())
        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    else
      MemMI = BuildMI(get(MemOpc)).addReg(MI->getOperand(1).getReg())
        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    if (WB.isDead())
      UpdateMI->getOperand(0).setIsDead();
    NewMIs.push_back(UpdateMI);
    NewMIs.push_back(MemMI);
  }
  
  // Transfer LiveVariables states, kill / dead info.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isRegister() && MO.getReg() &&
        MRegisterInfo::isVirtualRegister(MO.getReg())) {
      unsigned Reg = MO.getReg();
      LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
      if (MO.isDef()) {
        MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
        if (MO.isDead())
          LV.addVirtualRegisterDead(Reg, NewMI);
        // Update the defining instruction.
        if (VI.DefInst == MI)
          VI.DefInst = NewMI;
      }
      if (MO.isUse() && MO.isKill()) {
        for (unsigned j = 0; j < 2; ++j) {
          // Look at the two new MI's in reverse order.
          MachineInstr *NewMI = NewMIs[j];
          int NIdx = NewMI->findRegisterUseOperandIdx(Reg);
          if (NIdx == -1)
            continue;
          LV.addVirtualRegisterKilled(Reg, NewMI);
          if (VI.removeKill(MI))
            VI.Kills.push_back(NewMI);
          break;
        }
      }
    }
  }

  MFI->insert(MBBI, NewMIs[1]);
  MFI->insert(MBBI, NewMIs[0]);
  return NewMIs[0];
}

// Branch analysis.
bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 std::vector<MachineOperand> &Cond) const {
  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
    return false;
  
  // Get the last instruction in the block.
  MachineInstr *LastInst = I;
  
  // If there is only one terminator instruction, process it.
  unsigned LastOpc = LastInst->getOpcode();
  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
      TBB = LastInst->getOperand(0).getMachineBasicBlock();
      return false;
    }
    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
      // Block ends with fall-through condbranch.
      TBB = LastInst->getOperand(0).getMachineBasicBlock();
      Cond.push_back(LastInst->getOperand(1));
      Cond.push_back(LastInst->getOperand(2));
      return false;
    }
    return true;  // Can't handle indirect branch.
  }
  
  // Get the instruction before it if it is a terminator.
  MachineInstr *SecondLastInst = I;
  
  // If there are three terminators, we don't know what sort of block this is.
  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
    return true;
  
  // If the block ends with ARM::B/ARM::tB and a ARM::Bcc/ARM::tBcc, handle it.
  unsigned SecondLastOpc = SecondLastInst->getOpcode();
  if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
      (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
    TBB =  SecondLastInst->getOperand(0).getMachineBasicBlock();
    Cond.push_back(SecondLastInst->getOperand(1));
    Cond.push_back(SecondLastInst->getOperand(2));
    FBB = LastInst->getOperand(0).getMachineBasicBlock();
    return false;
  }
  
  // If the block ends with two unconditional branches, handle it.  The second 
  // one is not executed, so remove it.
  if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &&
      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
    TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
    I = LastInst;
    I->eraseFromParent();
    return false;
  }

  // Likewise if it ends with a branch table followed by an unconditional branch.
  // The branch folder can create these, and we must get rid of them for
  // correctness of Thumb constant islands.
  if ((SecondLastOpc == ARM::BR_JTr || SecondLastOpc==ARM::BR_JTm ||
       SecondLastOpc == ARM::BR_JTadd || SecondLastOpc==ARM::tBR_JTr) &&
      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
    I = LastInst;
    I->eraseFromParent();
    return true;
  } 

  // Otherwise, can't handle this.
  return true;
}


unsigned ARMInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  int BOpc   = AFI->isThumbFunction() ? ARM::tB : ARM::B;
  int BccOpc = AFI->isThumbFunction() ? ARM::tBcc : ARM::Bcc;

  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin()) return 0;
  --I;
  if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc)
    return 0;
  
  // Remove the branch.
  I->eraseFromParent();
  
  I = MBB.end();
  
  if (I == MBB.begin()) return 1;
  --I;
  if (I->getOpcode() != BccOpc)
    return 1;
  
  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

unsigned ARMInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                                MachineBasicBlock *FBB,
                                const std::vector<MachineOperand> &Cond) const {
  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  int BOpc   = AFI->isThumbFunction() ? ARM::tB : ARM::B;
  int BccOpc = AFI->isThumbFunction() ? ARM::tBcc : ARM::Bcc;

  // Shouldn't be a fall through.
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 2 || Cond.size() == 0) &&
         "ARM branch conditions have two components!");
  
  if (FBB == 0) {
    if (Cond.empty()) // Unconditional branch?
      BuildMI(&MBB, get(BOpc)).addMBB(TBB);
    else
      BuildMI(&MBB, get(BccOpc)).addMBB(TBB)
        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    return 1;
  }
  
  // Two-way conditional branch.
  BuildMI(&MBB, get(BccOpc)).addMBB(TBB)
    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
  BuildMI(&MBB, get(BOpc)).addMBB(FBB);
  return 2;
}

bool ARMInstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
  if (MBB.empty()) return false;
  
  switch (MBB.back().getOpcode()) {
  case ARM::BX_RET:   // Return.
  case ARM::LDM_RET:
  case ARM::tBX_RET:
  case ARM::tBX_RET_vararg:
  case ARM::tPOP_RET:
  case ARM::B:
  case ARM::tB:       // Uncond branch.
  case ARM::tBR_JTr:
  case ARM::BR_JTr:   // Jumptable branch.
  case ARM::BR_JTm:   // Jumptable branch through mem.
  case ARM::BR_JTadd: // Jumptable branch add to pc.
    return true;
  default: return false;
  }
}

bool ARMInstrInfo::
ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
  return false;
}

bool ARMInstrInfo::isPredicated(const MachineInstr *MI) const {
  int PIdx = MI->findFirstPredOperandIdx();
  return PIdx != -1 && MI->getOperand(PIdx).getImmedValue() != ARMCC::AL;
}

bool ARMInstrInfo::PredicateInstruction(MachineInstr *MI,
                                const std::vector<MachineOperand> &Pred) const {
  unsigned Opc = MI->getOpcode();
  if (Opc == ARM::B || Opc == ARM::tB) {
    MI->setInstrDescriptor(get(Opc == ARM::B ? ARM::Bcc : ARM::tBcc));
    MI->addImmOperand(Pred[0].getImmedValue());
    MI->addRegOperand(Pred[1].getReg(), false);
    return true;
  }

  int PIdx = MI->findFirstPredOperandIdx();
  if (PIdx != -1) {
    MachineOperand &PMO = MI->getOperand(PIdx);
    PMO.setImm(Pred[0].getImmedValue());
    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
    return true;
  }
  return false;
}

bool
ARMInstrInfo::SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
                                const std::vector<MachineOperand> &Pred2) const{
  if (Pred1.size() > 2 || Pred2.size() > 2)
    return false;

  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImmedValue();
  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImmedValue();
  if (CC1 == CC2)
    return true;

  switch (CC1) {
  default:
    return false;
  case ARMCC::AL:
    return true;
  case ARMCC::HS:
    return CC2 == ARMCC::HI;
  case ARMCC::LS:
    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
  case ARMCC::GE:
    return CC2 == ARMCC::GT;
  case ARMCC::LE:
    return CC2 == ARMCC::LT;
  }
}

bool ARMInstrInfo::DefinesPredicate(MachineInstr *MI,
                                    std::vector<MachineOperand> &Pred) const {
  const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
  if (!TID->ImplicitDefs && (TID->Flags & M_HAS_OPTIONAL_DEF) == 0)
    return false;

  bool Found = false;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == ARM::CPSR) {
      Pred.push_back(MO);
      Found = true;
    }
  }

  return Found;
}


/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
                                unsigned JTI) DISABLE_INLINE;
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
                                unsigned JTI) {
  return JT[JTI].MBBs.size();
}

/// GetInstSize - Return the size of the specified MachineInstr.
///
unsigned ARM::GetInstSize(MachineInstr *MI) {
  MachineBasicBlock &MBB = *MI->getParent();
  const MachineFunction *MF = MBB.getParent();
  const TargetAsmInfo *TAI = MF->getTarget().getTargetAsmInfo();

  // Basic size info comes from the TSFlags field.
  const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
  unsigned TSFlags = TID->TSFlags;
  
  switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
  default:
    // If this machine instr is an inline asm, measure it.
    if (MI->getOpcode() == ARM::INLINEASM)
      return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
    if (MI->getOpcode() == ARM::LABEL)
      return 0;
    assert(0 && "Unknown or unset size field for instr!");
    break;
  case ARMII::Size8Bytes: return 8;          // Arm instruction x 2.
  case ARMII::Size4Bytes: return 4;          // Arm instruction.
  case ARMII::Size2Bytes: return 2;          // Thumb instruction.
  case ARMII::SizeSpecial: {
    switch (MI->getOpcode()) {
    case ARM::CONSTPOOL_ENTRY:
      // If this machine instr is a constant pool entry, its size is recorded as
      // operand #2.
      return MI->getOperand(2).getImm();
    case ARM::BR_JTr:
    case ARM::BR_JTm:
    case ARM::BR_JTadd:
    case ARM::tBR_JTr: {
      // These are jumptable branches, i.e. a branch followed by an inlined
      // jumptable. The size is 4 + 4 * number of entries.
      unsigned NumOps = TID->numOperands;
      MachineOperand JTOP =
        MI->getOperand(NumOps - ((TID->Flags & M_PREDICABLE) ? 3 : 2));
      unsigned JTI = JTOP.getJumpTableIndex();
      MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
      const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
      assert(JTI < JT.size());
      // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
      // 4 aligned. The assembler / linker may add 2 byte padding just before
      // the JT entries.  The size does not include this padding; the
      // constant islands pass does separate bookkeeping for it.
      // FIXME: If we know the size of the function is less than (1 << 16) *2
      // bytes, we can use 16-bit entries instead. Then there won't be an
      // alignment issue.
      return getNumJTEntries(JT, JTI) * 4 + 
             (MI->getOpcode()==ARM::tBR_JTr ? 2 : 4);
    }
    default:
      // Otherwise, pseudo-instruction sizes are zero.
      return 0;
    }
  }
  }
}

/// GetFunctionSize - Returns the size of the specified MachineFunction.
///
unsigned ARM::GetFunctionSize(MachineFunction &MF) {
  unsigned FnSize = 0;
  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock &MBB = *MBBI;
    for (MachineBasicBlock::iterator I = MBB.begin(),E = MBB.end(); I != E; ++I)
      FnSize += ARM::GetInstSize(I);
  }
  return FnSize;
}