llvm.org GIT mirror llvm / 523e392 docs / tutorial / OCamlLangImpl2.html
523e392

Tree @523e392 (Download .tar.gz)

OCamlLangImpl2.html @523e392

9ba8a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d564686
 
 
 
 
 
 
9ba8a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d564686
 
 
9ba8a57
 
d564686
9ba8a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d564686
 
 
 
 
 
9ba8a57
d564686
 
 
 
 
 
9ba8a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d564686
 
 
 
9ba8a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d564686
9ba8a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523e392
9ba8a57
 
 
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
  <title>Kaleidoscope: Implementing a Parser and AST</title>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  <meta name="author" content="Chris Lattner">
  <meta name="author" content="Erick Tryzelaar">
  <link rel="stylesheet" href="../llvm.css" type="text/css">
</head>

<body>

<div class="doc_title">Kaleidoscope: Implementing a Parser and AST</div>

<ul>
<li><a href="index.html">Up to Tutorial Index</a></li>
<li>Chapter 2
  <ol>
    <li><a href="#intro">Chapter 2 Introduction</a></li>
    <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
    <li><a href="#parserbasics">Parser Basics</a></li>
    <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
    <li><a href="#parserbinops">Binary Expression Parsing</a></li>
    <li><a href="#parsertop">Parsing the Rest</a></li>
    <li><a href="#driver">The Driver</a></li>
    <li><a href="#conclusions">Conclusions</a></li>
    <li><a href="#code">Full Code Listing</a></li>
  </ol>
</li>
<li><a href="OCamlLangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
</ul>

<div class="doc_author">
	<p>
		Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
		and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
	</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="intro">Chapter 2 Introduction</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language
with LLVM in Objective Caml</a>" tutorial.  This chapter shows you how to use
the lexer, built in <a href="OCamlLangImpl1.html">Chapter 1</a>, to build a
full <a href="http://en.wikipedia.org/wiki/Parsing">parser</a> for our
Kaleidoscope language.  Once we have a parser, we'll define and build an <a
href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax
Tree</a> (AST).</p>

<p>The parser we will build uses a combination of <a
href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
Parsing</a> and <a href=
"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
Parsing</a> to parse the Kaleidoscope language (the latter for
binary expressions and the former for everything else).  Before we get to
parsing though, lets talk about the output of the parser: the Abstract Syntax
Tree.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="ast">The Abstract Syntax Tree (AST)</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>The AST for a program captures its behavior in such a way that it is easy for
later stages of the compiler (e.g. code generation) to interpret.  We basically
want one object for each construct in the language, and the AST should closely
model the language.  In Kaleidoscope, we have expressions, a prototype, and a
function object.  We'll start with expressions first:</p>

<div class="doc_code">
<pre>
(* expr - Base type for all expression nodes. *)
type expr =
  (* variant for numeric literals like "1.0". *)
  | Number of float
</pre>
</div>

<p>The code above shows the definition of the base ExprAST class and one
subclass which we use for numeric literals.  The important thing to note about
this code is that the Number variant captures the numeric value of the
literal as an instance variable. This allows later phases of the compiler to
know what the stored numeric value is.</p>

<p>Right now we only create the AST,  so there are no useful functions on
them.  It would be very easy to add a function to pretty print the code,
for example.  Here are the other expression AST node definitions that we'll use
in the basic form of the Kaleidoscope language:
</p>

<div class="doc_code">
<pre>
  (* variant for referencing a variable, like "a". *)
  | Variable of string

  (* variant for a binary operator. *)
  | Binary of char * expr * expr

  (* variant for function calls. *)
  | Call of string * expr array
</pre>
</div>

<p>This is all (intentionally) rather straight-forward: variables capture the
variable name, binary operators capture their opcode (e.g. '+'), and calls
capture a function name as well as a list of any argument expressions.  One thing
that is nice about our AST is that it captures the language features without
talking about the syntax of the language.  Note that there is no discussion about
precedence of binary operators, lexical structure, etc.</p>

<p>For our basic language, these are all of the expression nodes we'll define.
Because it doesn't have conditional control flow, it isn't Turing-complete;
we'll fix that in a later installment.  The two things we need next are a way
to talk about the interface to a function, and a way to talk about functions
themselves:</p>

<div class="doc_code">
<pre>
(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr
</pre>
</div>

<p>In Kaleidoscope, functions are typed with just a count of their arguments.
Since all values are double precision floating point, the type of each argument
doesn't need to be stored anywhere.  In a more aggressive and realistic
language, the "expr" variants would probably have a type field.</p>

<p>With this scaffolding, we can now talk about parsing expressions and function
bodies in Kaleidoscope.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="parserbasics">Parser Basics</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>Now that we have an AST to build, we need to define the parser code to build
it.  The idea here is that we want to parse something like "x+y" (which is
returned as three tokens by the lexer) into an AST that could be generated with
calls like this:</p>

<div class="doc_code">
<pre>
  let x = Variable "x" in
  let y = Variable "y" in
  let result = Binary ('+', x, y) in
  ...
</pre>
</div>

<p>
The error handling routines make use of the builtin <tt>Stream.Failure</tt> and
<tt>Stream.Error</tt>s.  <tt>Stream.Failure</tt> is raised when the parser is
unable to find any matching token in the first position of a pattern.
<tt>Stream.Error</tt> is raised when the first token matches, but the rest do
not.  The error recovery in our parser will not be the best and is not
particular user-friendly, but it will be enough for our tutorial.  These
exceptions make it easier to handle errors in routines that have various return
types.</p>

<p>With these basic types and exceptions, we can implement the first
piece of our grammar: numeric literals.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="parserprimexprs">Basic Expression
 Parsing</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>We start with numeric literals, because they are the simplest to process.
For each production in our grammar, we'll define a function which parses that
production.  We call this class of expressions "primary" expressions, for
reasons that will become more clear <a href="OCamlLangImpl6.html#unary">
later in the tutorial</a>.  In order to parse an arbitrary primary expression,
we need to determine what sort of expression it is.  For numeric literals, we
have:</p>

<div class="doc_code">
<pre>
(* primary
 *   ::= identifier
 *   ::= numberexpr
 *   ::= parenexpr *)
parse_primary = parser
  (* numberexpr ::= number *)
  | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
</pre>
</div>

<p>This routine is very simple: it expects to be called when the current token
is a <tt>Token.Number</tt> token.  It takes the current number value, creates
a <tt>Ast.Number</tt> node, advances the lexer to the next token, and finally
returns.</p>

<p>There are some interesting aspects to this.  The most important one is that
this routine eats all of the tokens that correspond to the production and
returns the lexer buffer with the next token (which is not part of the grammar
production) ready to go.  This is a fairly standard way to go for recursive
descent parsers.  For a better example, the parenthesis operator is defined like
this:</p>

<div class="doc_code">
<pre>
  (* parenexpr ::= '(' expression ')' *)
  | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
</pre>
</div>

<p>This function illustrates a number of interesting things about the
parser:</p>

<p>
1) It shows how we use the <tt>Stream.Error</tt> exception.  When called, this
function expects that the current token is a '(' token, but after parsing the
subexpression, it is possible that there is no ')' waiting.  For example, if
the user types in "(4 x" instead of "(4)", the parser should emit an error.
Because errors can occur, the parser needs a way to indicate that they
happened. In our parser, we use the camlp4 shortcut syntax <tt>token ?? "parse
error"</tt>, where if the token before the <tt>??</tt> does not match, then
<tt>Stream.Error "parse error"</tt> will be raised.</p>

<p>2) Another interesting aspect of this function is that it uses recursion by
calling <tt>Parser.parse_primary</tt> (we will soon see that
<tt>Parser.parse_primary</tt> can call <tt>Parser.parse_primary</tt>).  This is
powerful because it allows us to handle recursive grammars, and keeps each
production very simple.  Note that parentheses do not cause construction of AST
nodes themselves.  While we could do it this way, the most important role of
parentheses are to guide the parser and provide grouping.  Once the parser
constructs the AST, parentheses are not needed.</p>

<p>The next simple production is for handling variable references and function
calls:</p>

<div class="doc_code">
<pre>
  (* identifierexpr
   *   ::= identifier
   *   ::= identifier '(' argumentexpr ')' *)
  | [&lt; 'Token.Ident id; stream &gt;] -&gt;
      let rec parse_args accumulator = parser
        | [&lt; e=parse_expr; stream &gt;] -&gt;
            begin parser
              | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
              | [&lt; &gt;] -&gt; e :: accumulator
            end stream
        | [&lt; &gt;] -&gt; accumulator
      in
      let rec parse_ident id = parser
        (* Call. *)
        | [&lt; 'Token.Kwd '(';
             args=parse_args [];
             'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
            Ast.Call (id, Array.of_list (List.rev args))

        (* Simple variable ref. *)
        | [&lt; &gt;] -&gt; Ast.Variable id
      in
      parse_ident id stream
</pre>
</div>

<p>This routine follows the same style as the other routines.  (It expects to be
called if the current token is a <tt>Token.Ident</tt> token).  It also has
recursion and error handling.  One interesting aspect of this is that it uses
<em>look-ahead</em> to determine if the current identifier is a stand alone
variable reference or if it is a function call expression.  It handles this by
checking to see if the token after the identifier is a '(' token, constructing
either a <tt>Ast.Variable</tt> or <tt>Ast.Call</tt> node as appropriate.
</p>

<p>We finish up by raising an exception if we received a token we didn't
expect:</p>

<div class="doc_code">
<pre>
  | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
</pre>
</div>

<p>Now that basic expressions are handled, we need to handle binary expressions.
They are a bit more complex.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="parserbinops">Binary Expression
 Parsing</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>Binary expressions are significantly harder to parse because they are often
ambiguous.  For example, when given the string "x+y*z", the parser can choose
to parse it as either "(x+y)*z" or "x+(y*z)".  With common definitions from
mathematics, we expect the later parse, because "*" (multiplication) has
higher <em>precedence</em> than "+" (addition).</p>

<p>There are many ways to handle this, but an elegant and efficient way is to
use <a href=
"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
Parsing</a>.  This parsing technique uses the precedence of binary operators to
guide recursion.  To start with, we need a table of precedences:</p>

<div class="doc_code">
<pre>
(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1

...

let main () =
  (* Install standard binary operators.
   * 1 is the lowest precedence. *)
  Hashtbl.add Parser.binop_precedence '&lt;' 10;
  Hashtbl.add Parser.binop_precedence '+' 20;
  Hashtbl.add Parser.binop_precedence '-' 20;
  Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
  ...
</pre>
</div>

<p>For the basic form of Kaleidoscope, we will only support 4 binary operators
(this can obviously be extended by you, our brave and intrepid reader).  The
<tt>Parser.precedence</tt> function returns the precedence for the current
token, or -1 if the token is not a binary operator.  Having a <tt>Hashtbl.t</tt>
makes it easy to add new operators and makes it clear that the algorithm doesn't
depend on the specific operators involved, but it would be easy enough to
eliminate the <tt>Hashtbl.t</tt> and do the comparisons in the
<tt>Parser.precedence</tt> function.  (Or just use a fixed-size array).</p>

<p>With the helper above defined, we can now start parsing binary expressions.
The basic idea of operator precedence parsing is to break down an expression
with potentially ambiguous binary operators into pieces.  Consider ,for example,
the expression "a+b+(c+d)*e*f+g".  Operator precedence parsing considers this
as a stream of primary expressions separated by binary operators.  As such,
it will first parse the leading primary expression "a", then it will see the
pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g].  Note that because parentheses
are primary expressions, the binary expression parser doesn't need to worry
about nested subexpressions like (c+d) at all.
</p>

<p>
To start, an expression is a primary expression potentially followed by a
sequence of [binop,primaryexpr] pairs:</p>

<div class="doc_code">
<pre>
(* expression
 *   ::= primary binoprhs *)
and parse_expr = parser
  | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
</pre>
</div>

<p><tt>Parser.parse_bin_rhs</tt> is the function that parses the sequence of
pairs for us.  It takes a precedence and a pointer to an expression for the part
that has been parsed so far.   Note that "x" is a perfectly valid expression: As
such, "binoprhs" is allowed to be empty, in which case it returns the expression
that is passed into it. In our example above, the code passes the expression for
"a" into <tt>Parser.parse_bin_rhs</tt> and the current token is "+".</p>

<p>The precedence value passed into <tt>Parser.parse_bin_rhs</tt> indicates the
<em>minimal operator precedence</em> that the function is allowed to eat.  For
example, if the current pair stream is [+, x] and <tt>Parser.parse_bin_rhs</tt>
is passed in a precedence of 40, it will not consume any tokens (because the
precedence of '+' is only 20).  With this in mind, <tt>Parser.parse_bin_rhs</tt>
starts with:</p>

<div class="doc_code">
<pre>
(* binoprhs
 *   ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
  match Stream.peek stream with
  (* If this is a binop, find its precedence. *)
  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
      let token_prec = precedence c in

      (* If this is a binop that binds at least as tightly as the current binop,
       * consume it, otherwise we are done. *)
      if token_prec &lt; expr_prec then lhs else begin
</pre>
</div>

<p>This code gets the precedence of the current token and checks to see if if is
too low.  Because we defined invalid tokens to have a precedence of -1, this
check implicitly knows that the pair-stream ends when the token stream runs out
of binary operators.  If this check succeeds, we know that the token is a binary
operator and that it will be included in this expression:</p>

<div class="doc_code">
<pre>
        (* Eat the binop. *)
        Stream.junk stream;

        (* Okay, we know this is a binop. *)
        let rhs =
          match Stream.peek stream with
          | Some (Token.Kwd c2) -&gt;
</pre>
</div>

<p>As such, this code eats (and remembers) the binary operator and then parses
the primary expression that follows.  This builds up the whole pair, the first of
which is [+, b] for the running example.</p>

<p>Now that we parsed the left-hand side of an expression and one pair of the
RHS sequence, we have to decide which way the expression associates.  In
particular, we could have "(a+b) binop unparsed"  or "a + (b binop unparsed)".
To determine this, we look ahead at "binop" to determine its precedence and
compare it to BinOp's precedence (which is '+' in this case):</p>

<div class="doc_code">
<pre>
              (* If BinOp binds less tightly with rhs than the operator after
               * rhs, let the pending operator take rhs as its lhs. *)
              let next_prec = precedence c2 in
              if token_prec &lt; next_prec
</pre>
</div>

<p>If the precedence of the binop to the right of "RHS" is lower or equal to the
precedence of our current operator, then we know that the parentheses associate
as "(a+b) binop ...".  In our example, the current operator is "+" and the next
operator is "+", we know that they have the same precedence.  In this case we'll
create the AST node for "a+b", and then continue parsing:</p>

<div class="doc_code">
<pre>
          ... if body omitted ...
        in

        (* Merge lhs/rhs. *)
        let lhs = Ast.Binary (c, lhs, rhs) in
        parse_bin_rhs expr_prec lhs stream
      end
</pre>
</div>

<p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
iteration of the loop, with "+" as the current token.  The code above will eat,
remember, and parse "(c+d)" as the primary expression, which makes the
current pair equal to [+, (c+d)].  It will then evaluate the 'if' conditional above with
"*" as the binop to the right of the primary.  In this case, the precedence of "*" is
higher than the precedence of "+" so the if condition will be entered.</p>

<p>The critical question left here is "how can the if condition parse the right
hand side in full"?  In particular, to build the AST correctly for our example,
it needs to get all of "(c+d)*e*f" as the RHS expression variable.  The code to
do this is surprisingly simple (code from the above two blocks duplicated for
context):</p>

<div class="doc_code">
<pre>
          match Stream.peek stream with
          | Some (Token.Kwd c2) -&gt;
              (* If BinOp binds less tightly with rhs than the operator after
               * rhs, let the pending operator take rhs as its lhs. *)
              if token_prec &lt; precedence c2
              then <b>parse_bin_rhs (token_prec + 1) rhs stream</b>
              else rhs
          | _ -&gt; rhs
        in

        (* Merge lhs/rhs. *)
        let lhs = Ast.Binary (c, lhs, rhs) in
        parse_bin_rhs expr_prec lhs stream
      end
</pre>
</div>

<p>At this point, we know that the binary operator to the RHS of our primary
has higher precedence than the binop we are currently parsing.  As such, we know
that any sequence of pairs whose operators are all higher precedence than "+"
should be parsed together and returned as "RHS".  To do this, we recursively
invoke the <tt>Parser.parse_bin_rhs</tt> function specifying "token_prec+1" as
the minimum precedence required for it to continue.  In our example above, this
will cause it to return the AST node for "(c+d)*e*f" as RHS, which is then set
as the RHS of the '+' expression.</p>

<p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
and added to the AST.  With this little bit of code (14 non-trivial lines), we
correctly handle fully general binary expression parsing in a very elegant way.
This was a whirlwind tour of this code, and it is somewhat subtle.  I recommend
running through it with a few tough examples to see how it works.
</p>

<p>This wraps up handling of expressions.  At this point, we can point the
parser at an arbitrary token stream and build an expression from it, stopping
at the first token that is not part of the expression.  Next up we need to
handle function definitions, etc.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="parsertop">Parsing the Rest</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
The next thing missing is handling of function prototypes.  In Kaleidoscope,
these are used both for 'extern' function declarations as well as function body
definitions.  The code to do this is straight-forward and not very interesting
(once you've survived expressions):
</p>

<div class="doc_code">
<pre>
(* prototype
 *   ::= id '(' id* ')' *)
let parse_prototype =
  let rec parse_args accumulator = parser
    | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
    | [&lt; &gt;] -&gt; accumulator
  in

  parser
  | [&lt; 'Token.Ident id;
       'Token.Kwd '(' ?? "expected '(' in prototype";
       args=parse_args [];
       'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
      (* success. *)
      Ast.Prototype (id, Array.of_list (List.rev args))

  | [&lt; &gt;] -&gt;
      raise (Stream.Error "expected function name in prototype")
</pre>
</div>

<p>Given this, a function definition is very simple, just a prototype plus
an expression to implement the body:</p>

<div class="doc_code">
<pre>
(* definition ::= 'def' prototype expression *)
let parse_definition = parser
  | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
      Ast.Function (p, e)
</pre>
</div>

<p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
well as to support forward declaration of user functions.  These 'extern's are just
prototypes with no body:</p>

<div class="doc_code">
<pre>
(*  external ::= 'extern' prototype *)
let parse_extern = parser
  | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
</pre>
</div>

<p>Finally, we'll also let the user type in arbitrary top-level expressions and
evaluate them on the fly.  We will handle this by defining anonymous nullary
(zero argument) functions for them:</p>

<div class="doc_code">
<pre>
(* toplevelexpr ::= expression *)
let parse_toplevel = parser
  | [&lt; e=parse_expr &gt;] -&gt;
      (* Make an anonymous proto. *)
      Ast.Function (Ast.Prototype ("", [||]), e)
</pre>
</div>

<p>Now that we have all the pieces, let's build a little driver that will let us
actually <em>execute</em> this code we've built!</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="driver">The Driver</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>The driver for this simply invokes all of the parsing pieces with a top-level
dispatch loop.  There isn't much interesting here, so I'll just include the
top-level loop.  See <a href="#code">below</a> for full code in the "Top-Level
Parsing" section.</p>

<div class="doc_code">
<pre>
(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
  match Stream.peek stream with
  | None -&gt; ()

  (* ignore top-level semicolons. *)
  | Some (Token.Kwd ';') -&gt;
      Stream.junk stream;
      main_loop stream

  | Some token -&gt;
      begin
        try match token with
        | Token.Def -&gt;
            ignore(Parser.parse_definition stream);
            print_endline "parsed a function definition.";
        | Token.Extern -&gt;
            ignore(Parser.parse_extern stream);
            print_endline "parsed an extern.";
        | _ -&gt;
            (* Evaluate a top-level expression into an anonymous function. *)
            ignore(Parser.parse_toplevel stream);
            print_endline "parsed a top-level expr";
        with Stream.Error s -&gt;
          (* Skip token for error recovery. *)
          Stream.junk stream;
          print_endline s;
      end;
      print_string "ready&gt; "; flush stdout;
      main_loop stream
</pre>
</div>

<p>The most interesting part of this is that we ignore top-level semicolons.
Why is this, you ask?  The basic reason is that if you type "4 + 5" at the
command line, the parser doesn't know whether that is the end of what you will type
or not.  For example, on the next line you could type "def foo..." in which case
4+5 is the end of a top-level expression.  Alternatively you could type "* 6",
which would continue the expression.  Having top-level semicolons allows you to
type "4+5;", and the parser will know you are done.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="conclusions">Conclusions</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>With just under 300 lines of commented code (240 lines of non-comment,
non-blank code), we fully defined our minimal language, including a lexer,
parser, and AST builder.  With this done, the executable will validate
Kaleidoscope code and tell us if it is grammatically invalid.  For
example, here is a sample interaction:</p>

<div class="doc_code">
<pre>
$ <b>./toy.byte</b>
ready&gt; <b>def foo(x y) x+foo(y, 4.0);</b>
Parsed a function definition.
ready&gt; <b>def foo(x y) x+y y;</b>
Parsed a function definition.
Parsed a top-level expr
ready&gt; <b>def foo(x y) x+y );</b>
Parsed a function definition.
Error: unknown token when expecting an expression
ready&gt; <b>extern sin(a);</b>
ready&gt; Parsed an extern
ready&gt; <b>^D</b>
$
</pre>
</div>

<p>There is a lot of room for extension here.  You can define new AST nodes,
extend the language in many ways, etc.  In the <a href="OCamlLangImpl3.html">
next installment</a>, we will describe how to generate LLVM Intermediate
Representation (IR) from the AST.</p>

</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="code">Full Code Listing</a></div>
<!-- *********************************************************************** -->

<div class="doc_text">

<p>
Here is the complete code listing for this and the previous chapter.
Note that it is fully self-contained: you don't need LLVM or any external
libraries at all for this.  (Besides the ocaml standard libraries, of
course.)  To build this, just compile with:</p>

<div class="doc_code">
<pre>
# Compile
ocamlbuild toy.byte
# Run
./toy.byte
</pre>
</div>

<p>Here is the code:</p>

<dl>
<dt>_tags:</dt>
<dd class="doc_code">
<pre>
&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
</pre>
</dd>

<dt>token.ml:</dt>
<dd class="doc_code">
<pre>
(*===----------------------------------------------------------------------===
 * Lexer Tokens
 *===----------------------------------------------------------------------===*)

(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 * these others for known things. *)
type token =
  (* commands *)
  | Def | Extern

  (* primary *)
  | Ident of string | Number of float

  (* unknown *)
  | Kwd of char
</pre>
</dd>

<dt>lexer.ml:</dt>
<dd class="doc_code">
<pre>
(*===----------------------------------------------------------------------===
 * Lexer
 *===----------------------------------------------------------------------===*)

let rec lex = parser
  (* Skip any whitespace. *)
  | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream

  (* identifier: [a-zA-Z][a-zA-Z0-9] *)
  | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
      let buffer = Buffer.create 1 in
      Buffer.add_char buffer c;
      lex_ident buffer stream

  (* number: [0-9.]+ *)
  | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
      let buffer = Buffer.create 1 in
      Buffer.add_char buffer c;
      lex_number buffer stream

  (* Comment until end of line. *)
  | [&lt; ' ('#'); stream &gt;] -&gt;
      lex_comment stream

  (* Otherwise, just return the character as its ascii value. *)
  | [&lt; 'c; stream &gt;] -&gt;
      [&lt; 'Token.Kwd c; lex stream &gt;]

  (* end of stream. *)
  | [&lt; &gt;] -&gt; [&lt; &gt;]

and lex_number buffer = parser
  | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
      Buffer.add_char buffer c;
      lex_number buffer stream
  | [&lt; stream=lex &gt;] -&gt;
      [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]

and lex_ident buffer = parser
  | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
      Buffer.add_char buffer c;
      lex_ident buffer stream
  | [&lt; stream=lex &gt;] -&gt;
      match Buffer.contents buffer with
      | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
      | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
      | id -&gt; [&lt; 'Token.Ident id; stream &gt;]

and lex_comment = parser
  | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
  | [&lt; 'c; e=lex_comment &gt;] -&gt; e
  | [&lt; &gt;] -&gt; [&lt; &gt;]
</pre>
</dd>

<dt>ast.ml:</dt>
<dd class="doc_code">
<pre>
(*===----------------------------------------------------------------------===
 * Abstract Syntax Tree (aka Parse Tree)
 *===----------------------------------------------------------------------===*)

(* expr - Base type for all expression nodes. *)
type expr =
  (* variant for numeric literals like "1.0". *)
  | Number of float

  (* variant for referencing a variable, like "a". *)
  | Variable of string

  (* variant for a binary operator. *)
  | Binary of char * expr * expr

  (* variant for function calls. *)
  | Call of string * expr array

(* proto - This type represents the "prototype" for a function, which captures
 * its name, and its argument names (thus implicitly the number of arguments the
 * function takes). *)
type proto = Prototype of string * string array

(* func - This type represents a function definition itself. *)
type func = Function of proto * expr
</pre>
</dd>

<dt>parser.ml:</dt>
<dd class="doc_code">
<pre>
(*===---------------------------------------------------------------------===
 * Parser
 *===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1

(* primary
 *   ::= identifier
 *   ::= numberexpr
 *   ::= parenexpr *)
let rec parse_primary = parser
  (* numberexpr ::= number *)
  | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n

  (* parenexpr ::= '(' expression ')' *)
  | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e

  (* identifierexpr
   *   ::= identifier
   *   ::= identifier '(' argumentexpr ')' *)
  | [&lt; 'Token.Ident id; stream &gt;] -&gt;
      let rec parse_args accumulator = parser
        | [&lt; e=parse_expr; stream &gt;] -&gt;
            begin parser
              | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
              | [&lt; &gt;] -&gt; e :: accumulator
            end stream
        | [&lt; &gt;] -&gt; accumulator
      in
      let rec parse_ident id = parser
        (* Call. *)
        | [&lt; 'Token.Kwd '(';
             args=parse_args [];
             'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
            Ast.Call (id, Array.of_list (List.rev args))

        (* Simple variable ref. *)
        | [&lt; &gt;] -&gt; Ast.Variable id
      in
      parse_ident id stream

  | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs
 *   ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
  match Stream.peek stream with
  (* If this is a binop, find its precedence. *)
  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
      let token_prec = precedence c in

      (* If this is a binop that binds at least as tightly as the current binop,
       * consume it, otherwise we are done. *)
      if token_prec &lt; expr_prec then lhs else begin
        (* Eat the binop. *)
        Stream.junk stream;

        (* Parse the primary expression after the binary operator. *)
        let rhs = parse_primary stream in

        (* Okay, we know this is a binop. *)
        let rhs =
          match Stream.peek stream with
          | Some (Token.Kwd c2) -&gt;
              (* If BinOp binds less tightly with rhs than the operator after
               * rhs, let the pending operator take rhs as its lhs. *)
              let next_prec = precedence c2 in
              if token_prec &lt; next_prec
              then parse_bin_rhs (token_prec + 1) rhs stream
              else rhs
          | _ -&gt; rhs
        in

        (* Merge lhs/rhs. *)
        let lhs = Ast.Binary (c, lhs, rhs) in
        parse_bin_rhs expr_prec lhs stream
      end
  | _ -&gt; lhs

(* expression
 *   ::= primary binoprhs *)
and parse_expr = parser
  | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream

(* prototype
 *   ::= id '(' id* ')' *)
let parse_prototype =
  let rec parse_args accumulator = parser
    | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
    | [&lt; &gt;] -&gt; accumulator
  in

  parser
  | [&lt; 'Token.Ident id;
       'Token.Kwd '(' ?? "expected '(' in prototype";
       args=parse_args [];
       'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
      (* success. *)
      Ast.Prototype (id, Array.of_list (List.rev args))

  | [&lt; &gt;] -&gt;
      raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
  | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
      Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
  | [&lt; e=parse_expr &gt;] -&gt;
      (* Make an anonymous proto. *)
      Ast.Function (Ast.Prototype ("", [||]), e)

(*  external ::= 'extern' prototype *)
let parse_extern = parser
  | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
</pre>
</dd>

<dt>toplevel.ml:</dt>
<dd class="doc_code">
<pre>
(*===----------------------------------------------------------------------===
 * Top-Level parsing and JIT Driver
 *===----------------------------------------------------------------------===*)

(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
  match Stream.peek stream with
  | None -&gt; ()

  (* ignore top-level semicolons. *)
  | Some (Token.Kwd ';') -&gt;
      Stream.junk stream;
      main_loop stream

  | Some token -&gt;
      begin
        try match token with
        | Token.Def -&gt;
            ignore(Parser.parse_definition stream);
            print_endline "parsed a function definition.";
        | Token.Extern -&gt;
            ignore(Parser.parse_extern stream);
            print_endline "parsed an extern.";
        | _ -&gt;
            (* Evaluate a top-level expression into an anonymous function. *)
            ignore(Parser.parse_toplevel stream);
            print_endline "parsed a top-level expr";
        with Stream.Error s -&gt;
          (* Skip token for error recovery. *)
          Stream.junk stream;
          print_endline s;
      end;
      print_string "ready&gt; "; flush stdout;
      main_loop stream
</pre>
</dd>

<dt>toy.ml:</dt>
<dd class="doc_code">
<pre>
(*===----------------------------------------------------------------------===
 * Main driver code.
 *===----------------------------------------------------------------------===*)

let main () =
  (* Install standard binary operators.
   * 1 is the lowest precedence. *)
  Hashtbl.add Parser.binop_precedence '&lt;' 10;
  Hashtbl.add Parser.binop_precedence '+' 20;
  Hashtbl.add Parser.binop_precedence '-' 20;
  Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)

  (* Prime the first token. *)
  print_string "ready&gt; "; flush stdout;
  let stream = Lexer.lex (Stream.of_channel stdin) in

  (* Run the main "interpreter loop" now. *)
  Toplevel.main_loop stream;
;;

main ()
</pre>
</dd>
</dl>

<a href="OCamlLangImpl3.html">Next: Implementing Code Generation to LLVM IR</a>
</div>

<!-- *********************************************************************** -->
<hr>
<address>
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
  <a href="http://validator.w3.org/check/referer"><img
  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>

  <a href="mailto:sabre@nondot.org">Chris Lattner</a>
  <a href="mailto:erickt@users.sourceforge.net">Erick Tryzelaar</a><br>
  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
  Last modified: $Date$
</address>
</body>
</html>