llvm.org GIT mirror llvm / 48973d7 include / llvm / IR / CallSite.h
48973d7

Tree @48973d7 (Download .tar.gz)

CallSite.h @48973d7

4bbfbdf
63b3afa
6b54768
 
 
63b3afa
6fbcc26
93a7e08
 
e369611
 
c8b82cc
 
93a7e08
c8b82cc
 
 
 
 
e369611
c8b82cc
4ba0f57
93a7e08
 
4bbfbdf
 
93a7e08
38d2f63
 
e3e43d9
0b8c9a8
 
38d2f63
 
 
0b8c9a8
38d2f63
 
 
e3e43d9
38d2f63
 
 
93a7e08
d0fde30
 
6619121
 
 
 
e369611
 
 
c8b82cc
 
e369611
c8b82cc
 
 
e369611
e749325
38f13ea
e369611
 
 
e749325
 
 
a0887c2
e369611
 
 
c8b82cc
 
 
a675844
e369611
a675844
e369611
 
697a00f
c8b82cc
697a00f
c36e746
89730dc
e369611
 
255b26e
e369611
 
 
 
 
 
01f93a4
c8b82cc
 
d898d31
b5b0b45
a0887c2
f84a650
 
a0887c2
c8b82cc
e369611
c9f7500
7c4098e
93a7e08
a0887c2
 
c8b82cc
 
721aef6
93a7e08
a0887c2
8ee4396
0b7b0d3
8ee4396
 
 
 
e369611
 
8ee4396
 
 
 
3641e51
 
697a00f
e369611
3641e51
 
 
c9f7500
697a00f
 
5964d13
 
 
 
 
 
 
 
 
 
 
a0887c2
36b699f
 
c8b82cc
 
36b699f
 
 
a0887c2
688b5df
 
 
 
a0887c2
688b5df
8aba797
688b5df
 
 
a0887c2
688b5df
 
 
 
a0887c2
688b5df
8aba797
688b5df
 
8aba797
688b5df
 
 
 
a0887c2
ec185d0
 
 
 
a0887c2
ec185d0
 
 
 
c8b82cc
e6c7452
436ed47
e6c7452
 
823391a
e369611
823391a
436ed47
823391a
8c174a9
c9f7500
 
36b699f
 
 
 
 
 
 
e369611
688b5df
36b699f
c9f7500
 
a0887c2
 
e5dc33d
93a7e08
489a03c
e6bc7d1
489a03c
21c276d
96698a5
9f7c861
a0887c2
ec185d0
 
 
 
 
 
 
 
e369611
ec185d0
 
 
 
a6abdeb
 
e5dc33d
a6abdeb
 
e369611
 
 
 
 
a6abdeb
 
 
1e8d4d3
a6abdeb
 
 
1e8d4d3
a6abdeb
 
e6bc7d1
a6abdeb
 
 
 
 
 
 
 
a0887c2
db125cf
ce93108
a0887c2
7b975f4
ce93108
a0887c2
 
710c1a4
 
 
 
a0887c2
05da4dd
 
 
 
e369611
 
 
 
 
7ad3b2a
e369611
 
 
 
 
 
 
7ad3b2a
 
f84a650
 
 
 
ccf2ea3
f84a650
 
 
9a51ef1
 
 
 
ccf2ea3
e369611
f84a650
 
a0887c2
7ad3b2a
 
 
a0887c2
7ad3b2a
 
 
 
93a23a3
 
 
 
 
 
 
 
a0887c2
6707770
7ad3b2a
 
a0887c2
6707770
7ad3b2a
 
 
3564e5c
 
b505275
 
4e14c83
 
 
 
a82b376
 
 
 
3564e5c
 
b505275
 
a2f727d
 
 
 
a82b376
 
 
 
a0887c2
3564e5c
 
986da6c
 
a0887c2
3564e5c
 
db61103
 
1f8f049
 
 
 
 
a0887c2
1f8f049
 
7ad3b2a
 
4e14c83
 
 
 
a2f727d
 
 
 
a0887c2
 
a6abdeb
e369611
 
 
 
3564e5c
 
a6abdeb
 
52b0228
 
 
 
 
a0887c2
52b0228
 
7ad3b2a
 
a8aa168
 
 
 
 
a0887c2
 
52b0228
11af4b4
 
c36e746
a0887c2
5a6ea24
52b0228
5a6ea24
 
c36e746
a82b376
 
 
14ff71a
 
a0887c2
2253a2f
 
 
 
68d0bd1
 
 
 
 
a0887c2
7ad3b2a
 
 
 
b3344f8
7ad3b2a
b3344f8
a0887c2
7ad3b2a
 
 
1b00507
 
7ad3b2a
 
a0887c2
7ad3b2a
 
 
1b00507
 
7ad3b2a
 
a0887c2
b07f540
 
 
 
 
 
 
a0887c2
6690dbf
 
 
 
 
 
 
 
52f6f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0887c2
7ad3b2a
 
 
1b00507
 
7ad3b2a
 
a0887c2
7ad3b2a
 
 
1b00507
 
7ad3b2a
 
a0887c2
67d4f30
 
 
 
3f41ea0
67d4f30
 
a0887c2
7d0a344
 
 
 
 
 
 
 
 
 
688b5df
5b674c0
 
 
 
 
 
 
688b5df
 
 
 
 
 
 
 
 
5b674c0
 
 
b88a543
 
5b674c0
 
76cac27
 
 
 
ef40fb9
 
 
 
f9e7219
 
 
 
8ef2e47
 
 
 
fd947f3
 
 
 
 
 
 
 
7ad3b2a
 
 
00fb64d
 
 
1e8d4d3
00fb64d
 
a0887c2
a6abdeb
 
173862e
 
a0887c2
173862e
1f8f049
173862e
 
a0887c2
4b70bfc
1f8f049
4b70bfc
 
a0887c2
4b70bfc
1f8f049
 
4b70bfc
 
a0887c2
 
4b70bfc
1f8f049
4b70bfc
 
a6abdeb
 
dc89737
 
a6abdeb
 
 
dc89737
 
b89bfff
 
 
 
 
a0887c2
11af4b4
 
 
1f8f049
11af4b4
331b9af
c6da686
 
11af4b4
 
 
 
 
a0887c2
 
7ad3b2a
 
 
 
 
 
 
 
8c174a9
c8b82cc
9fa222d
c8b82cc
 
 
5b674c0
f84a650
e369611
c8b82cc
38d2f63
b6ee41f
 
 
e369611
b6ee41f
 
c8b82cc
 
 
 
 
 
 
 
dea54d6
38d2f63
c9f7500
93a7e08
 
972a348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81503f1
972a348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea54d6
38d2f63
dea54d6
 
 
 
 
 
38d2f63
dea54d6
 
 
 
 
38d2f63
dea54d6
 
 
38d2f63
dea54d6
 
 
 
 
a0887c2
79fca6f
 
38d2f63
b6ee41f
 
e369611
b6ee41f
 
 
79fca6f
 
38d2f63
d0fde30
38d2f63
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the CallSite class, which is a handy wrapper for code that
// wants to treat Call, Invoke and CallBr instructions in a generic way. When
// in non-mutation context (e.g. an analysis) ImmutableCallSite should be used.
// Finally, when some degree of customization is necessary between these two
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
//
// NOTE: These classes are supposed to have "value semantics". So they should be
// passed by value, not by reference; they should not be "new"ed or "delete"d.
// They are efficiently copyable, assignable and constructable, with cost
// equivalent to copying a pointer (notice that they have only a single data
// member). The internal representation carries a flag which indicates which of
// the three variants is enclosed. This allows for cheaper checks when various
// accessors of CallSite are employed.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CALLSITE_H
#define LLVM_IR_CALLSITE_H

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstdint>
#include <iterator>

namespace llvm {

namespace Intrinsic {
enum ID : unsigned;
}

template <typename FunTy = const Function, typename BBTy = const BasicBlock,
          typename ValTy = const Value, typename UserTy = const User,
          typename UseTy = const Use, typename InstrTy = const Instruction,
          typename CallTy = const CallInst,
          typename InvokeTy = const InvokeInst,
          typename CallBrTy = const CallBrInst,
          typename IterTy = User::const_op_iterator>
class CallSiteBase {
protected:
  PointerIntPair<InstrTy *, 2, int> I;

  CallSiteBase() = default;
  CallSiteBase(CallTy *CI) : I(CI, 1) { assert(CI); }
  CallSiteBase(InvokeTy *II) : I(II, 0) { assert(II); }
  CallSiteBase(CallBrTy *CBI) : I(CBI, 2) { assert(CBI); }
  explicit CallSiteBase(ValTy *II) { *this = get(II); }

private:
  /// This static method is like a constructor. It will create an appropriate
  /// call site for a Call, Invoke or CallBr instruction, but it can also create
  /// a null initialized CallSiteBase object for something which is NOT a call
  /// site.
  static CallSiteBase get(ValTy *V) {
    if (InstrTy *II = dyn_cast<InstrTy>(V)) {
      if (II->getOpcode() == Instruction::Call)
        return CallSiteBase(static_cast<CallTy*>(II));
      if (II->getOpcode() == Instruction::Invoke)
        return CallSiteBase(static_cast<InvokeTy*>(II));
      if (II->getOpcode() == Instruction::CallBr)
        return CallSiteBase(static_cast<CallBrTy *>(II));
    }
    return CallSiteBase();
  }

public:
  /// Return true if a CallInst is enclosed.
  bool isCall() const { return I.getInt() == 1; }

  /// Return true if a InvokeInst is enclosed. !I.getInt() may also signify a
  /// NULL instruction pointer, so check that.
  bool isInvoke() const { return getInstruction() && I.getInt() == 0; }

  /// Return true if a CallBrInst is enclosed.
  bool isCallBr() const { return I.getInt() == 2; }

  InstrTy *getInstruction() const { return I.getPointer(); }
  InstrTy *operator->() const { return I.getPointer(); }
  explicit operator bool() const { return I.getPointer(); }

  /// Get the basic block containing the call site.
  BBTy* getParent() const { return getInstruction()->getParent(); }

  /// Return the pointer to function that is being called.
  ValTy *getCalledValue() const {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    return *getCallee();
  }

  /// Return the function being called if this is a direct call, otherwise
  /// return null (if it's an indirect call).
  FunTy *getCalledFunction() const {
    return dyn_cast<FunTy>(getCalledValue());
  }

  /// Return true if the callsite is an indirect call.
  bool isIndirectCall() const {
    const Value *V = getCalledValue();
    if (!V)
      return false;
    if (isa<FunTy>(V) || isa<Constant>(V))
      return false;
    if (const CallBase *CB = dyn_cast<CallBase>(getInstruction()))
      if (CB->isInlineAsm())
        return false;
    return true;
  }

  /// Set the callee to the specified value.  Unlike the function of the same
  /// name on CallBase, does not modify the type!
  void setCalledFunction(Value *V) {
    assert(getInstruction() && "Not a call, callbr, or invoke instruction!");
    assert(cast<PointerType>(V->getType())->getElementType() ==
               cast<CallBase>(getInstruction())->getFunctionType() &&
           "New callee type does not match FunctionType on call");
    *getCallee() = V;
  }

  /// Return the intrinsic ID of the intrinsic called by this CallSite,
  /// or Intrinsic::not_intrinsic if the called function is not an
  /// intrinsic, or if this CallSite is an indirect call.
  Intrinsic::ID getIntrinsicID() const {
    if (auto *F = getCalledFunction())
      return F->getIntrinsicID();
    // Don't use Intrinsic::not_intrinsic, as it will require pulling
    // Intrinsics.h into every header that uses CallSite.
    return static_cast<Intrinsic::ID>(0);
  }

  /// Determine whether the passed iterator points to the callee operand's Use.
  bool isCallee(Value::const_user_iterator UI) const {
    return isCallee(&UI.getUse());
  }

  /// Determine whether this Use is the callee operand's Use.
  bool isCallee(const Use *U) const { return getCallee() == U; }

  /// Determine whether the passed iterator points to an argument operand.
  bool isArgOperand(Value::const_user_iterator UI) const {
    return isArgOperand(&UI.getUse());
  }

  /// Determine whether the passed use points to an argument operand.
  bool isArgOperand(const Use *U) const {
    assert(getInstruction() == U->getUser());
    return arg_begin() <= U && U < arg_end();
  }

  /// Determine whether the passed iterator points to a bundle operand.
  bool isBundleOperand(Value::const_user_iterator UI) const {
    return isBundleOperand(&UI.getUse());
  }

  /// Determine whether the passed use points to a bundle operand.
  bool isBundleOperand(const Use *U) const {
    assert(getInstruction() == U->getUser());
    if (!hasOperandBundles())
      return false;
    unsigned OperandNo = U - (*this)->op_begin();
    return getBundleOperandsStartIndex() <= OperandNo &&
           OperandNo < getBundleOperandsEndIndex();
  }

  /// Determine whether the passed iterator points to a data operand.
  bool isDataOperand(Value::const_user_iterator UI) const {
    return isDataOperand(&UI.getUse());
  }

  /// Determine whether the passed use points to a data operand.
  bool isDataOperand(const Use *U) const {
    return data_operands_begin() <= U && U < data_operands_end();
  }

  ValTy *getArgument(unsigned ArgNo) const {
    assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
    return *(arg_begin() + ArgNo);
  }

  void setArgument(unsigned ArgNo, Value* newVal) {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
    getInstruction()->setOperand(ArgNo, newVal);
  }

  /// Given a value use iterator, returns the argument that corresponds to it.
  /// Iterator must actually correspond to an argument.
  unsigned getArgumentNo(Value::const_user_iterator I) const {
    return getArgumentNo(&I.getUse());
  }

  /// Given a use for an argument, get the argument number that corresponds to
  /// it.
  unsigned getArgumentNo(const Use *U) const {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    assert(isArgOperand(U) && "Argument # out of range!");
    return U - arg_begin();
  }

  /// The type of iterator to use when looping over actual arguments at this
  /// call site.
  using arg_iterator = IterTy;

  iterator_range<IterTy> args() const {
    return make_range(arg_begin(), arg_end());
  }
  bool arg_empty() const { return arg_end() == arg_begin(); }
  unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }

  /// Given a value use iterator, return the data operand corresponding to it.
  /// Iterator must actually correspond to a data operand.
  unsigned getDataOperandNo(Value::const_user_iterator UI) const {
    return getDataOperandNo(&UI.getUse());
  }

  /// Given a use for a data operand, get the data operand number that
  /// corresponds to it.
  unsigned getDataOperandNo(const Use *U) const {
    assert(getInstruction() && "Not a call, invoke or callbr instruction!");
    assert(isDataOperand(U) && "Data operand # out of range!");
    return U - data_operands_begin();
  }

  /// Type of iterator to use when looping over data operands at this call site
  /// (see below).
  using data_operand_iterator = IterTy;

  /// data_operands_begin/data_operands_end - Return iterators iterating over
  /// the call / invoke / callbr argument list and bundle operands. For invokes,
  /// this is the set of instruction operands except the invoke target and the
  /// two successor blocks; for calls this is the set of instruction operands
  /// except the call target; for callbrs the number of labels to skip must be
  /// determined first.

  IterTy data_operands_begin() const {
    assert(getInstruction() && "Not a call or invoke instruction!");
    return cast<CallBase>(getInstruction())->data_operands_begin();
  }
  IterTy data_operands_end() const {
    assert(getInstruction() && "Not a call or invoke instruction!");
    return cast<CallBase>(getInstruction())->data_operands_end();
  }
  iterator_range<IterTy> data_ops() const {
    return make_range(data_operands_begin(), data_operands_end());
  }
  bool data_operands_empty() const {
    return data_operands_end() == data_operands_begin();
  }
  unsigned data_operands_size() const {
    return std::distance(data_operands_begin(), data_operands_end());
  }

  /// Return the type of the instruction that generated this call site.
  Type *getType() const { return (*this)->getType(); }

  /// Return the caller function for this call site.
  FunTy *getCaller() const { return (*this)->getParent()->getParent(); }

  /// Tests if this call site must be tail call optimized. Only a CallInst can
  /// be tail call optimized.
  bool isMustTailCall() const {
    return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
  }

  /// Tests if this call site is marked as a tail call.
  bool isTailCall() const {
    return isCall() && cast<CallInst>(getInstruction())->isTailCall();
  }

#define CALLSITE_DELEGATE_GETTER(METHOD)                                       \
  InstrTy *II = getInstruction();                                              \
  return isCall() ? cast<CallInst>(II)->METHOD                                 \
                  : isCallBr() ? cast<CallBrInst>(II)->METHOD                  \
                                : cast<InvokeInst>(II)->METHOD

#define CALLSITE_DELEGATE_SETTER(METHOD)                                       \
  InstrTy *II = getInstruction();                                              \
  if (isCall())                                                                \
    cast<CallInst>(II)->METHOD;                                                \
  else if (isCallBr())                                                         \
    cast<CallBrInst>(II)->METHOD;                                              \
  else                                                                         \
    cast<InvokeInst>(II)->METHOD

  unsigned getNumArgOperands() const {
    CALLSITE_DELEGATE_GETTER(getNumArgOperands());
  }

  ValTy *getArgOperand(unsigned i) const {
    CALLSITE_DELEGATE_GETTER(getArgOperand(i));
  }

  ValTy *getReturnedArgOperand() const {
    CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
  }

  bool isInlineAsm() const {
    return cast<CallBase>(getInstruction())->isInlineAsm();
  }

  /// Get the calling convention of the call.
  CallingConv::ID getCallingConv() const {
    CALLSITE_DELEGATE_GETTER(getCallingConv());
  }
  /// Set the calling convention of the call.
  void setCallingConv(CallingConv::ID CC) {
    CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
  }

  FunctionType *getFunctionType() const {
    CALLSITE_DELEGATE_GETTER(getFunctionType());
  }

  void mutateFunctionType(FunctionType *Ty) const {
    CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
  }

  /// Get the parameter attributes of the call.
  AttributeList getAttributes() const {
    CALLSITE_DELEGATE_GETTER(getAttributes());
  }
  /// Set the parameter attributes of the call.
  void setAttributes(AttributeList PAL) {
    CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
  }

  void addAttribute(unsigned i, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
  }

  void addAttribute(unsigned i, Attribute Attr) {
    CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
  }

  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind));
  }

  void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
  }

  void removeAttribute(unsigned i, StringRef Kind) {
    CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
  }

  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind));
  }

  /// Return true if this function has the given attribute.
  bool hasFnAttr(Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
  }

  /// Return true if this function has the given attribute.
  bool hasFnAttr(StringRef Kind) const {
    CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
  }

  /// Return true if this return value has the given attribute.
  bool hasRetAttr(Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind));
  }

  /// Return true if the call or the callee has the given attribute.
  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind));
  }

  Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
  }

  Attribute getAttribute(unsigned i, StringRef Kind) const {
    CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
  }

  /// Return true if the data operand at index \p i directly or indirectly has
  /// the attribute \p A.
  ///
  /// Normal call, invoke or callbr arguments have per operand attributes, as
  /// specified in the attribute set attached to this instruction, while operand
  /// bundle operands may have some attributes implied by the type of its
  /// containing operand bundle.
  bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
    CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
  }

  /// Extract the alignment of the return value.
  unsigned getRetAlignment() const {
    CALLSITE_DELEGATE_GETTER(getRetAlignment());
  }

  /// Extract the alignment for a call or parameter (0=unknown).
  unsigned getParamAlignment(unsigned ArgNo) const {
    CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo));
  }

  /// Extract the byval type for a call or parameter (nullptr=unknown).
  Type *getParamByValType(unsigned ArgNo) const {
    CALLSITE_DELEGATE_GETTER(getParamByValType(ArgNo));
  }

  /// Extract the number of dereferenceable bytes for a call or parameter
  /// (0=unknown).
  uint64_t getDereferenceableBytes(unsigned i) const {
    CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
  }

  /// Extract the number of dereferenceable_or_null bytes for a call or
  /// parameter (0=unknown).
  uint64_t getDereferenceableOrNullBytes(unsigned i) const {
    CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
  }

  /// Determine if the return value is marked with NoAlias attribute.
  bool returnDoesNotAlias() const {
    CALLSITE_DELEGATE_GETTER(returnDoesNotAlias());
  }

  /// Return true if the call should not be treated as a call to a builtin.
  bool isNoBuiltin() const {
    CALLSITE_DELEGATE_GETTER(isNoBuiltin());
  }

  /// Return true if the call requires strict floating point semantics.
  bool isStrictFP() const {
    CALLSITE_DELEGATE_GETTER(isStrictFP());
  }

  /// Return true if the call should not be inlined.
  bool isNoInline() const {
    CALLSITE_DELEGATE_GETTER(isNoInline());
  }
  void setIsNoInline(bool Value = true) {
    CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
  }

  /// Determine if the call does not access memory.
  bool doesNotAccessMemory() const {
    CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
  }
  void setDoesNotAccessMemory() {
    CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
  }

  /// Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
  }
  void setOnlyReadsMemory() {
    CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
  }

  /// Determine if the call does not access or only writes memory.
  bool doesNotReadMemory() const {
    CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
  }
  void setDoesNotReadMemory() {
    CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
  }

  /// Determine if the call can access memmory only using pointers based
  /// on its arguments.
  bool onlyAccessesArgMemory() const {
    CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
  }
  void setOnlyAccessesArgMemory() {
    CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
  }

  /// Determine if the function may only access memory that is
  /// inaccessible from the IR.
  bool onlyAccessesInaccessibleMemory() const {
    CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemory());
  }
  void setOnlyAccessesInaccessibleMemory() {
    CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemory());
  }

  /// Determine if the function may only access memory that is
  /// either inaccessible from the IR or pointed to by its arguments.
  bool onlyAccessesInaccessibleMemOrArgMem() const {
    CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemOrArgMem());
  }
  void setOnlyAccessesInaccessibleMemOrArgMem() {
    CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemOrArgMem());
  }

  /// Determine if the call cannot return.
  bool doesNotReturn() const {
    CALLSITE_DELEGATE_GETTER(doesNotReturn());
  }
  void setDoesNotReturn() {
    CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
  }

  /// Determine if the call cannot unwind.
  bool doesNotThrow() const {
    CALLSITE_DELEGATE_GETTER(doesNotThrow());
  }
  void setDoesNotThrow() {
    CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
  }

  /// Determine if the call can be duplicated.
  bool cannotDuplicate() const {
    CALLSITE_DELEGATE_GETTER(cannotDuplicate());
  }
  void setCannotDuplicate() {
    CALLSITE_DELEGATE_SETTER(setCannotDuplicate());
  }

  /// Determine if the call is convergent.
  bool isConvergent() const {
    CALLSITE_DELEGATE_GETTER(isConvergent());
  }
  void setConvergent() {
    CALLSITE_DELEGATE_SETTER(setConvergent());
  }
  void setNotConvergent() {
    CALLSITE_DELEGATE_SETTER(setNotConvergent());
  }

  unsigned getNumOperandBundles() const {
    CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
  }

  bool hasOperandBundles() const {
    CALLSITE_DELEGATE_GETTER(hasOperandBundles());
  }

  unsigned getBundleOperandsStartIndex() const {
    CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
  }

  unsigned getBundleOperandsEndIndex() const {
    CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
  }

  unsigned getNumTotalBundleOperands() const {
    CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
  }

  OperandBundleUse getOperandBundleAt(unsigned Index) const {
    CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
  }

  Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
    CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
  }

  Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
    CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
  }

  unsigned countOperandBundlesOfType(uint32_t ID) const {
    CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
  }

  bool isBundleOperand(unsigned Idx) const {
    CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx));
  }

  IterTy arg_begin() const {
    CALLSITE_DELEGATE_GETTER(arg_begin());
  }

  IterTy arg_end() const {
    CALLSITE_DELEGATE_GETTER(arg_end());
  }

#undef CALLSITE_DELEGATE_GETTER
#undef CALLSITE_DELEGATE_SETTER

  void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
    // Since this is actually a getter that "looks like" a setter, don't use the
    // above macros to avoid confusion.
    cast<CallBase>(getInstruction())->getOperandBundlesAsDefs(Defs);
  }

  /// Determine whether this data operand is not captured.
  bool doesNotCapture(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
  }

  /// Determine whether this argument is passed by value.
  bool isByValArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal);
  }

  /// Determine whether this argument is passed in an alloca.
  bool isInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine whether this argument is passed by value or in an alloca.
  bool isByValOrInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal) ||
           paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine if there are is an inalloca argument. Only the last argument can
  /// have the inalloca attribute.
  bool hasInAllocaArgument() const {
    return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
  }

  bool doesNotAccessMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  bool onlyReadsMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  bool doesNotReadMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
           dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
  }

  /// Return true if the return value is known to be not null.
  /// This may be because it has the nonnull attribute, or because at least
  /// one byte is dereferenceable and the pointer is in addrspace(0).
  bool isReturnNonNull() const {
    if (hasRetAttr(Attribute::NonNull))
      return true;
    else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
             !NullPointerIsDefined(getCaller(),
                                   getType()->getPointerAddressSpace()))
      return true;

    return false;
  }

  /// Returns true if this CallSite passes the given Value* as an argument to
  /// the called function.
  bool hasArgument(const Value *Arg) const {
    for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
         ++AI)
      if (AI->get() == Arg)
        return true;
    return false;
  }

private:
  IterTy getCallee() const {
    return cast<CallBase>(getInstruction())->op_end() - 1;
  }
};

class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
                                     Instruction, CallInst, InvokeInst,
                                     CallBrInst, User::op_iterator> {
public:
  CallSite() = default;
  CallSite(CallSiteBase B) : CallSiteBase(B) {}
  CallSite(CallInst *CI) : CallSiteBase(CI) {}
  CallSite(InvokeInst *II) : CallSiteBase(II) {}
  CallSite(CallBrInst *CBI) : CallSiteBase(CBI) {}
  explicit CallSite(Instruction *II) : CallSiteBase(II) {}
  explicit CallSite(Value *V) : CallSiteBase(V) {}

  bool operator==(const CallSite &CS) const { return I == CS.I; }
  bool operator!=(const CallSite &CS) const { return I != CS.I; }
  bool operator<(const CallSite &CS) const {
    return getInstruction() < CS.getInstruction();
  }

private:
  friend struct DenseMapInfo<CallSite>;

  User::op_iterator getCallee() const;
};

/// AbstractCallSite
///
/// An abstract call site is a wrapper that allows to treat direct,
/// indirect, and callback calls the same. If an abstract call site
/// represents a direct or indirect call site it behaves like a stripped
/// down version of a normal call site object. The abstract call site can
/// also represent a callback call, thus the fact that the initially
/// called function (=broker) may invoke a third one (=callback callee).
/// In this case, the abstract call site hides the middle man, hence the
/// broker function. The result is a representation of the callback call,
/// inside the broker, but in the context of the original call to the broker.
///
/// There are up to three functions involved when we talk about callback call
/// sites. The caller (1), which invokes the broker function. The broker
/// function (2), that will invoke the callee zero or more times. And finally
/// the callee (3), which is the target of the callback call.
///
/// The abstract call site will handle the mapping from parameters to arguments
/// depending on the semantic of the broker function. However, it is important
/// to note that the mapping is often partial. Thus, some arguments of the
/// call/invoke instruction are mapped to parameters of the callee while others
/// are not.
class AbstractCallSite {
public:

  /// The encoding of a callback with regards to the underlying instruction.
  struct CallbackInfo {

    /// For direct/indirect calls the parameter encoding is empty. If it is not,
    /// the abstract call site represents a callback. In that case, the first
    /// element of the encoding vector represents which argument of the call
    /// site CS is the callback callee. The remaining elements map parameters
    /// (identified by their position) to the arguments that will be passed
    /// through (also identified by position but in the call site instruction).
    ///
    /// NOTE that we use LLVM argument numbers (starting at 0) and not
    /// clang/source argument numbers (starting at 1). The -1 entries represent
    /// unknown values that are passed to the callee.
    using ParameterEncodingTy = SmallVector<int, 0>;
    ParameterEncodingTy ParameterEncoding;

  };

private:

  /// The underlying call site:
  ///   caller -> callee,             if this is a direct or indirect call site
  ///   caller -> broker function,    if this is a callback call site
  CallSite CS;

  /// The encoding of a callback with regards to the underlying instruction.
  CallbackInfo CI;

public:
  /// Sole constructor for abstract call sites (ACS).
  ///
  /// An abstract call site can only be constructed through a llvm::Use because
  /// each operand (=use) of an instruction could potentially be a different
  /// abstract call site. Furthermore, even if the value of the llvm::Use is the
  /// same, and the user is as well, the abstract call sites might not be.
  ///
  /// If a use is not associated with an abstract call site the constructed ACS
  /// will evaluate to false if converted to a boolean.
  ///
  /// If the use is the callee use of a call or invoke instruction, the
  /// constructed abstract call site will behave as a llvm::CallSite would.
  ///
  /// If the use is not a callee use of a call or invoke instruction, the
  /// callback metadata is used to determine the argument <-> parameter mapping
  /// as well as the callee of the abstract call site.
  AbstractCallSite(const Use *U);

  /// Conversion operator to conveniently check for a valid/initialized ACS.
  explicit operator bool() const { return (bool)CS; }

  /// Return the underlying instruction.
  Instruction *getInstruction() const { return CS.getInstruction(); }

  /// Return the call site abstraction for the underlying instruction.
  CallSite getCallSite() const { return CS; }

  /// Return true if this ACS represents a direct call.
  bool isDirectCall() const {
    return !isCallbackCall() && !CS.isIndirectCall();
  }

  /// Return true if this ACS represents an indirect call.
  bool isIndirectCall() const {
    return !isCallbackCall() && CS.isIndirectCall();
  }

  /// Return true if this ACS represents a callback call.
  bool isCallbackCall() const {
    // For a callback call site the callee is ALWAYS stored first in the
    // transitive values vector. Thus, a non-empty vector indicates a callback.
    return !CI.ParameterEncoding.empty();
  }

  /// Return true if @p UI is the use that defines the callee of this ACS.
  bool isCallee(Value::const_user_iterator UI) const {
    return isCallee(&UI.getUse());
  }

  /// Return true if @p U is the use that defines the callee of this ACS.
  bool isCallee(const Use *U) const {
    if (isDirectCall())
      return CS.isCallee(U);

    assert(!CI.ParameterEncoding.empty() &&
           "Callback without parameter encoding!");

    return (int)CS.getArgumentNo(U) == CI.ParameterEncoding[0];
  }

  /// Return the number of parameters of the callee.
  unsigned getNumArgOperands() const {
    if (isDirectCall())
      return CS.getNumArgOperands();
    // Subtract 1 for the callee encoding.
    return CI.ParameterEncoding.size() - 1;
  }

  /// Return the operand index of the underlying instruction associated with @p
  /// Arg.
  int getCallArgOperandNo(Argument &Arg) const {
    return getCallArgOperandNo(Arg.getArgNo());
  }

  /// Return the operand index of the underlying instruction associated with
  /// the function parameter number @p ArgNo or -1 if there is none.
  int getCallArgOperandNo(unsigned ArgNo) const {
    if (isDirectCall())
      return ArgNo;
    // Add 1 for the callee encoding.
    return CI.ParameterEncoding[ArgNo + 1];
  }

  /// Return the operand of the underlying instruction associated with @p Arg.
  Value *getCallArgOperand(Argument &Arg) const {
    return getCallArgOperand(Arg.getArgNo());
  }

  /// Return the operand of the underlying instruction associated with the
  /// function parameter number @p ArgNo or nullptr if there is none.
  Value *getCallArgOperand(unsigned ArgNo) const {
    if (isDirectCall())
      return CS.getArgOperand(ArgNo);
    // Add 1 for the callee encoding.
    return CI.ParameterEncoding[ArgNo + 1] >= 0
               ? CS.getArgOperand(CI.ParameterEncoding[ArgNo + 1])
               : nullptr;
  }

  /// Return the operand index of the underlying instruction associated with the
  /// callee of this ACS. Only valid for callback calls!
  int getCallArgOperandNoForCallee() const {
    assert(isCallbackCall());
    assert(CI.ParameterEncoding.size() && CI.ParameterEncoding[0] > 0);
    return CI.ParameterEncoding[0];
  }

  /// Return the pointer to function that is being called.
  Value *getCalledValue() const {
    if (isDirectCall())
      return CS.getCalledValue();
    return CS.getArgOperand(getCallArgOperandNoForCallee());
  }

  /// Return the function being called if this is a direct call, otherwise
  /// return null (if it's an indirect call).
  Function *getCalledFunction() const {
    Value *V = getCalledValue();
    return V ? dyn_cast<Function>(V->stripPointerCasts()) : nullptr;
  }
};

template <> struct DenseMapInfo<CallSite> {
  using BaseInfo = DenseMapInfo<decltype(CallSite::I)>;

  static CallSite getEmptyKey() {
    CallSite CS;
    CS.I = BaseInfo::getEmptyKey();
    return CS;
  }

  static CallSite getTombstoneKey() {
    CallSite CS;
    CS.I = BaseInfo::getTombstoneKey();
    return CS;
  }

  static unsigned getHashValue(const CallSite &CS) {
    return BaseInfo::getHashValue(CS.I);
  }

  static bool isEqual(const CallSite &LHS, const CallSite &RHS) {
    return LHS == RHS;
  }
};

/// Establish a view to a call site for examination.
class ImmutableCallSite : public CallSiteBase<> {
public:
  ImmutableCallSite() = default;
  ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
  ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
  ImmutableCallSite(const CallBrInst *CBI) : CallSiteBase(CBI) {}
  explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
  explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
  ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
};

} // end namespace llvm

#endif // LLVM_IR_CALLSITE_H