llvm.org GIT mirror llvm / master docs / LibFuzzer.rst
master

Tree @master (Download .tar.gz)

LibFuzzer.rst @master

361c970
 
 
58bc608
 
409f59e
58bc608
 
 
3506457
9513453
409f59e
9513453
361c970
 
9513453
 
361c970
 
 
7f9dfc2
361c970
 
 
 
9513453
05ceafb
361c970
05ceafb
361c970
 
 
 
 
 
 
 
 
23d90fc
 
361c970
23d90fc
 
 
 
361c970
 
409f59e
 
 
 
7544ffc
409f59e
 
23d90fc
9a9bc14
23d90fc
 
 
 
 
 
 
a3dd1fe
9a9bc14
 
23d90fc
68f637f
23d90fc
 
6f76a43
 
23d90fc
05ceafb
 
 
 
5b81b48
 
05ceafb
 
 
 
5b81b48
6f76a43
05ceafb
 
6f76a43
41ae605
 
 
 
 
 
 
 
 
89b77ce
05ceafb
464c4e8
ce06f03
464c4e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361c970
 
7544ffc
361c970
 
7544ffc
361c970
7544ffc
361c970
 
485551e
361c970
 
 
 
 
 
 
 
 
 
 
 
 
168e511
 
361c970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8793926
 
 
 
 
 
 
 
 
 
 
 
 
f2cd363
8793926
 
 
 
 
 
 
 
 
361c970
05ceafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361c970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91c7c70
 
 
 
361c970
 
 
f01dfdd
 
 
 
 
 
1fe1bd1
 
 
 
361c970
2d1f4f5
 
 
361c970
 
 
 
 
 
2f12098
05ceafb
 
 
 
10c8c3c
 
05e1dea
361c970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549203e
 
 
9404188
 
361c970
 
 
 
 
 
 
 
 
 
7750b38
 
361c970
 
45edca1
da55e69
 
361c970
dc4065f
 
361c970
 
 
 
 
485551e
361c970
485551e
361c970
 
b753a30
361c970
b753a30
cbc0087
 
361c970
cbc0087
 
 
 
 
 
 
361c970
b753a30
361c970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a575cf6
 
 
361c970
 
 
 
 
 
 
 
 
 
 
 
 
 
21ed2a6
cbc0087
 
 
 
 
 
21ed2a6
 
 
361c970
 
cbc0087
 
361c970
 
 
 
 
 
 
 
 
 
 
 
409f59e
 
 
58bc608
 
 
 
361c970
 
58bc608
2ec40a6
20bbb64
 
 
58bc608
 
 
 
9906eef
58bc608
 
e424cc6
 
58bc608
 
 
4b45ff1
 
cbc0087
 
 
 
 
 
 
 
 
 
4b45ff1
 
 
 
58bc608
f8e32dd
 
58bc608
f8e32dd
 
 
e32bb4c
20bbb64
01055ec
 
409f59e
 
 
01055ec
6cc3ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9404188
f6d63cc
 
 
 
9404188
05ceafb
f6d63cc
 
 
 
 
 
 
e424cc6
9404188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd7cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e35db6
 
7544ffc
3e35db6
361c970
 
 
3e35db6
7544ffc
3e35db6
 
 
7544ffc
58bc608
2ec40a6
b21d80e
2ec40a6
f3a664f
 
 
b6ca45c
f3a664f
 
361c970
0a4c4a2
 
 
 
b69177e
f3a664f
b3fdcb3
 
 
e424cc6
 
 
b3fdcb3
1e59531
 
 
 
2372d8b
 
361c970
 
1e59531
2372d8b
 
 
1e59531
 
2372d8b
2b4e72e
361c970
 
1e59531
 
 
 
 
 
 
7544ffc
 
 
168e511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eeac86
7544ffc
 
bfd4119
 
 
32fab33
 
 
 
ba96863
bfd4119
 
 
 
 
 
3506457
 
 
361c970
 
3506457
 
 
361c970
3506457
 
 
 
 
 
 
 
 
 
 
a54a811
3506457
 
a54a811
 
 
 
 
 
a43cecd
 
 
a54a811
 
3506457
9513453
3506457
 
 
258d1e6
361c970
3506457
 
 
 
 
 
 
361c970
3506457
 
 
 
 
 
 
 
 
 
 
258d1e6
3506457
258d1e6
 
3506457
52e3fe6
 
 
 
 
 
 
e6dc33f
c9d2308
 
05ceafb
 
c9d2308
ddbe812
4e0bd0b
ddbe812
e423498
ddbe812
79b5b1a
e423498
ddbe812
e423498
f18fe35
e423498
18320e5
e423498
 
ce3db55
fb427c4
1adc606
 
d8fa185
35be758
e423498
8bb475f
79b5b1a
ce3db55
b063ae2
eb4cb7a
 
4e0bd0b
 
 
50620d6
 
 
 
 
a021eb7
 
afcd057
c9d2308
26071eb
aa9584a
be30018
51fb510
2bb40bf
 
1f2266a
 
58bc608
 
23d90fc
5d3a9d6
cab5678
7544ffc
168e511
e32bb4c
b21d80e
361c970
 
 
 
 
5c09136
361c970
 
89b77ce
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
=======================================================
libFuzzer – a library for coverage-guided fuzz testing.
=======================================================
.. contents::
   :local:
   :depth: 1

Introduction
============

LibFuzzer is in-process, coverage-guided, evolutionary fuzzing engine.

LibFuzzer is linked with the library under test, and feeds fuzzed inputs to the
library via a specific fuzzing entrypoint (aka "target function"); the fuzzer
then tracks which areas of the code are reached, and generates mutations on the
corpus of input data in order to maximize the code coverage.
The code coverage
information for libFuzzer is provided by LLVM's SanitizerCoverage_
instrumentation.

Contact: libfuzzer(#)googlegroups.com

Versions
========

LibFuzzer is under active development so you will need the current
(or at least a very recent) version of the Clang compiler (see `building Clang from trunk`_)

Refer to https://releases.llvm.org/5.0.0/docs/LibFuzzer.html for documentation on the older version.


Getting Started
===============

.. contents::
   :local:
   :depth: 1

Fuzz Target
-----------

The first step in using libFuzzer on a library is to implement a
*fuzz target* -- a function that accepts an array of bytes and
does something interesting with these bytes using the API under test.
Like this:

.. code-block:: c++

  // fuzz_target.cc
  extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
    DoSomethingInterestingWithMyAPI(Data, Size);
    return 0;  // Non-zero return values are reserved for future use.
  }

Note that this fuzz target does not depend on libFuzzer in any way
and so it is possible and even desirable to use it with other fuzzing engines
e.g. AFL_ and/or Radamsa_.

Some important things to remember about fuzz targets:

* The fuzzing engine will execute the fuzz target many times with different inputs in the same process.
* It must tolerate any kind of input (empty, huge, malformed, etc).
* It must not `exit()` on any input.
* It may use threads but ideally all threads should be joined at the end of the function.
* It must be as deterministic as possible. Non-determinism (e.g. random decisions not based on the input bytes) will make fuzzing inefficient.
* It must be fast. Try avoiding cubic or greater complexity, logging, or excessive memory consumption.
* Ideally, it should not modify any global state (although that's not strict).
* Usually, the narrower the target the better. E.g. if your target can parse several data formats, split it into several targets, one per format.


Fuzzer Usage
------------

Recent versions of Clang (starting from 6.0) include libFuzzer, and no extra installation is necessary.

In order to build your fuzzer binary, use the `-fsanitize=fuzzer` flag during the
compilation and linking. In most cases you may want to combine libFuzzer with
AddressSanitizer_ (ASAN), UndefinedBehaviorSanitizer_ (UBSAN), or both.  You can
also build with MemorySanitizer_ (MSAN), but support is experimental::

   clang -g -O1 -fsanitize=fuzzer                         mytarget.c # Builds the fuzz target w/o sanitizers
   clang -g -O1 -fsanitize=fuzzer,address                 mytarget.c # Builds the fuzz target with ASAN
   clang -g -O1 -fsanitize=fuzzer,signed-integer-overflow mytarget.c # Builds the fuzz target with a part of UBSAN
   clang -g -O1 -fsanitize=fuzzer,memory                  mytarget.c # Builds the fuzz target with MSAN

This will perform the necessary instrumentation, as well as linking with the libFuzzer library.
Note that ``-fsanitize=fuzzer`` links in the libFuzzer's ``main()`` symbol.

If modifying ``CFLAGS`` of a large project, which also compiles executables
requiring their own ``main`` symbol, it may be desirable to request just the
instrumentation without linking::

   clang -fsanitize=fuzzer-no-link mytarget.c

Then libFuzzer can be linked to the desired driver by passing in
``-fsanitize=fuzzer`` during the linking stage.

.. _libfuzzer-corpus:

Corpus
------

Coverage-guided fuzzers like libFuzzer rely on a corpus of sample inputs for the
code under test.  This corpus should ideally be seeded with a varied collection
of valid and invalid inputs for the code under test; for example, for a graphics
library the initial corpus might hold a variety of different small PNG/JPG/GIF
files.  The fuzzer generates random mutations based around the sample inputs in
the current corpus.  If a mutation triggers execution of a previously-uncovered
path in the code under test, then that mutation is saved to the corpus for
future variations.

LibFuzzer will work without any initial seeds, but will be less
efficient if the library under test accepts complex,
structured inputs.

The corpus can also act as a sanity/regression check, to confirm that the
fuzzing entrypoint still works and that all of the sample inputs run through
the code under test without problems.

If you have a large corpus (either generated by fuzzing or acquired by other means)
you may want to minimize it while still preserving the full coverage. One way to do that
is to use the `-merge=1` flag:

.. code-block:: console

  mkdir NEW_CORPUS_DIR  # Store minimized corpus here.
  ./my_fuzzer -merge=1 NEW_CORPUS_DIR FULL_CORPUS_DIR

You may use the same flag to add more interesting items to an existing corpus.
Only the inputs that trigger new coverage will be added to the first corpus.

.. code-block:: console

  ./my_fuzzer -merge=1 CURRENT_CORPUS_DIR NEW_POTENTIALLY_INTERESTING_INPUTS_DIR

Running
-------

To run the fuzzer, first create a Corpus_ directory that holds the
initial "seed" sample inputs:

.. code-block:: console

  mkdir CORPUS_DIR
  cp /some/input/samples/* CORPUS_DIR

Then run the fuzzer on the corpus directory:

.. code-block:: console

  ./my_fuzzer CORPUS_DIR  # -max_len=1000 -jobs=20 ...

As the fuzzer discovers new interesting test cases (i.e. test cases that
trigger coverage of new paths through the code under test), those test cases
will be added to the corpus directory.

By default, the fuzzing process will continue indefinitely – at least until
a bug is found.  Any crashes or sanitizer failures will be reported as usual,
stopping the fuzzing process, and the particular input that triggered the bug
will be written to disk (typically as ``crash-<sha1>``, ``leak-<sha1>``,
or ``timeout-<sha1>``).


Parallel Fuzzing
----------------

Each libFuzzer process is single-threaded, unless the library under test starts
its own threads.  However, it is possible to run multiple libFuzzer processes in
parallel with a shared corpus directory; this has the advantage that any new
inputs found by one fuzzer process will be available to the other fuzzer
processes (unless you disable this with the ``-reload=0`` option).

This is primarily controlled by the ``-jobs=N`` option, which indicates that
that `N` fuzzing jobs should be run to completion (i.e. until a bug is found or
time/iteration limits are reached).  These jobs will be run across a set of
worker processes, by default using half of the available CPU cores; the count of
worker processes can be overridden by the ``-workers=N`` option.  For example,
running with ``-jobs=30`` on a 12-core machine would run 6 workers by default,
with each worker averaging 5 bugs by completion of the entire process.

Fork mode
---------

**Experimental** mode ``-fork=N`` (where ``N`` is the number of parallel jobs)
enables oom-, timeout-, and crash-resistant
fuzzing with separate processes (using ``fork-exec``, not just ``fork``).

The top libFuzzer process will not do any fuzzing itself, but will
spawn up to ``N`` concurrent child processes providing them
small random subsets of the corpus. After a child exits, the top process
merges the corpus generated by the child back to the main corpus.

Related flags:

``-ignore_ooms``
  True by default. If an OOM happens during fuzzing in one of the child processes,
  the reproducer is saved on disk, and fuzzing continues.
``-ignore_timeouts``
  True by default, same as ``-ignore_ooms``, but for timeouts.
``-ignore_crashes``
  False by default, same as ``-ignore_ooms``, but for all other crashes.

The plan is to eventually replace ``-jobs=N`` and ``-workers=N`` with ``-fork=N``.

Resuming merge
--------------

Merging large corpora may be time consuming, and it is often desirable to do it
on preemptable VMs, where the process may be killed at any time.
In order to seamlessly resume the merge, use the ``-merge_control_file`` flag
and use ``killall -SIGUSR1 /path/to/fuzzer/binary`` to stop the merge gracefully. Example:

.. code-block:: console

  % rm -f SomeLocalPath
  % ./my_fuzzer CORPUS1 CORPUS2 -merge=1 -merge_control_file=SomeLocalPath
  ...
  MERGE-INNER: using the control file 'SomeLocalPath'
  ...
  # While this is running, do `killall -SIGUSR1 my_fuzzer` in another console
  ==9015== INFO: libFuzzer: exiting as requested

  # This will leave the file SomeLocalPath with the partial state of the merge.
  # Now, you can continue the merge by executing the same command. The merge
  # will continue from where it has been interrupted.
  % ./my_fuzzer CORPUS1 CORPUS2 -merge=1 -merge_control_file=SomeLocalPath
  ...
  MERGE-OUTER: non-empty control file provided: 'SomeLocalPath'
  MERGE-OUTER: control file ok, 32 files total, first not processed file 20
  ...

Options
=======

To run the fuzzer, pass zero or more corpus directories as command line
arguments.  The fuzzer will read test inputs from each of these corpus
directories, and any new test inputs that are generated will be written
back to the first corpus directory:

.. code-block:: console

  ./fuzzer [-flag1=val1 [-flag2=val2 ...] ] [dir1 [dir2 ...] ]

If a list of files (rather than directories) are passed to the fuzzer program,
then it will re-run those files as test inputs but will not perform any fuzzing.
In this mode the fuzzer binary can be used as a regression test (e.g. on a
continuous integration system) to check the target function and saved inputs
still work.

The most important command line options are:

``-help``
  Print help message.
``-seed``
  Random seed. If 0 (the default), the seed is generated.
``-runs``
  Number of individual test runs, -1 (the default) to run indefinitely.
``-max_len``
  Maximum length of a test input. If 0 (the default), libFuzzer tries to guess
  a good value based on the corpus (and reports it).
``len_control``
  Try generating small inputs first, then try larger inputs over time.
  Specifies the rate at which the length limit is increased (smaller == faster).
  Default is 100. If 0, immediately try inputs with size up to max_len.
``-timeout``
  Timeout in seconds, default 1200. If an input takes longer than this timeout,
  the process is treated as a failure case.
``-rss_limit_mb``
  Memory usage limit in Mb, default 2048. Use 0 to disable the limit.
  If an input requires more than this amount of RSS memory to execute,
  the process is treated as a failure case.
  The limit is checked in a separate thread every second.
  If running w/o ASAN/MSAN, you may use 'ulimit -v' instead.
``-malloc_limit_mb``
  If non-zero, the fuzzer will exit if the target tries to allocate this
  number of Mb with one malloc call.
  If zero (default) same limit as rss_limit_mb is applied.
``-timeout_exitcode``
  Exit code (default 77) used if libFuzzer reports a timeout.
``-error_exitcode``
  Exit code (default 77) used if libFuzzer itself (not a sanitizer) reports a bug (leak, OOM, etc).
``-max_total_time``
  If positive, indicates the maximum total time in seconds to run the fuzzer.
  If 0 (the default), run indefinitely.
``-merge``
  If set to 1, any corpus inputs from the 2nd, 3rd etc. corpus directories
  that trigger new code coverage will be merged into the first corpus
  directory.  Defaults to 0. This flag can be used to minimize a corpus.
``-merge_control_file``
  Specify a control file used for the merge proccess.
  If a merge process gets killed it tries to leave this file in a state
  suitable for resuming the merge. By default a temporary file will be used.
``-minimize_crash``
  If 1, minimizes the provided crash input.
  Use with -runs=N or -max_total_time=N to limit the number of attempts.
``-reload``
  If set to 1 (the default), the corpus directory is re-read periodically to
  check for new inputs; this allows detection of new inputs that were discovered
  by other fuzzing processes.
``-jobs``
  Number of fuzzing jobs to run to completion. Default value is 0, which runs a
  single fuzzing process until completion.  If the value is >= 1, then this
  number of jobs performing fuzzing are run, in a collection of parallel
  separate worker processes; each such worker process has its
  ``stdout``/``stderr`` redirected to ``fuzz-<JOB>.log``.
``-workers``
  Number of simultaneous worker processes to run the fuzzing jobs to completion
  in. If 0 (the default), ``min(jobs, NumberOfCpuCores()/2)`` is used.
``-dict``
  Provide a dictionary of input keywords; see Dictionaries_.
``-use_counters``
  Use `coverage counters`_ to generate approximate counts of how often code
  blocks are hit; defaults to 1.
``-reduce_inputs``
  Try to reduce the size of inputs while preserving their full feature sets;
  defaults to 1.
``-use_value_profile``
  Use `value profile`_ to guide corpus expansion; defaults to 0.
``-only_ascii``
  If 1, generate only ASCII (``isprint``+``isspace``) inputs. Defaults to 0.
``-artifact_prefix``
  Provide a prefix to use when saving fuzzing artifacts (crash, timeout, or
  slow inputs) as ``$(artifact_prefix)file``.  Defaults to empty.
``-exact_artifact_path``
  Ignored if empty (the default).  If non-empty, write the single artifact on
  failure (crash, timeout) as ``$(exact_artifact_path)``. This overrides
  ``-artifact_prefix`` and will not use checksum in the file name. Do not use
  the same path for several parallel processes.
``-print_pcs``
  If 1, print out newly covered PCs. Defaults to 0.
``-print_final_stats``
  If 1, print statistics at exit.  Defaults to 0.
``-detect_leaks``
  If 1 (default) and if LeakSanitizer is enabled
  try to detect memory leaks during fuzzing (i.e. not only at shut down).
``-close_fd_mask``
  Indicate output streams to close at startup. Be careful, this will
  remove diagnostic output from target code (e.g. messages on assert failure).

   - 0 (default): close neither ``stdout`` nor ``stderr``
   - 1 : close ``stdout``
   - 2 : close ``stderr``
   - 3 : close both ``stdout`` and ``stderr``.

For the full list of flags run the fuzzer binary with ``-help=1``.

Output
======

During operation the fuzzer prints information to ``stderr``, for example::

  INFO: Seed: 1523017872
  INFO: Loaded 1 modules (16 guards): [0x744e60, 0x744ea0), 
  INFO: -max_len is not provided, using 64
  INFO: A corpus is not provided, starting from an empty corpus
  #0	READ units: 1
  #1	INITED cov: 3 ft: 2 corp: 1/1b exec/s: 0 rss: 24Mb
  #3811	NEW    cov: 4 ft: 3 corp: 2/2b exec/s: 0 rss: 25Mb L: 1 MS: 5 ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ChangeByte-
  #3827	NEW    cov: 5 ft: 4 corp: 3/4b exec/s: 0 rss: 25Mb L: 2 MS: 1 CopyPart-
  #3963	NEW    cov: 6 ft: 5 corp: 4/6b exec/s: 0 rss: 25Mb L: 2 MS: 2 ShuffleBytes-ChangeBit-
  #4167	NEW    cov: 7 ft: 6 corp: 5/9b exec/s: 0 rss: 25Mb L: 3 MS: 1 InsertByte-
  ...

The early parts of the output include information about the fuzzer options and
configuration, including the current random seed (in the ``Seed:`` line; this
can be overridden with the ``-seed=N`` flag).

Further output lines have the form of an event code and statistics.  The
possible event codes are:

``READ``
  The fuzzer has read in all of the provided input samples from the corpus
  directories.
``INITED``
  The fuzzer has completed initialization, which includes running each of
  the initial input samples through the code under test.
``NEW``
  The fuzzer has created a test input that covers new areas of the code
  under test.  This input will be saved to the primary corpus directory.
``REDUCE``
  The fuzzer has found a better (smaller) input that triggers previously
  discovered features (set ``-reduce_inputs=0`` to disable).
``pulse``
  The fuzzer has generated 2\ :sup:`n` inputs (generated periodically to reassure
  the user that the fuzzer is still working).
``DONE``
  The fuzzer has completed operation because it has reached the specified
  iteration limit (``-runs``) or time limit (``-max_total_time``).
``RELOAD``
  The fuzzer is performing a periodic reload of inputs from the corpus
  directory; this allows it to discover any inputs discovered by other
  fuzzer processes (see `Parallel Fuzzing`_).

Each output line also reports the following statistics (when non-zero):

``cov:``
  Total number of code blocks or edges covered by executing the current corpus.
``ft:``
  libFuzzer uses different signals to evaluate the code coverage:
  edge coverage, edge counters, value profiles, indirect caller/callee pairs, etc.
  These signals combined are called *features* (`ft:`).
``corp:``
  Number of entries in the current in-memory test corpus and its size in bytes.
``lim:``
  Current limit on the length of new entries in the corpus.  Increases over time
  until the max length (``-max_len``) is reached.
``exec/s:``
  Number of fuzzer iterations per second.
``rss:``
  Current memory consumption.

For ``NEW`` events, the output line also includes information about the mutation
operation that produced the new input:

``L:``
  Size of the new input in bytes.
``MS: <n> <operations>``
  Count and list of the mutation operations used to generate the input.


Examples
========
.. contents::
   :local:
   :depth: 1

Toy example
-----------

A simple function that does something interesting if it receives the input
"HI!"::

  cat << EOF > test_fuzzer.cc
  #include <stdint.h>
  #include <stddef.h>
  extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
    if (size > 0 && data[0] == 'H')
      if (size > 1 && data[1] == 'I')
         if (size > 2 && data[2] == '!')
         __builtin_trap();
    return 0;
  }
  EOF
  # Build test_fuzzer.cc with asan and link against libFuzzer.
  clang++ -fsanitize=address,fuzzer test_fuzzer.cc
  # Run the fuzzer with no corpus.
  ./a.out

You should get an error pretty quickly::

  INFO: Seed: 1523017872
  INFO: Loaded 1 modules (16 guards): [0x744e60, 0x744ea0), 
  INFO: -max_len is not provided, using 64
  INFO: A corpus is not provided, starting from an empty corpus
  #0	READ units: 1
  #1	INITED cov: 3 ft: 2 corp: 1/1b exec/s: 0 rss: 24Mb
  #3811	NEW    cov: 4 ft: 3 corp: 2/2b exec/s: 0 rss: 25Mb L: 1 MS: 5 ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ChangeByte-
  #3827	NEW    cov: 5 ft: 4 corp: 3/4b exec/s: 0 rss: 25Mb L: 2 MS: 1 CopyPart-
  #3963	NEW    cov: 6 ft: 5 corp: 4/6b exec/s: 0 rss: 25Mb L: 2 MS: 2 ShuffleBytes-ChangeBit-
  #4167	NEW    cov: 7 ft: 6 corp: 5/9b exec/s: 0 rss: 25Mb L: 3 MS: 1 InsertByte-
  ==31511== ERROR: libFuzzer: deadly signal
  ...
  artifact_prefix='./'; Test unit written to ./crash-b13e8756b13a00cf168300179061fb4b91fefbed


More examples
-------------

Examples of real-life fuzz targets and the bugs they find can be found
at http://tutorial.libfuzzer.info. Among other things you can learn how
to detect Heartbleed_ in one second.


Advanced features
=================
.. contents::
   :local:
   :depth: 1

Dictionaries
------------
LibFuzzer supports user-supplied dictionaries with input language keywords
or other interesting byte sequences (e.g. multi-byte magic values).
Use ``-dict=DICTIONARY_FILE``. For some input languages using a dictionary
may significantly improve the search speed.
The dictionary syntax is similar to that used by AFL_ for its ``-x`` option::

  # Lines starting with '#' and empty lines are ignored.

  # Adds "blah" (w/o quotes) to the dictionary.
  kw1="blah"
  # Use \\ for backslash and \" for quotes.
  kw2="\"ac\\dc\""
  # Use \xAB for hex values
  kw3="\xF7\xF8"
  # the name of the keyword followed by '=' may be omitted:
  "foo\x0Abar"



Tracing CMP instructions
------------------------

With an additional compiler flag ``-fsanitize-coverage=trace-cmp``
(on by default as part of ``-fsanitize=fuzzer``, see SanitizerCoverageTraceDataFlow_)
libFuzzer will intercept CMP instructions and guide mutations based
on the arguments of intercepted CMP instructions. This may slow down
the fuzzing but is very likely to improve the results.

Value Profile
-------------

With  ``-fsanitize-coverage=trace-cmp`` (default with ``-fsanitize=fuzzer``)
and extra run-time flag ``-use_value_profile=1`` the fuzzer will
collect value profiles for the parameters of compare instructions
and treat some new values as new coverage.

The current imlpementation does roughly the following:

* The compiler instruments all CMP instructions with a callback that receives both CMP arguments.
* The callback computes `(caller_pc&4095) | (popcnt(Arg1 ^ Arg2) << 12)` and uses this value to set a bit in a bitset.
* Every new observed bit in the bitset is treated as new coverage.


This feature has a potential to discover many interesting inputs,
but there are two downsides.
First, the extra instrumentation may bring up to 2x additional slowdown.
Second, the corpus may grow by several times.

Fuzzer-friendly build mode
---------------------------
Sometimes the code under test is not fuzzing-friendly. Examples:

  - The target code uses a PRNG seeded e.g. by system time and
    thus two consequent invocations may potentially execute different code paths
    even if the end result will be the same. This will cause a fuzzer to treat
    two similar inputs as significantly different and it will blow up the test corpus.
    E.g. libxml uses ``rand()`` inside its hash table.
  - The target code uses checksums to protect from invalid inputs.
    E.g. png checks CRC for every chunk.

In many cases it makes sense to build a special fuzzing-friendly build
with certain fuzzing-unfriendly features disabled. We propose to use a common build macro
for all such cases for consistency: ``FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION``.

.. code-block:: c++

  void MyInitPRNG() {
  #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    // In fuzzing mode the behavior of the code should be deterministic.
    srand(0);
  #else
    srand(time(0));
  #endif
  }



AFL compatibility
-----------------
LibFuzzer can be used together with AFL_ on the same test corpus.
Both fuzzers expect the test corpus to reside in a directory, one file per input.
You can run both fuzzers on the same corpus, one after another:

.. code-block:: console

  ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program @@
  ./llvm-fuzz testcase_dir findings_dir  # Will write new tests to testcase_dir

Periodically restart both fuzzers so that they can use each other's findings.
Currently, there is no simple way to run both fuzzing engines in parallel while sharing the same corpus dir.

You may also use AFL on your target function ``LLVMFuzzerTestOneInput``:
see an example `here <https://github.com/llvm/llvm-project/tree/master/compiler-rt/lib/fuzzer/afl>`__.

How good is my fuzzer?
----------------------

Once you implement your target function ``LLVMFuzzerTestOneInput`` and fuzz it to death,
you will want to know whether the function or the corpus can be improved further.
One easy to use metric is, of course, code coverage.

We recommend to use
`Clang Coverage <http://clang.llvm.org/docs/SourceBasedCodeCoverage.html>`_,
to visualize and study your code coverage
(`example <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md#visualizing-coverage>`_).


User-supplied mutators
----------------------

LibFuzzer allows to use custom (user-supplied) mutators, see
`Structure-Aware Fuzzing <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/structure-aware-fuzzing.md>`_
for more details.

Startup initialization
----------------------
If the library being tested needs to be initialized, there are several options.

The simplest way is to have a statically initialized global object inside
`LLVMFuzzerTestOneInput` (or in global scope if that works for you):

.. code-block:: c++

  extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
    static bool Initialized = DoInitialization();
    ...

Alternatively, you may define an optional init function and it will receive
the program arguments that you can read and modify. Do this **only** if you
really need to access ``argv``/``argc``.

.. code-block:: c++

   extern "C" int LLVMFuzzerInitialize(int *argc, char ***argv) {
    ReadAndMaybeModify(argc, argv);
    return 0;
   }


Leaks
-----

Binaries built with AddressSanitizer_ or LeakSanitizer_ will try to detect
memory leaks at the process shutdown.
For in-process fuzzing this is inconvenient
since the fuzzer needs to report a leak with a reproducer as soon as the leaky
mutation is found. However, running full leak detection after every mutation
is expensive.

By default (``-detect_leaks=1``) libFuzzer will count the number of
``malloc`` and ``free`` calls when executing every mutation.
If the numbers don't match (which by itself doesn't mean there is a leak)
libFuzzer will invoke the more expensive LeakSanitizer_
pass and if the actual leak is found, it will be reported with the reproducer
and the process will exit.

If your target has massive leaks and the leak detection is disabled
you will eventually run out of RAM (see the ``-rss_limit_mb`` flag).


Developing libFuzzer
====================

LibFuzzer is built as a part of LLVM project by default on macos and Linux.
Users of other operating systems can explicitly request compilation using
``-DLIBFUZZER_ENABLE=YES`` flag.
Tests are run using ``check-fuzzer`` target from the build directory
which was configured with ``-DLIBFUZZER_ENABLE_TESTS=ON`` flag.

.. code-block:: console

    ninja check-fuzzer


FAQ
=========================

Q. Why doesn't libFuzzer use any of the LLVM support?
-----------------------------------------------------

There are two reasons.

First, we want this library to be used outside of the LLVM without users having to
build the rest of LLVM. This may sound unconvincing for many LLVM folks,
but in practice the need for building the whole LLVM frightens many potential
users -- and we want more users to use this code.

Second, there is a subtle technical reason not to rely on the rest of LLVM, or
any other large body of code (maybe not even STL). When coverage instrumentation
is enabled, it will also instrument the LLVM support code which will blow up the
coverage set of the process (since the fuzzer is in-process). In other words, by
using more external dependencies we will slow down the fuzzer while the main
reason for it to exist is extreme speed.

Q. Does libFuzzer Support Windows?
------------------------------------------------------------------------------------

Yes, libFuzzer now supports Windows. Initial support was added in r341082.
Any build of Clang 9 supports it. You can download a build of Clang for Windows
that has libFuzzer from
`LLVM Snapshot Builds <https://llvm.org/builds/>`_.

Using libFuzzer on Windows without ASAN is unsupported. Building fuzzers with the
``/MD`` (dynamic runtime library) compile option is unsupported. Support for these
may be added in the future. Linking fuzzers with the ``/INCREMENTAL`` link option
(or the ``/DEBUG`` option which implies it) is also unsupported.

Send any questions or comments to the mailing list: libfuzzer(#)googlegroups.com

Q. When libFuzzer is not a good solution for a problem?
---------------------------------------------------------

* If the test inputs are validated by the target library and the validator
  asserts/crashes on invalid inputs, in-process fuzzing is not applicable.
* Bugs in the target library may accumulate without being detected. E.g. a memory
  corruption that goes undetected at first and then leads to a crash while
  testing another input. This is why it is highly recommended to run this
  in-process fuzzer with all sanitizers to detect most bugs on the spot.
* It is harder to protect the in-process fuzzer from excessive memory
  consumption and infinite loops in the target library (still possible).
* The target library should not have significant global state that is not
  reset between the runs.
* Many interesting target libraries are not designed in a way that supports
  the in-process fuzzer interface (e.g. require a file path instead of a
  byte array).
* If a single test run takes a considerable fraction of a second (or
  more) the speed benefit from the in-process fuzzer is negligible.
* If the target library runs persistent threads (that outlive
  execution of one test) the fuzzing results will be unreliable.

Q. So, what exactly this Fuzzer is good for?
--------------------------------------------

This Fuzzer might be a good choice for testing libraries that have relatively
small inputs, each input takes < 10ms to run, and the library code is not expected
to crash on invalid inputs.
Examples: regular expression matchers, text or binary format parsers, compression,
network, crypto.

Q. LibFuzzer crashes on my complicated fuzz target (but works fine for me on smaller targets).
----------------------------------------------------------------------------------------------

Check if your fuzz target uses ``dlclose``.
Currently, libFuzzer doesn't support targets that call ``dlclose``,
this may be fixed in future.


Trophies
========
* Thousands of bugs found on OSS-Fuzz:  https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

* GLIBC: https://sourceware.org/glibc/wiki/FuzzingLibc

* MUSL LIBC: `[1] <http://git.musl-libc.org/cgit/musl/commit/?id=39dfd58417ef642307d90306e1c7e50aaec5a35c>`__ `[2] <http://www.openwall.com/lists/oss-security/2015/03/30/3>`__

* `pugixml <https://github.com/zeux/pugixml/issues/39>`_

* PCRE: Search for "LLVM fuzzer" in http://vcs.pcre.org/pcre2/code/trunk/ChangeLog?view=markup;
  also in `bugzilla <https://bugs.exim.org/buglist.cgi?bug_status=__all__&content=libfuzzer&no_redirect=1&order=Importance&product=PCRE&query_format=specific>`_

* `ICU <http://bugs.icu-project.org/trac/ticket/11838>`_

* `Freetype <https://savannah.nongnu.org/search/?words=LibFuzzer&type_of_search=bugs&Search=Search&exact=1#options>`_

* `Harfbuzz <https://github.com/behdad/harfbuzz/issues/139>`_

* `SQLite <http://www3.sqlite.org/cgi/src/info/088009efdd56160b>`_

* `Python <http://bugs.python.org/issue25388>`_

* OpenSSL/BoringSSL: `[1] <https://boringssl.googlesource.com/boringssl/+/cb852981cd61733a7a1ae4fd8755b7ff950e857d>`_ `[2] <https://openssl.org/news/secadv/20160301.txt>`_ `[3] <https://boringssl.googlesource.com/boringssl/+/2b07fa4b22198ac02e0cee8f37f3337c3dba91bc>`_ `[4] <https://boringssl.googlesource.com/boringssl/+/6b6e0b20893e2be0e68af605a60ffa2cbb0ffa64>`_  `[5] <https://github.com/openssl/openssl/pull/931/commits/dd5ac557f052cc2b7f718ac44a8cb7ac6f77dca8>`_ `[6] <https://github.com/openssl/openssl/pull/931/commits/19b5b9194071d1d84e38ac9a952e715afbc85a81>`_

* `Libxml2
  <https://bugzilla.gnome.org/buglist.cgi?bug_status=__all__&content=libFuzzer&list_id=68957&order=Importance&product=libxml2&query_format=specific>`_ and `[HT206167] <https://support.apple.com/en-gb/HT206167>`_ (CVE-2015-5312, CVE-2015-7500, CVE-2015-7942)

* `Linux Kernel's BPF verifier <https://github.com/iovisor/bpf-fuzzer>`_

* `Linux Kernel's Crypto code <https://www.spinics.net/lists/stable/msg199712.html>`_

* Capstone: `[1] <https://github.com/aquynh/capstone/issues/600>`__ `[2] <https://github.com/aquynh/capstone/commit/6b88d1d51eadf7175a8f8a11b690684443b11359>`__

* file:`[1] <http://bugs.gw.com/view.php?id=550>`__  `[2] <http://bugs.gw.com/view.php?id=551>`__  `[3] <http://bugs.gw.com/view.php?id=553>`__  `[4] <http://bugs.gw.com/view.php?id=554>`__

* Radare2: `[1] <https://github.com/revskills?tab=contributions&from=2016-04-09>`__

* gRPC: `[1] <https://github.com/grpc/grpc/pull/6071/commits/df04c1f7f6aec6e95722ec0b023a6b29b6ea871c>`__ `[2] <https://github.com/grpc/grpc/pull/6071/commits/22a3dfd95468daa0db7245a4e8e6679a52847579>`__ `[3] <https://github.com/grpc/grpc/pull/6071/commits/9cac2a12d9e181d130841092e9d40fa3309d7aa7>`__ `[4] <https://github.com/grpc/grpc/pull/6012/commits/82a91c91d01ce9b999c8821ed13515883468e203>`__ `[5] <https://github.com/grpc/grpc/pull/6202/commits/2e3e0039b30edaf89fb93bfb2c1d0909098519fa>`__ `[6] <https://github.com/grpc/grpc/pull/6106/files>`__

* WOFF2: `[1] <https://github.com/google/woff2/commit/a15a8ab>`__

* LLVM: `Clang <https://llvm.org/bugs/show_bug.cgi?id=23057>`_, `Clang-format <https://llvm.org/bugs/show_bug.cgi?id=23052>`_, `libc++ <https://llvm.org/bugs/show_bug.cgi?id=24411>`_, `llvm-as <https://llvm.org/bugs/show_bug.cgi?id=24639>`_, `Demangler <https://bugs.chromium.org/p/chromium/issues/detail?id=606626>`_, Disassembler: http://reviews.llvm.org/rL247405, http://reviews.llvm.org/rL247414, http://reviews.llvm.org/rL247416, http://reviews.llvm.org/rL247417, http://reviews.llvm.org/rL247420, http://reviews.llvm.org/rL247422.

* Tensorflow: `[1] <https://da-data.blogspot.com/2017/01/finding-bugs-in-tensorflow-with.html>`__

* Ffmpeg: `[1] <https://github.com/FFmpeg/FFmpeg/commit/c92f55847a3d9cd12db60bfcd0831ff7f089c37c>`__  `[2] <https://github.com/FFmpeg/FFmpeg/commit/25ab1a65f3acb5ec67b53fb7a2463a7368f1ad16>`__  `[3] <https://github.com/FFmpeg/FFmpeg/commit/85d23e5cbc9ad6835eef870a5b4247de78febe56>`__ `[4] <https://github.com/FFmpeg/FFmpeg/commit/04bd1b38ee6b8df410d0ab8d4949546b6c4af26a>`__

* `Wireshark <https://bugs.wireshark.org/bugzilla/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=IN_PROGRESS&bug_status=INCOMPLETE&bug_status=RESOLVED&bug_status=VERIFIED&f0=OP&f1=OP&f2=product&f3=component&f4=alias&f5=short_desc&f7=content&f8=CP&f9=CP&j1=OR&o2=substring&o3=substring&o4=substring&o5=substring&o6=substring&o7=matches&order=bug_id%20DESC&query_format=advanced&v2=libfuzzer&v3=libfuzzer&v4=libfuzzer&v5=libfuzzer&v6=libfuzzer&v7=%22libfuzzer%22>`_

* `QEMU <https://researchcenter.paloaltonetworks.com/2017/09/unit42-palo-alto-networks-discovers-new-qemu-vulnerability/>`_

.. _pcre2: http://www.pcre.org/
.. _AFL: http://lcamtuf.coredump.cx/afl/
.. _Radamsa: https://github.com/aoh/radamsa
.. _SanitizerCoverage: http://clang.llvm.org/docs/SanitizerCoverage.html
.. _SanitizerCoverageTraceDataFlow: http://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow
.. _AddressSanitizer: http://clang.llvm.org/docs/AddressSanitizer.html
.. _LeakSanitizer: http://clang.llvm.org/docs/LeakSanitizer.html
.. _Heartbleed: http://en.wikipedia.org/wiki/Heartbleed
.. _FuzzerInterface.h: https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/fuzzer/FuzzerInterface.h
.. _3.7.0: http://llvm.org/releases/3.7.0/docs/LibFuzzer.html
.. _building Clang from trunk: http://clang.llvm.org/get_started.html
.. _MemorySanitizer: http://clang.llvm.org/docs/MemorySanitizer.html
.. _UndefinedBehaviorSanitizer: http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
.. _`coverage counters`: http://clang.llvm.org/docs/SanitizerCoverage.html#coverage-counters
.. _`value profile`: #value-profile
.. _`caller-callee pairs`: http://clang.llvm.org/docs/SanitizerCoverage.html#caller-callee-coverage
.. _BoringSSL: https://boringssl.googlesource.com/boringssl/